{-# LANGUAGE LambdaCase          #-}
{-# LANGUAGE NamedFieldPuns      #-}
{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns   #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-# LANGUAGE ParallelListComp #-}

module GHC.Tc.Errors(
       reportUnsolved, reportAllUnsolved, warnAllUnsolved,
       warnDefaulting,

       -- * GHC API helper functions
       solverReportMsg_ExpectedActuals,
       solverReportInfo_ExpectedActuals
  ) where

import GHC.Prelude

import GHC.Driver.Env (hsc_units)
import GHC.Driver.Session
import GHC.Driver.Ppr
import GHC.Driver.Config.Diagnostic

import GHC.Rename.Unbound

import GHC.Tc.Types
import GHC.Tc.Utils.Monad
import GHC.Tc.Errors.Types
import GHC.Tc.Errors.Ppr
import GHC.Tc.Types.Constraint
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Env( tcInitTidyEnv )
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.Unify ( checkTyVarEq )
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.EvTerm
import GHC.Tc.Instance.Family
import GHC.Tc.Utils.Instantiate
import {-# SOURCE #-} GHC.Tc.Errors.Hole ( findValidHoleFits, getHoleFitDispConfig, pprHoleFit )

import GHC.Types.Name
import GHC.Types.Name.Reader ( lookupGRE_Name, GlobalRdrEnv, mkRdrUnqual
                             , emptyLocalRdrEnv, lookupGlobalRdrEnv , lookupLocalRdrOcc )
import GHC.Types.Id
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Types.Name.Env
import GHC.Types.SrcLoc
import GHC.Types.Basic
import GHC.Types.Error
import qualified GHC.Types.Unique.Map as UM

--import GHC.Rename.Unbound ( unknownNameSuggestions, WhatLooking(..) )
import GHC.Unit.Module
import qualified GHC.LanguageExtensions as LangExt

import GHC.Core.Predicate
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.TyCo.Ppr  ( pprTyVars
                           )
import GHC.Core.InstEnv
import GHC.Core.TyCon
import GHC.Core.DataCon

import GHC.Utils.Error  (diagReasonSeverity,  pprLocMsgEnvelope )
import GHC.Utils.Misc
import GHC.Utils.Outputable as O
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.FV ( fvVarList, unionFV )

import GHC.Data.Bag
import GHC.Data.List.SetOps ( equivClasses, nubOrdBy )
import GHC.Data.Maybe
import qualified GHC.Data.Strict as Strict

import Control.Monad    ( unless, when, foldM, forM_ )
import Data.Foldable    ( toList )
import Data.Function    ( on )
import Data.List        ( partition, sort, sortBy )
import Data.List.NonEmpty ( NonEmpty(..), (<|) )
import qualified Data.List.NonEmpty as NE ( map, reverse )
import Data.Ord         ( comparing )
import qualified Data.Semigroup as S

{-
************************************************************************
*                                                                      *
\section{Errors and contexts}
*                                                                      *
************************************************************************

ToDo: for these error messages, should we note the location as coming
from the insts, or just whatever seems to be around in the monad just
now?

Note [Deferring coercion errors to runtime]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
While developing, sometimes it is desirable to allow compilation to succeed even
if there are type errors in the code. Consider the following case:

  module Main where

  a :: Int
  a = 'a'

  main = print "b"

Even though `a` is ill-typed, it is not used in the end, so if all that we're
interested in is `main` it is handy to be able to ignore the problems in `a`.

Since we treat type equalities as evidence, this is relatively simple. Whenever
we run into a type mismatch in GHC.Tc.Utils.Unify, we normally just emit an error. But it
is always safe to defer the mismatch to the main constraint solver. If we do
that, `a` will get transformed into

  co :: Int ~ Char
  co = ...

  a :: Int
  a = 'a' `cast` co

The constraint solver would realize that `co` is an insoluble constraint, and
emit an error with `reportUnsolved`. But we can also replace the right-hand side
of `co` with `error "Deferred type error: Int ~ Char"`. This allows the program
to compile, and it will run fine unless we evaluate `a`. This is what
`deferErrorsToRuntime` does.

It does this by keeping track of which errors correspond to which coercion
in GHC.Tc.Errors. GHC.Tc.Errors.reportTidyWanteds does not print the errors
and does not fail if -fdefer-type-errors is on, so that we can continue
compilation. The errors are turned into warnings in `reportUnsolved`.
-}

-- | Report unsolved goals as errors or warnings. We may also turn some into
-- deferred run-time errors if `-fdefer-type-errors` is on.
reportUnsolved :: WantedConstraints -> TcM (Bag EvBind)
reportUnsolved :: WantedConstraints -> TcM (Bag EvBind)
reportUnsolved WantedConstraints
wanted
  = do { EvBindsVar
binds_var <- TcM EvBindsVar
newTcEvBinds
       ; Bool
defer_errors <- forall gbl lcl. GeneralFlag -> TcRnIf gbl lcl Bool
goptM GeneralFlag
Opt_DeferTypeErrors
       ; let type_errors :: DiagnosticReason
type_errors | Bool -> Bool
not Bool
defer_errors = DiagnosticReason
ErrorWithoutFlag
                         | Bool
otherwise        = WarningFlag -> DiagnosticReason
WarningWithFlag WarningFlag
Opt_WarnDeferredTypeErrors

       ; Bool
defer_holes <- forall gbl lcl. GeneralFlag -> TcRnIf gbl lcl Bool
goptM GeneralFlag
Opt_DeferTypedHoles
       ; let expr_holes :: DiagnosticReason
expr_holes | Bool -> Bool
not Bool
defer_holes = DiagnosticReason
ErrorWithoutFlag
                        | Bool
otherwise       = WarningFlag -> DiagnosticReason
WarningWithFlag WarningFlag
Opt_WarnTypedHoles

       ; Bool
partial_sigs      <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.PartialTypeSignatures
       ; let type_holes :: DiagnosticReason
type_holes | Bool -> Bool
not Bool
partial_sigs
                        = DiagnosticReason
ErrorWithoutFlag
                        | Bool
otherwise
                        = WarningFlag -> DiagnosticReason
WarningWithFlag WarningFlag
Opt_WarnPartialTypeSignatures

       ; Bool
defer_out_of_scope <- forall gbl lcl. GeneralFlag -> TcRnIf gbl lcl Bool
goptM GeneralFlag
Opt_DeferOutOfScopeVariables
       ; let out_of_scope_holes :: DiagnosticReason
out_of_scope_holes | Bool -> Bool
not Bool
defer_out_of_scope
                                = DiagnosticReason
ErrorWithoutFlag
                                | Bool
otherwise
                                = WarningFlag -> DiagnosticReason
WarningWithFlag WarningFlag
Opt_WarnDeferredOutOfScopeVariables

       ; DiagnosticReason
-> DiagnosticReason
-> DiagnosticReason
-> DiagnosticReason
-> EvBindsVar
-> WantedConstraints
-> TcM ()
report_unsolved DiagnosticReason
type_errors DiagnosticReason
expr_holes
                         DiagnosticReason
type_holes DiagnosticReason
out_of_scope_holes
                         EvBindsVar
binds_var WantedConstraints
wanted

       ; EvBindMap
ev_binds <- EvBindsVar -> TcM EvBindMap
getTcEvBindsMap EvBindsVar
binds_var
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (EvBindMap -> Bag EvBind
evBindMapBinds EvBindMap
ev_binds)}

-- | Report *all* unsolved goals as errors, even if -fdefer-type-errors is on
-- However, do not make any evidence bindings, because we don't
-- have any convenient place to put them.
-- NB: Type-level holes are OK, because there are no bindings.
-- See Note [Deferring coercion errors to runtime]
-- Used by solveEqualities for kind equalities
--      (see Note [Fail fast on kind errors] in "GHC.Tc.Solver")
reportAllUnsolved :: WantedConstraints -> TcM ()
reportAllUnsolved :: WantedConstraints -> TcM ()
reportAllUnsolved WantedConstraints
wanted
  = do { EvBindsVar
ev_binds <- TcM EvBindsVar
newNoTcEvBinds

       ; Bool
partial_sigs      <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.PartialTypeSignatures
       ; let type_holes :: DiagnosticReason
type_holes | Bool -> Bool
not Bool
partial_sigs  = DiagnosticReason
ErrorWithoutFlag
                        | Bool
otherwise         = WarningFlag -> DiagnosticReason
WarningWithFlag WarningFlag
Opt_WarnPartialTypeSignatures

       ; DiagnosticReason
-> DiagnosticReason
-> DiagnosticReason
-> DiagnosticReason
-> EvBindsVar
-> WantedConstraints
-> TcM ()
report_unsolved DiagnosticReason
ErrorWithoutFlag
                         DiagnosticReason
ErrorWithoutFlag DiagnosticReason
type_holes DiagnosticReason
ErrorWithoutFlag
                         EvBindsVar
ev_binds WantedConstraints
wanted }

-- | Report all unsolved goals as warnings (but without deferring any errors to
-- run-time). See Note [Safe Haskell Overlapping Instances Implementation] in
-- "GHC.Tc.Solver"
warnAllUnsolved :: WantedConstraints -> TcM ()
warnAllUnsolved :: WantedConstraints -> TcM ()
warnAllUnsolved WantedConstraints
wanted
  = do { EvBindsVar
ev_binds <- TcM EvBindsVar
newTcEvBinds
       ; DiagnosticReason
-> DiagnosticReason
-> DiagnosticReason
-> DiagnosticReason
-> EvBindsVar
-> WantedConstraints
-> TcM ()
report_unsolved DiagnosticReason
WarningWithoutFlag
                         DiagnosticReason
WarningWithoutFlag
                         DiagnosticReason
WarningWithoutFlag
                         DiagnosticReason
WarningWithoutFlag
                         EvBindsVar
ev_binds WantedConstraints
wanted }

-- | Report unsolved goals as errors or warnings.
report_unsolved :: DiagnosticReason -- Deferred type errors
                -> DiagnosticReason -- Expression holes
                -> DiagnosticReason -- Type holes
                -> DiagnosticReason -- Out of scope holes
                -> EvBindsVar        -- cec_binds
                -> WantedConstraints -> TcM ()
report_unsolved :: DiagnosticReason
-> DiagnosticReason
-> DiagnosticReason
-> DiagnosticReason
-> EvBindsVar
-> WantedConstraints
-> TcM ()
report_unsolved DiagnosticReason
type_errors DiagnosticReason
expr_holes
    DiagnosticReason
type_holes DiagnosticReason
out_of_scope_holes EvBindsVar
binds_var WantedConstraints
wanted
  | WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  | Bool
otherwise
  = do { String -> SDoc -> TcM ()
traceTc String
"reportUnsolved {" forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"type errors:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr DiagnosticReason
type_errors
              , String -> SDoc
text String
"expr holes:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr DiagnosticReason
expr_holes
              , String -> SDoc
text String
"type holes:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr DiagnosticReason
type_holes
              , String -> SDoc
text String
"scope holes:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr DiagnosticReason
out_of_scope_holes ]
       ; String -> SDoc -> TcM ()
traceTc String
"reportUnsolved (before zonking and tidying)" (forall a. Outputable a => a -> SDoc
ppr WantedConstraints
wanted)

       ; WantedConstraints
wanted <- WantedConstraints -> TcM WantedConstraints
zonkWC WantedConstraints
wanted   -- Zonk to reveal all information

       ; let tidy_env :: TidyEnv
tidy_env = TidyEnv -> [TcId] -> TidyEnv
tidyFreeTyCoVars TidyEnv
emptyTidyEnv [TcId]
free_tvs
             free_tvs :: [TcId]
free_tvs = forall a. (a -> Bool) -> [a] -> [a]
filterOut TcId -> Bool
isCoVar forall a b. (a -> b) -> a -> b
$
                        WantedConstraints -> [TcId]
tyCoVarsOfWCList WantedConstraints
wanted
                        -- tyCoVarsOfWC returns free coercion *holes*, even though
                        -- they are "bound" by other wanted constraints. They in
                        -- turn may mention variables bound further in, which makes
                        -- no sense. Really we should not return those holes at all;
                        -- for now we just filter them out.

       ; String -> SDoc -> TcM ()
traceTc String
"reportUnsolved (after zonking):" forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Free tyvars:" SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
pprTyVars [TcId]
free_tvs
              , String -> SDoc
text String
"Tidy env:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr TidyEnv
tidy_env
              , String -> SDoc
text String
"Wanted:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr WantedConstraints
wanted ]

       ; Bool
warn_redundant <- forall gbl lcl. WarningFlag -> TcRnIf gbl lcl Bool
woptM WarningFlag
Opt_WarnRedundantConstraints
       ; Bool
exp_syns <- forall gbl lcl. GeneralFlag -> TcRnIf gbl lcl Bool
goptM GeneralFlag
Opt_PrintExpandedSynonyms
       ; let err_ctxt :: SolverReportErrCtxt
err_ctxt = CEC { cec_encl :: [Implication]
cec_encl  = []
                            , cec_tidy :: TidyEnv
cec_tidy  = TidyEnv
tidy_env
                            , cec_defer_type_errors :: DiagnosticReason
cec_defer_type_errors = DiagnosticReason
type_errors
                            , cec_expr_holes :: DiagnosticReason
cec_expr_holes = DiagnosticReason
expr_holes
                            , cec_type_holes :: DiagnosticReason
cec_type_holes = DiagnosticReason
type_holes
                            , cec_out_of_scope_holes :: DiagnosticReason
cec_out_of_scope_holes = DiagnosticReason
out_of_scope_holes
                            , cec_suppress :: Bool
cec_suppress = WantedConstraints -> Bool
insolubleWC WantedConstraints
wanted
                                 -- See Note [Suppressing error messages]
                                 -- Suppress low-priority errors if there
                                 -- are insoluble errors anywhere;
                                 -- See #15539 and c.f. setting ic_status
                                 -- in GHC.Tc.Solver.setImplicationStatus
                            , cec_warn_redundant :: Bool
cec_warn_redundant = Bool
warn_redundant
                            , cec_expand_syns :: Bool
cec_expand_syns = Bool
exp_syns
                            , cec_binds :: EvBindsVar
cec_binds    = EvBindsVar
binds_var }

       ; TcLevel
tc_lvl <- TcM TcLevel
getTcLevel
       ; SolverReportErrCtxt -> TcLevel -> WantedConstraints -> TcM ()
reportWanteds SolverReportErrCtxt
err_ctxt TcLevel
tc_lvl WantedConstraints
wanted
       ; String -> SDoc -> TcM ()
traceTc String
"reportUnsolved }" SDoc
empty }

--------------------------------------------
--      Internal functions
--------------------------------------------

-- | Make a report from a single 'TcSolverReportMsg'.
important :: SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important :: SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important SolverReportErrCtxt
ctxt TcSolverReportMsg
doc = forall a. Monoid a => a
mempty { sr_important_msgs :: [SolverReportWithCtxt]
sr_important_msgs = [SolverReportErrCtxt -> TcSolverReportMsg -> SolverReportWithCtxt
SolverReportWithCtxt SolverReportErrCtxt
ctxt TcSolverReportMsg
doc] }

mk_relevant_bindings :: RelevantBindings -> SolverReport
mk_relevant_bindings :: RelevantBindings -> SolverReport
mk_relevant_bindings RelevantBindings
binds = forall a. Monoid a => a
mempty { sr_supplementary :: [SolverReportSupplementary]
sr_supplementary = [RelevantBindings -> SolverReportSupplementary
SupplementaryBindings RelevantBindings
binds] }

mk_report_hints :: [GhcHint] -> SolverReport
mk_report_hints :: [GhcHint] -> SolverReport
mk_report_hints [GhcHint]
hints = forall a. Monoid a => a
mempty { sr_hints :: [GhcHint]
sr_hints = [GhcHint]
hints }

-- | Returns True <=> the SolverReportErrCtxt indicates that something is deferred
deferringAnyBindings :: SolverReportErrCtxt -> Bool
  -- Don't check cec_type_holes, as these don't cause bindings to be deferred
deferringAnyBindings :: SolverReportErrCtxt -> Bool
deferringAnyBindings (CEC { cec_defer_type_errors :: SolverReportErrCtxt -> DiagnosticReason
cec_defer_type_errors  = DiagnosticReason
ErrorWithoutFlag
                          , cec_expr_holes :: SolverReportErrCtxt -> DiagnosticReason
cec_expr_holes         = DiagnosticReason
ErrorWithoutFlag
                          , cec_out_of_scope_holes :: SolverReportErrCtxt -> DiagnosticReason
cec_out_of_scope_holes = DiagnosticReason
ErrorWithoutFlag }) = Bool
False
deferringAnyBindings SolverReportErrCtxt
_                                                   = Bool
True

maybeSwitchOffDefer :: EvBindsVar -> SolverReportErrCtxt -> SolverReportErrCtxt
-- Switch off defer-type-errors inside CoEvBindsVar
-- See Note [Failing equalities with no evidence bindings]
maybeSwitchOffDefer :: EvBindsVar -> SolverReportErrCtxt -> SolverReportErrCtxt
maybeSwitchOffDefer EvBindsVar
evb SolverReportErrCtxt
ctxt
 | CoEvBindsVar{} <- EvBindsVar
evb
 = SolverReportErrCtxt
ctxt { cec_defer_type_errors :: DiagnosticReason
cec_defer_type_errors  = DiagnosticReason
ErrorWithoutFlag
        , cec_expr_holes :: DiagnosticReason
cec_expr_holes         = DiagnosticReason
ErrorWithoutFlag
        , cec_out_of_scope_holes :: DiagnosticReason
cec_out_of_scope_holes = DiagnosticReason
ErrorWithoutFlag }
 | Bool
otherwise
 = SolverReportErrCtxt
ctxt

{- Note [Failing equalities with no evidence bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we go inside an implication that has no term evidence
(e.g. unifying under a forall), we can't defer type errors.  You could
imagine using the /enclosing/ bindings (in cec_binds), but that may
not have enough stuff in scope for the bindings to be well typed.  So
we just switch off deferred type errors altogether.  See #14605.

This is done by maybeSwitchOffDefer.  It's also useful in one other
place: see Note [Wrapping failing kind equalities] in GHC.Tc.Solver.

Note [Suppressing error messages]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The cec_suppress flag says "don't report any errors".  Instead, just create
evidence bindings (as usual).  It's used when more important errors have occurred.

Specifically (see reportWanteds)
  * If there are insoluble Givens, then we are in unreachable code and all bets
    are off.  So don't report any further errors.
  * If there are any insolubles (eg Int~Bool), here or in a nested implication,
    then suppress errors from the simple constraints here.  Sometimes the
    simple-constraint errors are a knock-on effect of the insolubles.

This suppression behaviour is controlled by the Bool flag in
ReportErrorSpec, as used in reportWanteds.

But we need to take care: flags can turn errors into warnings, and we
don't want those warnings to suppress subsequent errors (including
suppressing the essential addTcEvBind for them: #15152). So in
tryReporter we use askNoErrs to see if any error messages were
/actually/ produced; if not, we don't switch on suppression.

A consequence is that warnings never suppress warnings, so turning an
error into a warning may allow subsequent warnings to appear that were
previously suppressed.   (e.g. partial-sigs/should_fail/T14584)
-}

reportImplic :: SolverReportErrCtxt -> Implication -> TcM ()
reportImplic :: SolverReportErrCtxt -> Implication -> TcM ()
reportImplic SolverReportErrCtxt
ctxt implic :: Implication
implic@(Implic { ic_skols :: Implication -> [TcId]
ic_skols  = [TcId]
tvs
                                 , ic_given :: Implication -> [TcId]
ic_given  = [TcId]
given
                                 , ic_wanted :: Implication -> WantedConstraints
ic_wanted = WantedConstraints
wanted, ic_binds :: Implication -> EvBindsVar
ic_binds = EvBindsVar
evb
                                 , ic_status :: Implication -> ImplicStatus
ic_status = ImplicStatus
status, ic_info :: Implication -> SkolemInfoAnon
ic_info = SkolemInfoAnon
info
                                 , ic_env :: Implication -> TcLclEnv
ic_env    = TcLclEnv
tcl_env
                                 , ic_tclvl :: Implication -> TcLevel
ic_tclvl  = TcLevel
tc_lvl })
  | SkolemInfoAnon
BracketSkol <- SkolemInfoAnon
info
  , Bool -> Bool
not Bool
insoluble
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()        -- For Template Haskell brackets report only
                     -- definite errors. The whole thing will be re-checked
                     -- later when we plug it in, and meanwhile there may
                     -- certainly be un-satisfied constraints

  | Bool
otherwise
  = do { String -> SDoc -> TcM ()
traceTc String
"reportImplic" forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
           [ String -> SDoc
text String
"tidy env:"   SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (SolverReportErrCtxt -> TidyEnv
cec_tidy SolverReportErrCtxt
ctxt)
           , String -> SDoc
text String
"skols:     " SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
pprTyVars [TcId]
tvs
           , String -> SDoc
text String
"tidy skols:" SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
pprTyVars [TcId]
tvs' ]

       ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
bad_telescope forall a b. (a -> b) -> a -> b
$ SolverReportErrCtxt
-> TcLclEnv -> SkolemInfoAnon -> [TcId] -> TcM ()
reportBadTelescope SolverReportErrCtxt
ctxt TcLclEnv
tcl_env SkolemInfoAnon
info [TcId]
tvs
               -- Do /not/ use the tidied tvs because then are in the
               -- wrong order, so tidying will rename things wrongly
       ; SolverReportErrCtxt -> TcLevel -> WantedConstraints -> TcM ()
reportWanteds SolverReportErrCtxt
ctxt' TcLevel
tc_lvl WantedConstraints
wanted
       ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (SolverReportErrCtxt -> Bool
cec_warn_redundant SolverReportErrCtxt
ctxt) forall a b. (a -> b) -> a -> b
$
         SolverReportErrCtxt
-> TcLclEnv -> SkolemInfoAnon -> [TcId] -> TcM ()
warnRedundantConstraints SolverReportErrCtxt
ctxt' TcLclEnv
tcl_env SkolemInfoAnon
info' [TcId]
dead_givens }
  where
    insoluble :: Bool
insoluble    = ImplicStatus -> Bool
isInsolubleStatus ImplicStatus
status
    (TidyEnv
env1, [TcId]
tvs') = TidyEnv -> [TcId] -> (TidyEnv, [TcId])
tidyVarBndrs (SolverReportErrCtxt -> TidyEnv
cec_tidy SolverReportErrCtxt
ctxt) forall a b. (a -> b) -> a -> b
$
                   [TcId] -> [TcId]
scopedSort [TcId]
tvs
        -- scopedSort: the ic_skols may not be in dependency order
        -- (see Note [Skolems in an implication] in GHC.Tc.Types.Constraint)
        -- but tidying goes wrong on out-of-order constraints;
        -- so we sort them here before tidying
    info' :: SkolemInfoAnon
info'   = TidyEnv -> SkolemInfoAnon -> SkolemInfoAnon
tidySkolemInfoAnon TidyEnv
env1 SkolemInfoAnon
info
    implic' :: Implication
implic' = Implication
implic { ic_skols :: [TcId]
ic_skols = [TcId]
tvs'
                     , ic_given :: [TcId]
ic_given = forall a b. (a -> b) -> [a] -> [b]
map (TidyEnv -> TcId -> TcId
tidyEvVar TidyEnv
env1) [TcId]
given
                     , ic_info :: SkolemInfoAnon
ic_info  = SkolemInfoAnon
info' }

    ctxt1 :: SolverReportErrCtxt
ctxt1 = EvBindsVar -> SolverReportErrCtxt -> SolverReportErrCtxt
maybeSwitchOffDefer EvBindsVar
evb SolverReportErrCtxt
ctxt
    ctxt' :: SolverReportErrCtxt
ctxt' = SolverReportErrCtxt
ctxt1 { cec_tidy :: TidyEnv
cec_tidy     = TidyEnv
env1
                  , cec_encl :: [Implication]
cec_encl     = Implication
implic' forall a. a -> [a] -> [a]
: SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt

                  , cec_suppress :: Bool
cec_suppress = Bool
insoluble Bool -> Bool -> Bool
|| SolverReportErrCtxt -> Bool
cec_suppress SolverReportErrCtxt
ctxt
                        -- Suppress inessential errors if there
                        -- are insolubles anywhere in the
                        -- tree rooted here, or we've come across
                        -- a suppress-worthy constraint higher up (#11541)

                  , cec_binds :: EvBindsVar
cec_binds    = EvBindsVar
evb }

    dead_givens :: [TcId]
dead_givens = case ImplicStatus
status of
                    IC_Solved { ics_dead :: ImplicStatus -> [TcId]
ics_dead = [TcId]
dead } -> [TcId]
dead
                    ImplicStatus
_                             -> []

    bad_telescope :: Bool
bad_telescope = case ImplicStatus
status of
              ImplicStatus
IC_BadTelescope -> Bool
True
              ImplicStatus
_               -> Bool
False

warnRedundantConstraints :: SolverReportErrCtxt -> TcLclEnv -> SkolemInfoAnon -> [EvVar] -> TcM ()
-- See Note [Tracking redundant constraints] in GHC.Tc.Solver
warnRedundantConstraints :: SolverReportErrCtxt
-> TcLclEnv -> SkolemInfoAnon -> [TcId] -> TcM ()
warnRedundantConstraints SolverReportErrCtxt
ctxt TcLclEnv
env SkolemInfoAnon
info [TcId]
ev_vars
 | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcId]
redundant_evs
 = forall (m :: * -> *) a. Monad m => a -> m a
return ()

 | SigSkol UserTypeCtxt
user_ctxt Type
_ [(Name, TcId)]
_ <- SkolemInfoAnon
info
 -- When dealing with a user-written type signature,
 -- we want to add "In the type signature for f".
 = forall gbl a.
TcLclEnv -> TcRnIf gbl TcLclEnv a -> TcRnIf gbl TcLclEnv a
restoreLclEnv TcLclEnv
env forall a b. (a -> b) -> a -> b
$
   forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan (UserTypeCtxt -> SrcSpan
redundantConstraintsSpan UserTypeCtxt
user_ctxt) forall a b. (a -> b) -> a -> b
$
   Bool -> TcM ()
report_redundant_msg Bool
True
                  --  ^^^^ add "In the type signature..."

 | Bool
otherwise
 -- But for InstSkol there already *is* a surrounding
 -- "In the instance declaration for Eq [a]" context
 -- and we don't want to say it twice. Seems a bit ad-hoc
 = forall gbl a.
TcLclEnv -> TcRnIf gbl TcLclEnv a -> TcRnIf gbl TcLclEnv a
restoreLclEnv TcLclEnv
env
 forall a b. (a -> b) -> a -> b
$ Bool -> TcM ()
report_redundant_msg Bool
False
                 --   ^^^^^ don't add "In the type signature..."
 where
   report_redundant_msg :: Bool -- whether to add "In the type signature..." to the diagnostic
                        -> TcRn ()
   report_redundant_msg :: Bool -> TcM ()
report_redundant_msg Bool
show_info
     = do { TcLclEnv
lcl_env <- forall gbl lcl. TcRnIf gbl lcl lcl
getLclEnv
          ; MsgEnvelope TcRnMessage
msg <-
              TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport
                TcLclEnv
lcl_env
                ([TcId] -> (SkolemInfoAnon, Bool) -> TcRnMessage
TcRnRedundantConstraints [TcId]
redundant_evs (SkolemInfoAnon
info, Bool
show_info))
                (forall a. a -> Maybe a
Just SolverReportErrCtxt
ctxt)
                []
          ; MsgEnvelope TcRnMessage -> TcM ()
reportDiagnostic MsgEnvelope TcRnMessage
msg }

   redundant_evs :: [TcId]
redundant_evs =
       forall a. (a -> Bool) -> [a] -> [a]
filterOut TcId -> Bool
is_type_error forall a b. (a -> b) -> a -> b
$
       case SkolemInfoAnon
info of -- See Note [Redundant constraints in instance decls]
         SkolemInfoAnon
InstSkol -> forall a. (a -> Bool) -> [a] -> [a]
filterOut (Type -> Bool
improving forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcId -> Type
idType) [TcId]
ev_vars
         SkolemInfoAnon
_        -> [TcId]
ev_vars

   -- See #15232
   is_type_error :: TcId -> Bool
is_type_error = forall a. Maybe a -> Bool
isJust forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Maybe Type
userTypeError_maybe forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcId -> Type
idType

   improving :: Type -> Bool
improving Type
pred -- (transSuperClasses p) does not include p
     = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any Type -> Bool
isImprovementPred (Type
pred forall a. a -> [a] -> [a]
: Type -> [Type]
transSuperClasses Type
pred)

reportBadTelescope :: SolverReportErrCtxt -> TcLclEnv -> SkolemInfoAnon -> [TcTyVar] -> TcM ()
reportBadTelescope :: SolverReportErrCtxt
-> TcLclEnv -> SkolemInfoAnon -> [TcId] -> TcM ()
reportBadTelescope SolverReportErrCtxt
ctxt TcLclEnv
env (ForAllSkol TyVarBndrs
telescope) [TcId]
skols
  = do { MsgEnvelope TcRnMessage
msg <- TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport
                  TcLclEnv
env
                  ([SolverReportWithCtxt]
-> DiagnosticReason -> [GhcHint] -> TcRnMessage
TcRnSolverReport [SolverReportWithCtxt
report] DiagnosticReason
ErrorWithoutFlag [GhcHint]
noHints)
                  (forall a. a -> Maybe a
Just SolverReportErrCtxt
ctxt)
                  []
       ; MsgEnvelope TcRnMessage -> TcM ()
reportDiagnostic MsgEnvelope TcRnMessage
msg }
  where
    report :: SolverReportWithCtxt
report = SolverReportErrCtxt -> TcSolverReportMsg -> SolverReportWithCtxt
SolverReportWithCtxt SolverReportErrCtxt
ctxt forall a b. (a -> b) -> a -> b
$ TyVarBndrs -> [TcId] -> TcSolverReportMsg
BadTelescope TyVarBndrs
telescope [TcId]
skols

reportBadTelescope SolverReportErrCtxt
_ TcLclEnv
_ SkolemInfoAnon
skol_info [TcId]
skols
  = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"reportBadTelescope" (forall a. Outputable a => a -> SDoc
ppr SkolemInfoAnon
skol_info SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [TcId]
skols)

{- Note [Redundant constraints in instance decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For instance declarations, we don't report unused givens if
they can give rise to improvement.  Example (#10100):
    class Add a b ab | a b -> ab, a ab -> b
    instance Add Zero b b
    instance Add a b ab => Add (Succ a) b (Succ ab)
The context (Add a b ab) for the instance is clearly unused in terms
of evidence, since the dictionary has no fields.  But it is still
needed!  With the context, a wanted constraint
   Add (Succ Zero) beta (Succ Zero)
we will reduce to (Add Zero beta Zero), and thence we get beta := Zero.
But without the context we won't find beta := Zero.

This only matters in instance declarations..
-}

-- | Should we completely ignore this constraint in error reporting?
-- It *must* be the case that any constraint for which this returns True
-- somehow causes an error to be reported elsewhere.
-- See Note [Constraints to ignore].
ignoreConstraint :: Ct -> Bool
ignoreConstraint :: Ct -> Bool
ignoreConstraint Ct
ct
  | CtOrigin
AssocFamPatOrigin <- Ct -> CtOrigin
ctOrigin Ct
ct
  = Bool
True
  | Bool
otherwise
  = Bool
False

-- | Makes an error item from a constraint, calculating whether or not
-- the item should be suppressed. See Note [Wanteds rewrite Wanteds]
-- in GHC.Tc.Types.Constraint. Returns Nothing if we should just ignore
-- a constraint. See Note [Constraints to ignore].
mkErrorItem :: Ct -> TcM (Maybe ErrorItem)
mkErrorItem :: Ct -> TcM (Maybe ErrorItem)
mkErrorItem Ct
ct
  | Ct -> Bool
ignoreConstraint Ct
ct
  = do { String -> SDoc -> TcM ()
traceTc String
"Ignoring constraint:" (forall a. Outputable a => a -> SDoc
ppr Ct
ct)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing }   -- See Note [Constraints to ignore]

  | Bool
otherwise
  = do { let loc :: CtLoc
loc = Ct -> CtLoc
ctLoc Ct
ct
             flav :: CtFlavour
flav = Ct -> CtFlavour
ctFlavour Ct
ct

       ; (Bool
suppress, Maybe TcEvDest
m_evdest) <- case Ct -> CtEvidence
ctEvidence Ct
ct of
           CtGiven {} -> forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
False, forall a. Maybe a
Nothing)
           CtWanted { ctev_rewriters :: CtEvidence -> RewriterSet
ctev_rewriters = RewriterSet
rewriters, ctev_dest :: CtEvidence -> TcEvDest
ctev_dest = TcEvDest
dest }
             -> do { Bool
supp <- RewriterSet -> TcM Bool
anyUnfilledCoercionHoles RewriterSet
rewriters
                   ; forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
supp, forall a. a -> Maybe a
Just TcEvDest
dest) }

       ; let m_reason :: Maybe CtIrredReason
m_reason = case Ct
ct of CIrredCan { cc_reason :: Ct -> CtIrredReason
cc_reason = CtIrredReason
reason } -> forall a. a -> Maybe a
Just CtIrredReason
reason
                                   Ct
_                                -> forall a. Maybe a
Nothing

       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ EI { ei_pred :: Type
ei_pred     = Ct -> Type
ctPred Ct
ct
                            , ei_evdest :: Maybe TcEvDest
ei_evdest   = Maybe TcEvDest
m_evdest
                            , ei_flavour :: CtFlavour
ei_flavour  = CtFlavour
flav
                            , ei_loc :: CtLoc
ei_loc      = CtLoc
loc
                            , ei_m_reason :: Maybe CtIrredReason
ei_m_reason = Maybe CtIrredReason
m_reason
                            , ei_suppress :: Bool
ei_suppress = Bool
suppress }}

----------------------------------------------------------------
reportWanteds :: SolverReportErrCtxt -> TcLevel -> WantedConstraints -> TcM ()
reportWanteds :: SolverReportErrCtxt -> TcLevel -> WantedConstraints -> TcM ()
reportWanteds SolverReportErrCtxt
ctxt TcLevel
tc_lvl wc :: WantedConstraints
wc@(WC { wc_simple :: WantedConstraints -> Cts
wc_simple = Cts
simples, wc_impl :: WantedConstraints -> Bag Implication
wc_impl = Bag Implication
implics
                                 , wc_errors :: WantedConstraints -> Bag DelayedError
wc_errors = Bag DelayedError
errs })
  | WantedConstraints -> Bool
isEmptyWC WantedConstraints
wc = String -> SDoc -> TcM ()
traceTc String
"reportWanteds empty WC" SDoc
empty
  | Bool
otherwise
  = do { [ErrorItem]
tidy_items <- forall (m :: * -> *) a b.
Applicative m =>
(a -> m (Maybe b)) -> [a] -> m [b]
mapMaybeM Ct -> TcM (Maybe ErrorItem)
mkErrorItem [Ct]
tidy_cts
       ; String -> SDoc -> TcM ()
traceTc String
"reportWanteds 1" ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Simples =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Cts
simples
                                         , String -> SDoc
text String
"Suppress =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (SolverReportErrCtxt -> Bool
cec_suppress SolverReportErrCtxt
ctxt)
                                         , String -> SDoc
text String
"tidy_cts   =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [Ct]
tidy_cts
                                         , String -> SDoc
text String
"tidy_items =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
tidy_items
                                         , String -> SDoc
text String
"tidy_errs =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [DelayedError]
tidy_errs ])

       -- This check makes sure that we aren't suppressing the only error that will
       -- actually stop compilation
       ; forall (m :: * -> *).
(HasCallStack, Monad m) =>
m Bool -> SDoc -> m ()
assertPprM
           ( do { Bool
errs_already <- forall r. TcRn r -> TcRn r -> TcRn r
ifErrsM (forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True) (forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False)
                ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$
                    Bool
errs_already Bool -> Bool -> Bool
||                  -- we already reported an error (perhaps from an outer implication)
                    forall (t :: * -> *) a. Foldable t => t a -> Bool
null Cts
simples Bool -> Bool -> Bool
||                  -- no errors to report here
                    forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any Ct -> Bool
ignoreConstraint Cts
simples Bool -> Bool -> Bool
||  -- one error is ignorable (is reported elsewhere)
                    Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all ErrorItem -> Bool
ei_suppress [ErrorItem]
tidy_items) -- not all errors are suppressed
                } )
           ([SDoc] -> SDoc
vcat [String -> SDoc
text String
"reportWanteds is suppressing all errors"])

         -- First, deal with any out-of-scope errors:
       ; let ([Hole]
out_of_scope, [Hole]
other_holes, [NotConcreteError]
not_conc_errs) = [DelayedError] -> ([Hole], [Hole], [NotConcreteError])
partition_errors [DelayedError]
tidy_errs
               -- don't suppress out-of-scope errors
             ctxt_for_scope_errs :: SolverReportErrCtxt
ctxt_for_scope_errs = SolverReportErrCtxt
ctxt { cec_suppress :: Bool
cec_suppress = Bool
False }
       ; (()
_, Bool
no_out_of_scope) <- forall a. TcRn a -> TcRn (a, Bool)
askNoErrs forall a b. (a -> b) -> a -> b
$
                                 [ErrorItem] -> SolverReportErrCtxt -> [Hole] -> TcM ()
reportHoles [ErrorItem]
tidy_items SolverReportErrCtxt
ctxt_for_scope_errs [Hole]
out_of_scope

         -- Next, deal with things that are utterly wrong
         -- Like Int ~ Bool (incl nullary TyCons)
         -- or  Int ~ t a   (AppTy on one side)
         -- These /ones/ are not suppressed by the incoming context
         -- (but will be by out-of-scope errors)
       ; let ctxt_for_insols :: SolverReportErrCtxt
ctxt_for_insols = SolverReportErrCtxt
ctxt { cec_suppress :: Bool
cec_suppress = Bool -> Bool
not Bool
no_out_of_scope }
       ; [ErrorItem] -> SolverReportErrCtxt -> [Hole] -> TcM ()
reportHoles [ErrorItem]
tidy_items SolverReportErrCtxt
ctxt_for_insols [Hole]
other_holes
          -- holes never suppress

       ; SolverReportErrCtxt -> [NotConcreteError] -> TcM ()
reportNotConcreteErrs SolverReportErrCtxt
ctxt_for_insols [NotConcreteError]
not_conc_errs

          -- See Note [Suppressing confusing errors]
       ; let ([ErrorItem]
suppressed_items, [ErrorItem]
items0) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition ErrorItem -> Bool
suppress [ErrorItem]
tidy_items
       ; String -> SDoc -> TcM ()
traceTc String
"reportWanteds suppressed:" (forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
suppressed_items)
       ; (SolverReportErrCtxt
ctxt1, [ErrorItem]
items1) <- SolverReportErrCtxt
-> [ReporterSpec]
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporters SolverReportErrCtxt
ctxt_for_insols [ReporterSpec]
report1 [ErrorItem]
items0

         -- Now all the other constraints.  We suppress errors here if
         -- any of the first batch failed, or if the enclosing context
         -- says to suppress
       ; let ctxt2 :: SolverReportErrCtxt
ctxt2 = SolverReportErrCtxt
ctxt1 { cec_suppress :: Bool
cec_suppress = SolverReportErrCtxt -> Bool
cec_suppress SolverReportErrCtxt
ctxt Bool -> Bool -> Bool
|| SolverReportErrCtxt -> Bool
cec_suppress SolverReportErrCtxt
ctxt1 }
       ; (SolverReportErrCtxt
ctxt3, [ErrorItem]
leftovers) <- SolverReportErrCtxt
-> [ReporterSpec]
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporters SolverReportErrCtxt
ctxt2 [ReporterSpec]
report2 [ErrorItem]
items1
       ; forall (m :: * -> *).
(HasCallStack, Applicative m) =>
Bool -> SDoc -> m ()
massertPpr (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [ErrorItem]
leftovers)
           (String -> SDoc
text String
"The following unsolved Wanted constraints \
                 \have not been reported to the user:"
           SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
leftovers)

       ; forall (m :: * -> *) a b. Monad m => (a -> m b) -> Bag a -> m ()
mapBagM_ (SolverReportErrCtxt -> Implication -> TcM ()
reportImplic SolverReportErrCtxt
ctxt2) Bag Implication
implics
            -- NB ctxt2: don't suppress inner insolubles if there's only a
            -- wanted insoluble here; but do suppress inner insolubles
            -- if there's a *given* insoluble here (= inaccessible code)

            -- Only now, if there are no errors, do we report suppressed ones
            -- See Note [Suppressing confusing errors]
            -- We don't need to update the context further because of the
            -- whenNoErrs guard
       ; TcM () -> TcM ()
whenNoErrs forall a b. (a -> b) -> a -> b
$
         do { (SolverReportErrCtxt
_, [ErrorItem]
more_leftovers) <- SolverReportErrCtxt
-> [ReporterSpec]
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporters SolverReportErrCtxt
ctxt3 forall {p}. [(String, ErrorItem -> p -> Bool, Bool, Reporter)]
report3 [ErrorItem]
suppressed_items
            ; forall (m :: * -> *).
(HasCallStack, Applicative m) =>
Bool -> SDoc -> m ()
massertPpr (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [ErrorItem]
more_leftovers) (forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
more_leftovers) } }
 where
    env :: TidyEnv
env       = SolverReportErrCtxt -> TidyEnv
cec_tidy SolverReportErrCtxt
ctxt
    tidy_cts :: [Ct]
tidy_cts  = forall a. Bag a -> [a]
bagToList (forall a b. (a -> b) -> Bag a -> Bag b
mapBag (TidyEnv -> Ct -> Ct
tidyCt TidyEnv
env)   Cts
simples)
    tidy_errs :: [DelayedError]
tidy_errs = forall a. Bag a -> [a]
bagToList (forall a b. (a -> b) -> Bag a -> Bag b
mapBag (TidyEnv -> DelayedError -> DelayedError
tidyDelayedError TidyEnv
env) Bag DelayedError
errs)

    partition_errors :: [DelayedError] -> ([Hole], [Hole], [NotConcreteError])
    partition_errors :: [DelayedError] -> ([Hole], [Hole], [NotConcreteError])
partition_errors = [Hole]
-> [Hole]
-> [NotConcreteError]
-> [DelayedError]
-> ([Hole], [Hole], [NotConcreteError])
go [] [] []
      where
        go :: [Hole]
-> [Hole]
-> [NotConcreteError]
-> [DelayedError]
-> ([Hole], [Hole], [NotConcreteError])
go [Hole]
out_of_scope [Hole]
other_holes [NotConcreteError]
syn_eqs []
          = ([Hole]
out_of_scope, [Hole]
other_holes, [NotConcreteError]
syn_eqs)
        go [Hole]
es1 [Hole]
es2 [NotConcreteError]
es3 (DelayedError
err:[DelayedError]
errs)
          | ([Hole]
es1, [Hole]
es2, [NotConcreteError]
es3) <- [Hole]
-> [Hole]
-> [NotConcreteError]
-> [DelayedError]
-> ([Hole], [Hole], [NotConcreteError])
go [Hole]
es1 [Hole]
es2 [NotConcreteError]
es3 [DelayedError]
errs
          = case DelayedError
err of
              DE_Hole Hole
hole
                | Hole -> Bool
isOutOfScopeHole Hole
hole
                -> (Hole
hole forall a. a -> [a] -> [a]
: [Hole]
es1, [Hole]
es2, [NotConcreteError]
es3)
                | Bool
otherwise
                -> ([Hole]
es1, Hole
hole forall a. a -> [a] -> [a]
: [Hole]
es2, [NotConcreteError]
es3)
              DE_NotConcrete NotConcreteError
err
                -> ([Hole]
es1, [Hole]
es2, NotConcreteError
err forall a. a -> [a] -> [a]
: [NotConcreteError]
es3)

      -- See Note [Suppressing confusing errors]
    suppress :: ErrorItem -> Bool
    suppress :: ErrorItem -> Bool
suppress ErrorItem
item
      | CtFlavour
Wanted <- ErrorItem -> CtFlavour
ei_flavour ErrorItem
item
      = ErrorItem -> Bool
is_ww_fundep_item ErrorItem
item
      | Bool
otherwise
      = Bool
False

    -- report1: ones that should *not* be suppressed by
    --          an insoluble somewhere else in the tree
    -- It's crucial that anything that is considered insoluble
    -- (see GHC.Tc.Utils.insolublWantedCt) is caught here, otherwise
    -- we might suppress its error message, and proceed on past
    -- type checking to get a Lint error later
    report1 :: [ReporterSpec]
report1 = [ (String
"custom_error", forall {p}. ErrorItem -> p -> Bool
is_user_type_error, Bool
True,  Reporter
mkUserTypeErrorReporter)

              , ReporterSpec
given_eq_spec
              , (String
"insoluble2",      forall {p}. p -> Pred -> Bool
utterly_wrong,  Bool
True, (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkEqErr)
              , (String
"skolem eq1",      ErrorItem -> Pred -> Bool
very_wrong,     Bool
True, Reporter
mkSkolReporter)
              , (String
"FixedRuntimeRep", ErrorItem -> Pred -> Bool
is_FRR,         Bool
True, (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter HasDebugCallStack =>
SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkFRRErr)
              , (String
"skolem eq2",      ErrorItem -> Pred -> Bool
skolem_eq,      Bool
True, Reporter
mkSkolReporter)
              , (String
"non-tv eq",       forall {p}. p -> Pred -> Bool
non_tv_eq,      Bool
True, Reporter
mkSkolReporter)

                  -- The only remaining equalities are alpha ~ ty,
                  -- where alpha is untouchable; and representational equalities
                  -- Prefer homogeneous equalities over hetero, because the
                  -- former might be holding up the latter.
                  -- See Note [Equalities with incompatible kinds] in GHC.Tc.Solver.Canonical
              , (String
"Homo eqs",      forall {p}. p -> Pred -> Bool
is_homo_equality,  Bool
True,  (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkEqErr)
              , (String
"Other eqs",     ErrorItem -> Pred -> Bool
is_equality,       Bool
True,  (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkEqErr)
              ]

    -- report2: we suppress these if there are insolubles elsewhere in the tree
    report2 :: [ReporterSpec]
report2 = [ (String
"Implicit params", ErrorItem -> Pred -> Bool
is_ip,           Bool
False, (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkIPErr)
              , (String
"Irreds",          ErrorItem -> Pred -> Bool
is_irred,        Bool
False, (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkIrredErr)
              , (String
"Dicts",           ErrorItem -> Pred -> Bool
is_dict,         Bool
False, (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter HasDebugCallStack =>
SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkDictErr) ]

    -- report3: suppressed errors should be reported as categorized by either report1
    -- or report2. Keep this in sync with the suppress function above
    report3 :: [(String, ErrorItem -> p -> Bool, Bool, Reporter)]
report3 = [ (String
"wanted/wanted fundeps", forall {p}. ErrorItem -> p -> Bool
is_ww_fundep, Bool
True, (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkEqErr)
              ]

    -- rigid_nom_eq, rigid_nom_tv_eq,
    is_dict, is_equality, is_ip, is_FRR, is_irred :: ErrorItem -> Pred -> Bool

    is_given_eq :: ErrorItem -> Pred -> Bool
is_given_eq ErrorItem
item Pred
pred
       | CtFlavour
Given <- ErrorItem -> CtFlavour
ei_flavour ErrorItem
item
       , EqPred {} <- Pred
pred = Bool
True
       | Bool
otherwise         = Bool
False
       -- I think all given residuals are equalities

    -- Things like (Int ~N Bool)
    utterly_wrong :: p -> Pred -> Bool
utterly_wrong p
_ (EqPred EqRel
NomEq Type
ty1 Type
ty2) = Type -> Bool
isRigidTy Type
ty1 Bool -> Bool -> Bool
&& Type -> Bool
isRigidTy Type
ty2
    utterly_wrong p
_ Pred
_                      = Bool
False

    -- Things like (a ~N Int)
    very_wrong :: ErrorItem -> Pred -> Bool
very_wrong ErrorItem
_ (EqPred EqRel
NomEq Type
ty1 Type
ty2) = TcLevel -> Type -> Bool
isSkolemTy TcLevel
tc_lvl Type
ty1 Bool -> Bool -> Bool
&& Type -> Bool
isRigidTy Type
ty2
    very_wrong ErrorItem
_ Pred
_                      = Bool
False

    -- Representation-polymorphism errors, to be reported using mkFRRErr.
    is_FRR :: ErrorItem -> Pred -> Bool
is_FRR ErrorItem
item Pred
_ = forall a. Maybe a -> Bool
isJust forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => ErrorItem -> Maybe FixedRuntimeRepErrorInfo
fixedRuntimeRepOrigin_maybe ErrorItem
item

    -- Things like (a ~N b) or (a  ~N  F Bool)
    skolem_eq :: ErrorItem -> Pred -> Bool
skolem_eq ErrorItem
_ (EqPred EqRel
NomEq Type
ty1 Type
_) = TcLevel -> Type -> Bool
isSkolemTy TcLevel
tc_lvl Type
ty1
    skolem_eq ErrorItem
_ Pred
_                    = Bool
False

    -- Things like (F a  ~N  Int)
    non_tv_eq :: p -> Pred -> Bool
non_tv_eq p
_ (EqPred EqRel
NomEq Type
ty1 Type
_) = Bool -> Bool
not (Type -> Bool
isTyVarTy Type
ty1)
    non_tv_eq p
_ Pred
_                    = Bool
False

    is_user_type_error :: ErrorItem -> p -> Bool
is_user_type_error ErrorItem
item p
_ = Type -> Bool
isUserTypeError (ErrorItem -> Type
errorItemPred ErrorItem
item)

    is_homo_equality :: p -> Pred -> Bool
is_homo_equality p
_ (EqPred EqRel
_ Type
ty1 Type
ty2)
      = HasDebugCallStack => Type -> Type
tcTypeKind Type
ty1 HasDebugCallStack => Type -> Type -> Bool
`tcEqType` HasDebugCallStack => Type -> Type
tcTypeKind Type
ty2
    is_homo_equality p
_ Pred
_
      = Bool
False

    is_equality :: ErrorItem -> Pred -> Bool
is_equality ErrorItem
_(EqPred {}) = Bool
True
    is_equality ErrorItem
_ Pred
_          = Bool
False

    is_dict :: ErrorItem -> Pred -> Bool
is_dict ErrorItem
_ (ClassPred {}) = Bool
True
    is_dict ErrorItem
_ Pred
_              = Bool
False

    is_ip :: ErrorItem -> Pred -> Bool
is_ip ErrorItem
_ (ClassPred Class
cls [Type]
_) = Class -> Bool
isIPClass Class
cls
    is_ip ErrorItem
_ Pred
_                 = Bool
False

    is_irred :: ErrorItem -> Pred -> Bool
is_irred ErrorItem
_ (IrredPred {}) = Bool
True
    is_irred ErrorItem
_ Pred
_              = Bool
False

     -- See situation (1) of Note [Suppressing confusing errors]
    is_ww_fundep :: ErrorItem -> p -> Bool
is_ww_fundep ErrorItem
item p
_ = ErrorItem -> Bool
is_ww_fundep_item ErrorItem
item
    is_ww_fundep_item :: ErrorItem -> Bool
is_ww_fundep_item = CtOrigin -> Bool
isWantedWantedFunDepOrigin forall b c a. (b -> c) -> (a -> b) -> a -> c
. ErrorItem -> CtOrigin
errorItemOrigin

    given_eq_spec :: ReporterSpec
given_eq_spec  -- See Note [Given errors]
      | Bool
has_gadt_match_here
      = (String
"insoluble1a", ErrorItem -> Pred -> Bool
is_given_eq, Bool
True,  Reporter
mkGivenErrorReporter)
      | Bool
otherwise
      = (String
"insoluble1b", ErrorItem -> Pred -> Bool
is_given_eq, Bool
False, Reporter
ignoreErrorReporter)
          -- False means don't suppress subsequent errors
          -- Reason: we don't report all given errors
          --         (see mkGivenErrorReporter), and we should only suppress
          --         subsequent errors if we actually report this one!
          --         #13446 is an example

    -- See Note [Given errors]
    has_gadt_match_here :: Bool
has_gadt_match_here = [Implication] -> Bool
has_gadt_match (SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt)
    has_gadt_match :: [Implication] -> Bool
has_gadt_match [] = Bool
False
    has_gadt_match (Implication
implic : [Implication]
implics)
      | PatSkol {} <- Implication -> SkolemInfoAnon
ic_info Implication
implic
      , Implication -> HasGivenEqs
ic_given_eqs Implication
implic forall a. Eq a => a -> a -> Bool
/= HasGivenEqs
NoGivenEqs
      , Implication -> Bool
ic_warn_inaccessible Implication
implic
          -- Don't bother doing this if -Winaccessible-code isn't enabled.
          -- See Note [Avoid -Winaccessible-code when deriving] in GHC.Tc.TyCl.Instance.
      = Bool
True
      | Bool
otherwise
      = [Implication] -> Bool
has_gadt_match [Implication]
implics

---------------
isSkolemTy :: TcLevel -> Type -> Bool
-- The type is a skolem tyvar
isSkolemTy :: TcLevel -> Type -> Bool
isSkolemTy TcLevel
tc_lvl Type
ty
  | Just TcId
tv <- Type -> Maybe TcId
getTyVar_maybe Type
ty
  =  TcId -> Bool
isSkolemTyVar TcId
tv
  Bool -> Bool -> Bool
|| (TcId -> Bool
isTyVarTyVar TcId
tv Bool -> Bool -> Bool
&& TcLevel -> TcId -> Bool
isTouchableMetaTyVar TcLevel
tc_lvl TcId
tv)
     -- The last case is for touchable TyVarTvs
     -- we postpone untouchables to a latter test (too obscure)

  | Bool
otherwise
  = Bool
False

isTyFun_maybe :: Type -> Maybe TyCon
isTyFun_maybe :: Type -> Maybe TyCon
isTyFun_maybe Type
ty = case HasCallStack => Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe Type
ty of
                      Just (TyCon
tc,[Type]
_) | TyCon -> Bool
isTypeFamilyTyCon TyCon
tc -> forall a. a -> Maybe a
Just TyCon
tc
                      Maybe (TyCon, [Type])
_ -> forall a. Maybe a
Nothing

{- Note [Suppressing confusing errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Certain errors we might encounter are potentially confusing to users.
If there are any other errors to report, at all, we want to suppress these.

Which errors (only 1 case right now):

1) Errors which arise from the interaction of two Wanted fun-dep constraints.
   Example:

     class C a b | a -> b where
       op :: a -> b -> b

     foo _ = op True Nothing

     bar _ = op False []

   Here, we could infer
     foo :: C Bool (Maybe a) => p -> Maybe a
     bar :: C Bool [a]       => p -> [a]

   (The unused arguments suppress the monomorphism restriction.) The problem
   is that these types can't both be correct, as they violate the functional
   dependency. Yet reporting an error here is awkward: we must
   non-deterministically choose either foo or bar to reject. We thus want
   to report this problem only when there is nothing else to report.
   See typecheck/should_fail/T13506 for an example of when to suppress
   the error. The case above is actually accepted, because foo and bar
   are checked separately, and thus the two fundep constraints never
   encounter each other. It is test case typecheck/should_compile/FunDepOrigin1.

   This case applies only when both fundeps are *Wanted* fundeps; when
   both are givens, the error represents unreachable code. For
   a Given/Wanted case, see #9612.

Mechanism:

We use the `suppress` function within reportWanteds to filter out these two
cases, then report all other errors. Lastly, we return to these suppressed
ones and report them only if there have been no errors so far.

Note [Constraints to ignore]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some constraints are meant only to aid the solver by unification; a failure
to solve them is not necessarily an error to report to the user. It is critical
that compilation is aborted elsewhere if there are any ignored constraints here;
they will remain unfilled, and might have been used to rewrite another constraint.

Currently, the constraints to ignore are:

1) Constraints generated in order to unify associated type instance parameters
   with class parameters. Here are two illustrative examples:

     class C (a :: k) where
       type F (b :: k)

     instance C True where
       type F a = Int

     instance C Left where
       type F (Left :: a -> Either a b) = Bool

   In the first instance, we want to infer that `a` has type Bool. So we emit
   a constraint unifying kappa (the guessed type of `a`) with Bool. All is well.

   In the second instance, we process the associated type instance only
   after fixing the quantified type variables of the class instance. We thus
   have skolems a1 and b1 such that the class instance is for (Left :: a1 -> Either a1 b1).
   Unifying a1 and b1 with a and b in the type instance will fail, but harmlessly so.
   checkConsistentFamInst checks for this, and will fail if anything has gone
   awry. Really the equality constraints emitted are just meant as an aid, not
   a requirement. This is test case T13972.

   We detect this case by looking for an origin of AssocFamPatOrigin; constraints
   with this origin are dropped entirely during error message reporting.

   If there is any trouble, checkValidFamInst bleats, aborting compilation.

-}



--------------------------------------------
--      Reporters
--------------------------------------------

type Reporter
  = SolverReportErrCtxt -> [ErrorItem] -> TcM ()
type ReporterSpec
  = ( String                      -- Name
    , ErrorItem -> Pred -> Bool  -- Pick these ones
    , Bool                        -- True <=> suppress subsequent reporters
    , Reporter)                   -- The reporter itself

mkSkolReporter :: Reporter
-- Suppress duplicates with either the same LHS, or same location
-- Pre-condition: all items are equalities
mkSkolReporter :: Reporter
mkSkolReporter SolverReportErrCtxt
ctxt [ErrorItem]
items
  = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ ((SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
reportGroup SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkEqErr SolverReportErrCtxt
ctxt) ([ErrorItem] -> [[ErrorItem]]
group [ErrorItem]
items)
  where
     group :: [ErrorItem] -> [[ErrorItem]]
group [] = []
     group (ErrorItem
item:[ErrorItem]
items) = (ErrorItem
item forall a. a -> [a] -> [a]
: [ErrorItem]
yeses) forall a. a -> [a] -> [a]
: [ErrorItem] -> [[ErrorItem]]
group [ErrorItem]
noes
        where
          ([ErrorItem]
yeses, [ErrorItem]
noes) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition (ErrorItem -> ErrorItem -> Bool
group_with ErrorItem
item) [ErrorItem]
items

     group_with :: ErrorItem -> ErrorItem -> Bool
group_with ErrorItem
item1 ErrorItem
item2
       | Ordering
EQ <- ErrorItem -> ErrorItem -> Ordering
cmp_loc ErrorItem
item1 ErrorItem
item2 = Bool
True
       | ErrorItem -> ErrorItem -> Bool
eq_lhs_type   ErrorItem
item1 ErrorItem
item2 = Bool
True
       | Bool
otherwise                 = Bool
False

reportHoles :: [ErrorItem]  -- other (tidied) constraints
            -> SolverReportErrCtxt -> [Hole] -> TcM ()
reportHoles :: [ErrorItem] -> SolverReportErrCtxt -> [Hole] -> TcM ()
reportHoles [ErrorItem]
tidy_items SolverReportErrCtxt
ctxt [Hole]
holes
  = do
      DiagOpts
diag_opts <- DynFlags -> DiagOpts
initDiagOpts forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
      let severity :: Severity
severity = DiagOpts -> DiagnosticReason -> Severity
diagReasonSeverity DiagOpts
diag_opts (SolverReportErrCtxt -> DiagnosticReason
cec_type_holes SolverReportErrCtxt
ctxt)
          holes' :: [Hole]
holes'   = forall a. (a -> Bool) -> [a] -> [a]
filter (Severity -> Hole -> Bool
keepThisHole Severity
severity) [Hole]
holes
      -- Zonk and tidy all the TcLclEnvs before calling `mkHoleError`
      -- because otherwise types will be zonked and tidied many times over.
      (TidyEnv
tidy_env', NameEnv Type
lcl_name_cache) <- TidyEnv -> [TcLclEnv] -> TcM (TidyEnv, NameEnv Type)
zonkTidyTcLclEnvs (SolverReportErrCtxt -> TidyEnv
cec_tidy SolverReportErrCtxt
ctxt) (forall a b. (a -> b) -> [a] -> [b]
map (CtLoc -> TcLclEnv
ctl_env forall b c a. (b -> c) -> (a -> b) -> a -> c
. Hole -> CtLoc
hole_loc) [Hole]
holes')
      let ctxt' :: SolverReportErrCtxt
ctxt' = SolverReportErrCtxt
ctxt { cec_tidy :: TidyEnv
cec_tidy = TidyEnv
tidy_env' }
      forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [Hole]
holes' forall a b. (a -> b) -> a -> b
$ \Hole
hole -> do { MsgEnvelope TcRnMessage
msg <- NameEnv Type
-> [ErrorItem]
-> SolverReportErrCtxt
-> Hole
-> TcM (MsgEnvelope TcRnMessage)
mkHoleError NameEnv Type
lcl_name_cache [ErrorItem]
tidy_items SolverReportErrCtxt
ctxt' Hole
hole
                                 ; MsgEnvelope TcRnMessage -> TcM ()
reportDiagnostic MsgEnvelope TcRnMessage
msg }

keepThisHole :: Severity -> Hole -> Bool
-- See Note [Skip type holes rapidly]
keepThisHole :: Severity -> Hole -> Bool
keepThisHole Severity
sev Hole
hole
  = case Hole -> HoleSort
hole_sort Hole
hole of
       ExprHole {}    -> Bool
True
       HoleSort
TypeHole       -> Bool
keep_type_hole
       HoleSort
ConstraintHole -> Bool
keep_type_hole
  where
    keep_type_hole :: Bool
keep_type_hole = case Severity
sev of
                         Severity
SevIgnore -> Bool
False
                         Severity
_         -> Bool
True

-- | zonkTidyTcLclEnvs takes a bunch of 'TcLclEnv's, each from a Hole.
-- It returns a ('Name' :-> 'Type') mapping which gives the zonked, tidied
-- type for each Id in any of the binder stacks in the  'TcLclEnv's.
-- Since there is a huge overlap between these stacks, is is much,
-- much faster to do them all at once, avoiding duplication.
zonkTidyTcLclEnvs :: TidyEnv -> [TcLclEnv] -> TcM (TidyEnv, NameEnv Type)
zonkTidyTcLclEnvs :: TidyEnv -> [TcLclEnv] -> TcM (TidyEnv, NameEnv Type)
zonkTidyTcLclEnvs TidyEnv
tidy_env [TcLclEnv]
lcls = forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM (TidyEnv, NameEnv Type) -> TcBinder -> TcM (TidyEnv, NameEnv Type)
go (TidyEnv
tidy_env, forall a. NameEnv a
emptyNameEnv) (forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap TcLclEnv -> TcBinderStack
tcl_bndrs [TcLclEnv]
lcls)
  where
    go :: (TidyEnv, NameEnv Type) -> TcBinder -> TcM (TidyEnv, NameEnv Type)
go (TidyEnv, NameEnv Type)
envs TcBinder
tc_bndr = case TcBinder
tc_bndr of
          TcTvBndr {} -> forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv, NameEnv Type)
envs
          TcIdBndr TcId
id TopLevelFlag
_top_lvl -> Name
-> Type -> (TidyEnv, NameEnv Type) -> TcM (TidyEnv, NameEnv Type)
go_one (TcId -> Name
idName TcId
id) (TcId -> Type
idType TcId
id) (TidyEnv, NameEnv Type)
envs
          TcIdBndr_ExpType Name
name ExpType
et TopLevelFlag
_top_lvl ->
            do { Maybe Type
mb_ty <- ExpType -> TcM (Maybe Type)
readExpType_maybe ExpType
et
                   -- et really should be filled in by now. But there's a chance
                   -- it hasn't, if, say, we're reporting a kind error en route to
                   -- checking a term. See test indexed-types/should_fail/T8129
                   -- Or we are reporting errors from the ambiguity check on
                   -- a local type signature
               ; case Maybe Type
mb_ty of
                   Just Type
ty -> Name
-> Type -> (TidyEnv, NameEnv Type) -> TcM (TidyEnv, NameEnv Type)
go_one Name
name Type
ty (TidyEnv, NameEnv Type)
envs
                   Maybe Type
Nothing -> forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv, NameEnv Type)
envs
               }
    go_one :: Name
-> Type -> (TidyEnv, NameEnv Type) -> TcM (TidyEnv, NameEnv Type)
go_one Name
name Type
ty (TidyEnv
tidy_env, NameEnv Type
name_env) = do
            if Name
name forall a. Name -> NameEnv a -> Bool
`elemNameEnv` NameEnv Type
name_env
              then forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
tidy_env, NameEnv Type
name_env)
              else do
                (TidyEnv
tidy_env', Type
tidy_ty) <- TidyEnv -> Type -> TcM (TidyEnv, Type)
zonkTidyTcType TidyEnv
tidy_env Type
ty
                forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
tidy_env',  forall a. NameEnv a -> Name -> a -> NameEnv a
extendNameEnv NameEnv Type
name_env Name
name Type
tidy_ty)

reportNotConcreteErrs :: SolverReportErrCtxt -> [NotConcreteError] -> TcM ()
reportNotConcreteErrs :: SolverReportErrCtxt -> [NotConcreteError] -> TcM ()
reportNotConcreteErrs SolverReportErrCtxt
_ [] = forall (m :: * -> *) a. Monad m => a -> m a
return ()
reportNotConcreteErrs SolverReportErrCtxt
ctxt errs :: [NotConcreteError]
errs@(NotConcreteError
err0:[NotConcreteError]
_)
  = do { MsgEnvelope TcRnMessage
msg <- TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport (CtLoc -> TcLclEnv
ctLocEnv (NotConcreteError -> CtLoc
nce_loc NotConcreteError
err0)) TcRnMessage
diag (forall a. a -> Maybe a
Just SolverReportErrCtxt
ctxt) []
       ; MsgEnvelope TcRnMessage -> TcM ()
reportDiagnostic MsgEnvelope TcRnMessage
msg }

  where

    frr_origins :: [FixedRuntimeRepErrorInfo]
frr_origins = [NotConcreteError] -> [FixedRuntimeRepErrorInfo]
acc_errors [NotConcreteError]
errs
    diag :: TcRnMessage
diag = [SolverReportWithCtxt]
-> DiagnosticReason -> [GhcHint] -> TcRnMessage
TcRnSolverReport
             [SolverReportErrCtxt -> TcSolverReportMsg -> SolverReportWithCtxt
SolverReportWithCtxt SolverReportErrCtxt
ctxt ([FixedRuntimeRepErrorInfo] -> TcSolverReportMsg
FixedRuntimeRepError [FixedRuntimeRepErrorInfo]
frr_origins)]
             DiagnosticReason
ErrorWithoutFlag [GhcHint]
noHints

    -- Accumulate the different kind of errors arising from syntactic equality.
    -- (Only SynEq_FRR origin for the moment.)
    acc_errors :: [NotConcreteError] -> [FixedRuntimeRepErrorInfo]
acc_errors = [FixedRuntimeRepErrorInfo]
-> [NotConcreteError] -> [FixedRuntimeRepErrorInfo]
go []
      where
        go :: [FixedRuntimeRepErrorInfo]
-> [NotConcreteError] -> [FixedRuntimeRepErrorInfo]
go [FixedRuntimeRepErrorInfo]
frr_errs [] = [FixedRuntimeRepErrorInfo]
frr_errs
        go [FixedRuntimeRepErrorInfo]
frr_errs (NotConcreteError
err:[NotConcreteError]
errs)
          | [FixedRuntimeRepErrorInfo]
frr_errs <- [FixedRuntimeRepErrorInfo]
-> [NotConcreteError] -> [FixedRuntimeRepErrorInfo]
go [FixedRuntimeRepErrorInfo]
frr_errs [NotConcreteError]
errs
          = case NotConcreteError
err of
              NCE_FRR
                { nce_frr_origin :: NotConcreteError -> FixedRuntimeRepOrigin
nce_frr_origin = FixedRuntimeRepOrigin
frr_orig
                , nce_reasons :: NotConcreteError -> NonEmpty NotConcreteReason
nce_reasons = NonEmpty NotConcreteReason
_not_conc } ->
                FRR_Info
                  { frr_info_origin :: FixedRuntimeRepOrigin
frr_info_origin       = FixedRuntimeRepOrigin
frr_orig
                  , frr_info_not_concrete :: Maybe (TcId, Type)
frr_info_not_concrete = forall a. Maybe a
Nothing }
                forall a. a -> [a] -> [a]
: [FixedRuntimeRepErrorInfo]
frr_errs

{- Note [Skip type holes rapidly]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have module with a /lot/ of partial type signatures, and we
compile it while suppressing partial-type-signature warnings.  Then
we don't want to spend ages constructing error messages and lists of
relevant bindings that we never display! This happened in #14766, in
which partial type signatures in a Happy-generated parser cause a huge
increase in compile time.

The function ignoreThisHole short-circuits the error/warning generation
machinery, in cases where it is definitely going to be a no-op.
-}

mkUserTypeErrorReporter :: Reporter
mkUserTypeErrorReporter :: Reporter
mkUserTypeErrorReporter SolverReportErrCtxt
ctxt
  = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ forall a b. (a -> b) -> a -> b
$ \ErrorItem
item -> do { let err :: SolverReport
err = SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important SolverReportErrCtxt
ctxt forall a b. (a -> b) -> a -> b
$ ErrorItem -> TcSolverReportMsg
mkUserTypeError ErrorItem
item
                        ; SolverReportErrCtxt -> [ErrorItem] -> SolverReport -> TcM ()
maybeReportError SolverReportErrCtxt
ctxt [ErrorItem
item] SolverReport
err
                        ; SolverReportErrCtxt -> SolverReport -> ErrorItem -> TcM ()
addDeferredBinding SolverReportErrCtxt
ctxt SolverReport
err ErrorItem
item }

mkUserTypeError :: ErrorItem -> TcSolverReportMsg
mkUserTypeError :: ErrorItem -> TcSolverReportMsg
mkUserTypeError ErrorItem
item =
  case Type -> Maybe Type
getUserTypeErrorMsg (ErrorItem -> Type
errorItemPred ErrorItem
item) of
    Just Type
msg -> Type -> TcSolverReportMsg
UserTypeError Type
msg
    Maybe Type
Nothing  -> forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"mkUserTypeError" (forall a. Outputable a => a -> SDoc
ppr ErrorItem
item)

mkGivenErrorReporter :: Reporter
-- See Note [Given errors]
mkGivenErrorReporter :: Reporter
mkGivenErrorReporter SolverReportErrCtxt
ctxt [ErrorItem]
items
  = do { (SolverReportErrCtxt
ctxt, RelevantBindings
relevant_binds, ErrorItem
item) <- Bool
-> SolverReportErrCtxt
-> ErrorItem
-> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem)
relevantBindings Bool
True SolverReportErrCtxt
ctxt ErrorItem
item
       ; let (Implication
implic:[Implication]
_) = SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt
                 -- Always non-empty when mkGivenErrorReporter is called
             loc' :: CtLoc
loc'  = CtLoc -> TcLclEnv -> CtLoc
setCtLocEnv (ErrorItem -> CtLoc
ei_loc ErrorItem
item) (Implication -> TcLclEnv
ic_env Implication
implic)
             item' :: ErrorItem
item' = ErrorItem
item { ei_loc :: CtLoc
ei_loc = CtLoc
loc' }
                   -- For given constraints we overwrite the env (and hence src-loc)
                   -- with one from the immediately-enclosing implication.
                   -- See Note [Inaccessible code]

       ; (AccReportMsgs
eq_err_msgs, [GhcHint]
_hints) <- SolverReportErrCtxt
-> ErrorItem -> Type -> Type -> TcM (AccReportMsgs, [GhcHint])
mkEqErr_help SolverReportErrCtxt
ctxt ErrorItem
item' Type
ty1 Type
ty2
       -- The hints wouldn't help in this situation, so we discard them.
       ; let supplementary :: [SolverReportSupplementary]
supplementary = [ RelevantBindings -> SolverReportSupplementary
SupplementaryBindings RelevantBindings
relevant_binds ]
             msg :: TcRnMessage
msg = Implication -> NonEmpty SolverReportWithCtxt -> TcRnMessage
TcRnInaccessibleCode Implication
implic (forall a. NonEmpty a -> NonEmpty a
NE.reverse forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> NonEmpty a -> NonEmpty b
NE.map (SolverReportErrCtxt -> TcSolverReportMsg -> SolverReportWithCtxt
SolverReportWithCtxt SolverReportErrCtxt
ctxt) forall a b. (a -> b) -> a -> b
$ AccReportMsgs
eq_err_msgs)
       ; MsgEnvelope TcRnMessage
msg <- TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport (CtLoc -> TcLclEnv
ctLocEnv CtLoc
loc') TcRnMessage
msg (forall a. a -> Maybe a
Just SolverReportErrCtxt
ctxt) [SolverReportSupplementary]
supplementary
       ; MsgEnvelope TcRnMessage -> TcM ()
reportDiagnostic MsgEnvelope TcRnMessage
msg }
  where
    (ErrorItem
item : [ErrorItem]
_ )  = [ErrorItem]
items    -- Never empty
    (Type
ty1, Type
ty2)   = Type -> (Type, Type)
getEqPredTys (ErrorItem -> Type
errorItemPred ErrorItem
item)

ignoreErrorReporter :: Reporter
-- Discard Given errors that don't come from
-- a pattern match; maybe we should warn instead?
ignoreErrorReporter :: Reporter
ignoreErrorReporter SolverReportErrCtxt
ctxt [ErrorItem]
items
  = do { String -> SDoc -> TcM ()
traceTc String
"mkGivenErrorReporter no" (forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
items SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr (SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt))
       ; forall (m :: * -> *) a. Monad m => a -> m a
return () }


{- Note [Given errors]
~~~~~~~~~~~~~~~~~~~~~~
Given constraints represent things for which we have (or will have)
evidence, so they aren't errors.  But if a Given constraint is
insoluble, this code is inaccessible, and we might want to at least
warn about that.  A classic case is

   data T a where
     T1 :: T Int
     T2 :: T a
     T3 :: T Bool

   f :: T Int -> Bool
   f T1 = ...
   f T2 = ...
   f T3 = ...  -- We want to report this case as inaccessible

We'd like to point out that the T3 match is inaccessible. It
will have a Given constraint [G] Int ~ Bool.

But we don't want to report ALL insoluble Given constraints.  See Trac
#12466 for a long discussion.  For example, if we aren't careful
we'll complain about
   f :: ((Int ~ Bool) => a -> a) -> Int
which arguably is OK.  It's more debatable for
   g :: (Int ~ Bool) => Int -> Int
but it's tricky to distinguish these cases so we don't report
either.

The bottom line is this: has_gadt_match looks for an enclosing
pattern match which binds some equality constraints.  If we
find one, we report the insoluble Given.
-}

mkGroupReporter :: (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
                             -- Make error message for a group
                -> Reporter  -- Deal with lots of constraints
-- Group together errors from same location,
-- and report only the first (to avoid a cascade)
mkGroupReporter :: (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
mkGroupReporter SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mk_err SolverReportErrCtxt
ctxt [ErrorItem]
items
  = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ ((SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
reportGroup SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mk_err SolverReportErrCtxt
ctxt forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable t => t a -> [a]
toList) (forall a. (a -> a -> Ordering) -> [a] -> [NonEmpty a]
equivClasses ErrorItem -> ErrorItem -> Ordering
cmp_loc [ErrorItem]
items)

eq_lhs_type :: ErrorItem -> ErrorItem -> Bool
eq_lhs_type :: ErrorItem -> ErrorItem -> Bool
eq_lhs_type ErrorItem
item1 ErrorItem
item2
  = case (Type -> Pred
classifyPredType (ErrorItem -> Type
errorItemPred ErrorItem
item1), Type -> Pred
classifyPredType (ErrorItem -> Type
errorItemPred ErrorItem
item2)) of
       (EqPred EqRel
eq_rel1 Type
ty1 Type
_, EqPred EqRel
eq_rel2 Type
ty2 Type
_) ->
         (EqRel
eq_rel1 forall a. Eq a => a -> a -> Bool
== EqRel
eq_rel2) Bool -> Bool -> Bool
&& (Type
ty1 Type -> Type -> Bool
`eqType` Type
ty2)
       (Pred, Pred)
_ -> forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"mkSkolReporter" (forall a. Outputable a => a -> SDoc
ppr ErrorItem
item1 SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr ErrorItem
item2)

cmp_loc :: ErrorItem -> ErrorItem -> Ordering
cmp_loc :: ErrorItem -> ErrorItem -> Ordering
cmp_loc ErrorItem
item1 ErrorItem
item2 = ErrorItem -> RealSrcLoc
get ErrorItem
item1 forall a. Ord a => a -> a -> Ordering
`compare` ErrorItem -> RealSrcLoc
get ErrorItem
item2
  where
    get :: ErrorItem -> RealSrcLoc
get ErrorItem
ei = RealSrcSpan -> RealSrcLoc
realSrcSpanStart (CtLoc -> RealSrcSpan
ctLocSpan (ErrorItem -> CtLoc
errorItemCtLoc ErrorItem
ei))
             -- Reduce duplication by reporting only one error from each
             -- /starting/ location even if the end location differs

reportGroup :: (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport) -> Reporter
reportGroup :: (SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport)
-> Reporter
reportGroup SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mk_err SolverReportErrCtxt
ctxt [ErrorItem]
items
  = do { SolverReport
err <- SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mk_err SolverReportErrCtxt
ctxt [ErrorItem]
items
       ; String -> SDoc -> TcM ()
traceTc String
"About to maybeReportErr" forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Constraint:"             SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
items
              , String -> SDoc
text String
"cec_suppress ="          SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (SolverReportErrCtxt -> Bool
cec_suppress SolverReportErrCtxt
ctxt)
              , String -> SDoc
text String
"cec_defer_type_errors =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (SolverReportErrCtxt -> DiagnosticReason
cec_defer_type_errors SolverReportErrCtxt
ctxt) ]
       ; SolverReportErrCtxt -> [ErrorItem] -> SolverReport -> TcM ()
maybeReportError SolverReportErrCtxt
ctxt [ErrorItem]
items SolverReport
err
           -- But see Note [Always warn with -fdefer-type-errors]
       ; String -> SDoc -> TcM ()
traceTc String
"reportGroup" (forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
items)
       ; forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (SolverReportErrCtxt -> SolverReport -> ErrorItem -> TcM ()
addDeferredBinding SolverReportErrCtxt
ctxt SolverReport
err) [ErrorItem]
items }
           -- Add deferred bindings for all
           -- Redundant if we are going to abort compilation,
           -- but that's hard to know for sure, and if we don't
           -- abort, we need bindings for all (e.g. #12156)

-- See Note [No deferring for multiplicity errors]
nonDeferrableOrigin :: CtOrigin -> Bool
nonDeferrableOrigin :: CtOrigin -> Bool
nonDeferrableOrigin CtOrigin
NonLinearPatternOrigin  = Bool
True
nonDeferrableOrigin (UsageEnvironmentOf {}) = Bool
True
nonDeferrableOrigin (FRROrigin {})          = Bool
True
nonDeferrableOrigin CtOrigin
_                       = Bool
False

maybeReportError :: SolverReportErrCtxt
                 -> [ErrorItem]     -- items covered by the Report
                 -> SolverReport -> TcM ()
maybeReportError :: SolverReportErrCtxt -> [ErrorItem] -> SolverReport -> TcM ()
maybeReportError SolverReportErrCtxt
ctxt items :: [ErrorItem]
items@(ErrorItem
item1:[ErrorItem]
_) (SolverReport { sr_important_msgs :: SolverReport -> [SolverReportWithCtxt]
sr_important_msgs = [SolverReportWithCtxt]
important
                                                    , sr_supplementary :: SolverReport -> [SolverReportSupplementary]
sr_supplementary = [SolverReportSupplementary]
supp
                                                    , sr_hints :: SolverReport -> [GhcHint]
sr_hints = [GhcHint]
hints })
  = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (SolverReportErrCtxt -> Bool
cec_suppress SolverReportErrCtxt
ctxt  -- Some worse error has occurred, so suppress this diagnostic
         Bool -> Bool -> Bool
|| forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all ErrorItem -> Bool
ei_suppress [ErrorItem]
items) forall a b. (a -> b) -> a -> b
$
                           -- if they're all to be suppressed, report nothing
                           -- if at least one is not suppressed, do report:
                           -- the function that generates the error message
                           -- should look for an unsuppressed error item
    do let reason :: DiagnosticReason
reason | forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (CtOrigin -> Bool
nonDeferrableOrigin forall b c a. (b -> c) -> (a -> b) -> a -> c
. ErrorItem -> CtOrigin
errorItemOrigin) [ErrorItem]
items = DiagnosticReason
ErrorWithoutFlag
                  | Bool
otherwise                                         = SolverReportErrCtxt -> DiagnosticReason
cec_defer_type_errors SolverReportErrCtxt
ctxt
                  -- See Note [No deferring for multiplicity errors]
           diag :: TcRnMessage
diag = [SolverReportWithCtxt]
-> DiagnosticReason -> [GhcHint] -> TcRnMessage
TcRnSolverReport [SolverReportWithCtxt]
important DiagnosticReason
reason [GhcHint]
hints
       MsgEnvelope TcRnMessage
msg <- TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport (CtLoc -> TcLclEnv
ctLocEnv (ErrorItem -> CtLoc
errorItemCtLoc ErrorItem
item1)) TcRnMessage
diag (forall a. a -> Maybe a
Just SolverReportErrCtxt
ctxt) [SolverReportSupplementary]
supp
       MsgEnvelope TcRnMessage -> TcM ()
reportDiagnostic MsgEnvelope TcRnMessage
msg
maybeReportError SolverReportErrCtxt
_ [ErrorItem]
_ SolverReport
_ = forall a. String -> a
panic String
"maybeReportError"

addDeferredBinding :: SolverReportErrCtxt -> SolverReport -> ErrorItem -> TcM ()
-- See Note [Deferring coercion errors to runtime]
addDeferredBinding :: SolverReportErrCtxt -> SolverReport -> ErrorItem -> TcM ()
addDeferredBinding SolverReportErrCtxt
ctxt SolverReport
err (EI { ei_evdest :: ErrorItem -> Maybe TcEvDest
ei_evdest = Just TcEvDest
dest, ei_pred :: ErrorItem -> Type
ei_pred = Type
item_ty
                                , ei_loc :: ErrorItem -> CtLoc
ei_loc = CtLoc
loc })
     -- if evdest is Just, then the constraint was from a wanted
  | SolverReportErrCtxt -> Bool
deferringAnyBindings SolverReportErrCtxt
ctxt
  = do { EvTerm
err_tm <- SolverReportErrCtxt -> CtLoc -> Type -> SolverReport -> TcM EvTerm
mkErrorTerm SolverReportErrCtxt
ctxt CtLoc
loc Type
item_ty SolverReport
err
       ; let ev_binds_var :: EvBindsVar
ev_binds_var = SolverReportErrCtxt -> EvBindsVar
cec_binds SolverReportErrCtxt
ctxt

       ; case TcEvDest
dest of
           EvVarDest TcId
evar
             -> EvBindsVar -> EvBind -> TcM ()
addTcEvBind EvBindsVar
ev_binds_var forall a b. (a -> b) -> a -> b
$ TcId -> EvTerm -> EvBind
mkWantedEvBind TcId
evar EvTerm
err_tm
           HoleDest CoercionHole
hole
             -> do { -- See Note [Deferred errors for coercion holes]
                     let co_var :: TcId
co_var = CoercionHole -> TcId
coHoleCoVar CoercionHole
hole
                   ; EvBindsVar -> EvBind -> TcM ()
addTcEvBind EvBindsVar
ev_binds_var forall a b. (a -> b) -> a -> b
$ TcId -> EvTerm -> EvBind
mkWantedEvBind TcId
co_var EvTerm
err_tm
                   ; CoercionHole -> TcCoercionN -> TcM ()
fillCoercionHole CoercionHole
hole (TcId -> TcCoercionN
mkTcCoVarCo TcId
co_var) } }
addDeferredBinding SolverReportErrCtxt
_ SolverReport
_ ErrorItem
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()    -- Do not set any evidence for Given

mkErrorTerm :: SolverReportErrCtxt -> CtLoc -> Type  -- of the error term
            -> SolverReport -> TcM EvTerm
mkErrorTerm :: SolverReportErrCtxt -> CtLoc -> Type -> SolverReport -> TcM EvTerm
mkErrorTerm SolverReportErrCtxt
ctxt CtLoc
ct_loc Type
ty (SolverReport { sr_important_msgs :: SolverReport -> [SolverReportWithCtxt]
sr_important_msgs = [SolverReportWithCtxt]
important, sr_supplementary :: SolverReport -> [SolverReportSupplementary]
sr_supplementary = [SolverReportSupplementary]
supp })
  = do { MsgEnvelope TcRnMessage
msg <- TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport
                  (CtLoc -> TcLclEnv
ctLocEnv CtLoc
ct_loc)
                  ([SolverReportWithCtxt]
-> DiagnosticReason -> [GhcHint] -> TcRnMessage
TcRnSolverReport [SolverReportWithCtxt]
important DiagnosticReason
ErrorWithoutFlag [GhcHint]
noHints) (forall a. a -> Maybe a
Just SolverReportErrCtxt
ctxt) [SolverReportSupplementary]
supp
         -- This will be reported at runtime, so we always want "error:" in the report, never "warning:"
       ; DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; let err_msg :: SDoc
err_msg = forall e. Diagnostic e => MsgEnvelope e -> SDoc
pprLocMsgEnvelope MsgEnvelope TcRnMessage
msg
             err_str :: String
err_str = DynFlags -> SDoc -> String
showSDoc DynFlags
dflags forall a b. (a -> b) -> a -> b
$
                       SDoc
err_msg SDoc -> SDoc -> SDoc
$$ String -> SDoc
text String
"(deferred type error)"

       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Type -> String -> EvTerm
evDelayedError Type
ty String
err_str }

tryReporters :: SolverReportErrCtxt -> [ReporterSpec] -> [ErrorItem] -> TcM (SolverReportErrCtxt, [ErrorItem])
-- Use the first reporter in the list whose predicate says True
tryReporters :: SolverReportErrCtxt
-> [ReporterSpec]
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporters SolverReportErrCtxt
ctxt [ReporterSpec]
reporters [ErrorItem]
items
  = do { let ([ErrorItem]
vis_items, [ErrorItem]
invis_items)
               = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition (CtOrigin -> Bool
isVisibleOrigin forall b c a. (b -> c) -> (a -> b) -> a -> c
. ErrorItem -> CtOrigin
errorItemOrigin) [ErrorItem]
items
       ; String -> SDoc -> TcM ()
traceTc String
"tryReporters {" (forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
vis_items SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
invis_items)
       ; (SolverReportErrCtxt
ctxt', [ErrorItem]
items') <- SolverReportErrCtxt
-> [ReporterSpec]
-> [ErrorItem]
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
go SolverReportErrCtxt
ctxt [ReporterSpec]
reporters [ErrorItem]
vis_items [ErrorItem]
invis_items
       ; String -> SDoc -> TcM ()
traceTc String
"tryReporters }" (forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
items')
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
ctxt', [ErrorItem]
items') }
  where
    go :: SolverReportErrCtxt
-> [ReporterSpec]
-> [ErrorItem]
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
go SolverReportErrCtxt
ctxt [] [ErrorItem]
vis_items [ErrorItem]
invis_items
      = forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
ctxt, [ErrorItem]
vis_items forall a. [a] -> [a] -> [a]
++ [ErrorItem]
invis_items)

    go SolverReportErrCtxt
ctxt (ReporterSpec
r : [ReporterSpec]
rs) [ErrorItem]
vis_items [ErrorItem]
invis_items
       -- always look at *visible* Origins before invisible ones
       -- this is the whole point of isVisibleOrigin
      = do { (SolverReportErrCtxt
ctxt', [ErrorItem]
vis_items') <- SolverReportErrCtxt
-> ReporterSpec
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporter SolverReportErrCtxt
ctxt ReporterSpec
r [ErrorItem]
vis_items
           ; (SolverReportErrCtxt
ctxt'', [ErrorItem]
invis_items') <- SolverReportErrCtxt
-> ReporterSpec
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporter SolverReportErrCtxt
ctxt' ReporterSpec
r [ErrorItem]
invis_items
           ; SolverReportErrCtxt
-> [ReporterSpec]
-> [ErrorItem]
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
go SolverReportErrCtxt
ctxt'' [ReporterSpec]
rs [ErrorItem]
vis_items' [ErrorItem]
invis_items' }
                -- Carry on with the rest, because we must make
                -- deferred bindings for them if we have -fdefer-type-errors
                -- But suppress their error messages

tryReporter :: SolverReportErrCtxt -> ReporterSpec -> [ErrorItem] -> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporter :: SolverReportErrCtxt
-> ReporterSpec
-> [ErrorItem]
-> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporter SolverReportErrCtxt
ctxt (String
str, ErrorItem -> Pred -> Bool
keep_me,  Bool
suppress_after, Reporter
reporter) [ErrorItem]
items
  | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [ErrorItem]
yeses
  = forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
ctxt, [ErrorItem]
items)
  | Bool
otherwise
  = do { String -> SDoc -> TcM ()
traceTc String
"tryReporter{ " (String -> SDoc
text String
str SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [ErrorItem]
yeses)
       ; (()
_, Bool
no_errs) <- forall a. TcRn a -> TcRn (a, Bool)
askNoErrs (Reporter
reporter SolverReportErrCtxt
ctxt [ErrorItem]
yeses)
       ; let suppress_now :: Bool
suppress_now   = Bool -> Bool
not Bool
no_errs Bool -> Bool -> Bool
&& Bool
suppress_after
                            -- See Note [Suppressing error messages]
             ctxt' :: SolverReportErrCtxt
ctxt' = SolverReportErrCtxt
ctxt { cec_suppress :: Bool
cec_suppress = Bool
suppress_now Bool -> Bool -> Bool
|| SolverReportErrCtxt -> Bool
cec_suppress SolverReportErrCtxt
ctxt }
       ; String -> SDoc -> TcM ()
traceTc String
"tryReporter end }" (String -> SDoc
text String
str SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (SolverReportErrCtxt -> Bool
cec_suppress SolverReportErrCtxt
ctxt) SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Bool
suppress_after)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
ctxt', [ErrorItem]
nos) }
  where
    ([ErrorItem]
yeses, [ErrorItem]
nos) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition ErrorItem -> Bool
keep [ErrorItem]
items
    keep :: ErrorItem -> Bool
keep ErrorItem
item = ErrorItem -> Pred -> Bool
keep_me ErrorItem
item (Type -> Pred
classifyPredType (ErrorItem -> Type
errorItemPred ErrorItem
item))

-- | Wrap an input 'TcRnMessage' with additional contextual information,
-- such as relevant bindings or valid hole fits.
mkErrorReport :: TcLclEnv
              -> TcRnMessage
                  -- ^ The main payload of the message.
              -> Maybe SolverReportErrCtxt
                  -- ^ The context to add, after the main diagnostic
                  -- but before the supplementary information.
                  -- Nothing <=> don't add any context.
              -> [SolverReportSupplementary]
                  -- ^ Supplementary information, to be added at the end of the message.
              -> TcM (MsgEnvelope TcRnMessage)
mkErrorReport :: TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport TcLclEnv
tcl_env TcRnMessage
msg Maybe SolverReportErrCtxt
mb_ctxt [SolverReportSupplementary]
supplementary
  = do { Maybe SDoc
mb_context <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (\ SolverReportErrCtxt
ctxt -> TidyEnv -> [ErrCtxt] -> IOEnv (Env TcGblEnv TcLclEnv) SDoc
mkErrInfo (SolverReportErrCtxt -> TidyEnv
cec_tidy SolverReportErrCtxt
ctxt) (TcLclEnv -> [ErrCtxt]
tcl_ctxt TcLclEnv
tcl_env)) Maybe SolverReportErrCtxt
mb_ctxt
       ; UnitState
unit_state <- HasDebugCallStack => HscEnv -> UnitState
hsc_units forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall gbl lcl. TcRnIf gbl lcl HscEnv
getTopEnv
       ; HoleFitDispConfig
hfdc <- TcM HoleFitDispConfig
getHoleFitDispConfig
       ; let
           err_info :: ErrInfo
err_info =
             SDoc -> SDoc -> ErrInfo
ErrInfo
               (forall a. a -> Maybe a -> a
fromMaybe SDoc
empty Maybe SDoc
mb_context)
               ([SDoc] -> SDoc
vcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (HoleFitDispConfig -> SolverReportSupplementary -> SDoc
pprSolverReportSupplementary HoleFitDispConfig
hfdc) [SolverReportSupplementary]
supplementary)
       ; SrcSpan -> TcRnMessage -> TcM (MsgEnvelope TcRnMessage)
mkTcRnMessage
           (RealSrcSpan -> Maybe BufSpan -> SrcSpan
RealSrcSpan (TcLclEnv -> RealSrcSpan
tcl_loc TcLclEnv
tcl_env) forall a. Maybe a
Strict.Nothing)
           (UnitState -> TcRnMessageDetailed -> TcRnMessage
TcRnMessageWithInfo UnitState
unit_state forall a b. (a -> b) -> a -> b
$ ErrInfo -> TcRnMessage -> TcRnMessageDetailed
TcRnMessageDetailed ErrInfo
err_info TcRnMessage
msg) }

-- | Pretty-print supplementary information, to add to an error report.
pprSolverReportSupplementary :: HoleFitDispConfig -> SolverReportSupplementary -> SDoc
-- This function should be in "GHC.Tc.Errors.Ppr",
-- but we need it here because 'TcRnMessageDetails' needs an 'SDoc'.
pprSolverReportSupplementary :: HoleFitDispConfig -> SolverReportSupplementary -> SDoc
pprSolverReportSupplementary HoleFitDispConfig
hfdc = \case
  SupplementaryBindings RelevantBindings
binds -> RelevantBindings -> SDoc
pprRelevantBindings RelevantBindings
binds
  SupplementaryHoleFits ValidHoleFits
fits  -> HoleFitDispConfig -> ValidHoleFits -> SDoc
pprValidHoleFits HoleFitDispConfig
hfdc ValidHoleFits
fits
  SupplementaryCts      [(Type, RealSrcSpan)]
cts   -> [(Type, RealSrcSpan)] -> SDoc
pprConstraintsInclude [(Type, RealSrcSpan)]
cts

-- | Display a collection of valid hole fits.
pprValidHoleFits :: HoleFitDispConfig -> ValidHoleFits -> SDoc
-- This function should be in "GHC.Tc.Errors.Ppr",
-- but we need it here because 'TcRnMessageDetails' needs an 'SDoc'.
pprValidHoleFits :: HoleFitDispConfig -> ValidHoleFits -> SDoc
pprValidHoleFits HoleFitDispConfig
hfdc (ValidHoleFits (Fits [HoleFit]
fits Bool
discarded_fits) (Fits [HoleFit]
refs Bool
discarded_refs))
  = SDoc
fits_msg SDoc -> SDoc -> SDoc
$$ SDoc
refs_msg

  where
    fits_msg, refs_msg, fits_discard_msg, refs_discard_msg :: SDoc
    fits_msg :: SDoc
fits_msg = Bool -> SDoc -> SDoc
ppUnless (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [HoleFit]
fits) forall a b. (a -> b) -> a -> b
$
                    SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Valid hole fits include") Int
2 forall a b. (a -> b) -> a -> b
$
                    [SDoc] -> SDoc
vcat (forall a b. (a -> b) -> [a] -> [b]
map (HoleFitDispConfig -> HoleFit -> SDoc
pprHoleFit HoleFitDispConfig
hfdc) [HoleFit]
fits)
                      SDoc -> SDoc -> SDoc
$$ Bool -> SDoc -> SDoc
ppWhen  Bool
discarded_fits SDoc
fits_discard_msg
    refs_msg :: SDoc
refs_msg = Bool -> SDoc -> SDoc
ppUnless (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [HoleFit]
refs) forall a b. (a -> b) -> a -> b
$
                  SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Valid refinement hole fits include") Int
2 forall a b. (a -> b) -> a -> b
$
                  [SDoc] -> SDoc
vcat (forall a b. (a -> b) -> [a] -> [b]
map (HoleFitDispConfig -> HoleFit -> SDoc
pprHoleFit HoleFitDispConfig
hfdc) [HoleFit]
refs)
                    SDoc -> SDoc -> SDoc
$$ Bool -> SDoc -> SDoc
ppWhen Bool
discarded_refs SDoc
refs_discard_msg
    fits_discard_msg :: SDoc
fits_discard_msg =
      String -> SDoc
text String
"(Some hole fits suppressed;" SDoc -> SDoc -> SDoc
<+>
      String -> SDoc
text String
"use -fmax-valid-hole-fits=N" SDoc -> SDoc -> SDoc
<+>
      String -> SDoc
text String
"or -fno-max-valid-hole-fits)"
    refs_discard_msg :: SDoc
refs_discard_msg =
      String -> SDoc
text String
"(Some refinement hole fits suppressed;" SDoc -> SDoc -> SDoc
<+>
      String -> SDoc
text String
"use -fmax-refinement-hole-fits=N" SDoc -> SDoc -> SDoc
<+>
      String -> SDoc
text String
"or -fno-max-refinement-hole-fits)"

-- | Add a "Constraints include..." message.
--
-- See Note [Constraints include ...]
pprConstraintsInclude :: [(PredType, RealSrcSpan)] -> SDoc
-- This function should be in "GHC.Tc.Errors.Ppr",
-- but we need it here because 'TcRnMessageDetails' needs an 'SDoc'.
pprConstraintsInclude :: [(Type, RealSrcSpan)] -> SDoc
pprConstraintsInclude [(Type, RealSrcSpan)]
cts
  = Bool -> SDoc -> SDoc
ppUnless (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [(Type, RealSrcSpan)]
cts) forall a b. (a -> b) -> a -> b
$
     SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Constraints include")
        Int
2 ([SDoc] -> SDoc
vcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall {a} {a}. (Outputable a, Outputable a) => (a, a) -> SDoc
pprConstraint [(Type, RealSrcSpan)]
cts)
  where
    pprConstraint :: (a, a) -> SDoc
pprConstraint (a
constraint, a
loc) =
      forall a. Outputable a => a -> SDoc
ppr a
constraint SDoc -> SDoc -> SDoc
<+> Int -> SDoc -> SDoc
nest Int
2 (SDoc -> SDoc
parens (String -> SDoc
text String
"from" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr a
loc))

{- Note [Always warn with -fdefer-type-errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When -fdefer-type-errors is on we warn about *all* type errors, even
if cec_suppress is on.  This can lead to a lot more warnings than you
would get errors without -fdefer-type-errors, but if we suppress any of
them you might get a runtime error that wasn't warned about at compile
time.

To be consistent, we should also report multiple warnings from a single
location in mkGroupReporter, when -fdefer-type-errors is on.  But that
is perhaps a bit *over*-consistent!

With #10283, you can now opt out of deferred type error warnings.

Note [No deferring for multiplicity errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As explained in Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify,
linear types do not support casts and any nontrivial coercion will raise
an error during desugaring.

This means that even if we defer a multiplicity mismatch during typechecking,
the desugarer will refuse to compile anyway. Worse: the error raised
by the desugarer would shadow the type mismatch warnings (#20083).
As a solution, we refuse to defer submultiplicity constraints. Test: T20083.

To determine whether a constraint arose from a submultiplicity check, we
look at the CtOrigin. All calls to tcSubMult use one of two origins,
UsageEnvironmentOf and NonLinearPatternOrigin. Those origins are not
used outside of linear types.

In the future, we should compile 'WpMultCoercion' to a runtime error with
-fdefer-type-errors, but the current implementation does not always
place the wrapper in the right place and the resulting program can fail Lint.
This plan is tracked in #20083.

Note [Deferred errors for coercion holes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we need to defer a type error where the destination for the evidence
is a coercion hole. We can't just put the error in the hole, because we can't
make an erroneous coercion. (Remember that coercions are erased for runtime.)
Instead, we invent a new EvVar, bind it to an error and then make a coercion
from that EvVar, filling the hole with that coercion. Because coercions'
types are unlifted, the error is guaranteed to be hit before we get to the
coercion.

************************************************************************
*                                                                      *
                Irreducible predicate errors
*                                                                      *
************************************************************************
-}

mkIrredErr :: SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkIrredErr :: SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkIrredErr SolverReportErrCtxt
ctxt [ErrorItem]
items
  = do { (SolverReportErrCtxt
ctxt, RelevantBindings
binds_msg, ErrorItem
item1) <- Bool
-> SolverReportErrCtxt
-> ErrorItem
-> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem)
relevantBindings Bool
True SolverReportErrCtxt
ctxt ErrorItem
item1
       ; let msg :: SolverReport
msg = SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important SolverReportErrCtxt
ctxt forall a b. (a -> b) -> a -> b
$
                   [Implication]
-> NonEmpty ErrorItem -> Maybe CND_Extra -> TcSolverReportMsg
CouldNotDeduce (SolverReportErrCtxt -> [Implication]
getUserGivens SolverReportErrCtxt
ctxt) (ErrorItem
item1 forall a. a -> [a] -> NonEmpty a
:| [ErrorItem]
others) forall a. Maybe a
Nothing
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ SolverReport
msg forall a. Monoid a => a -> a -> a
`mappend` RelevantBindings -> SolverReport
mk_relevant_bindings RelevantBindings
binds_msg }
  where
    (ErrorItem
item1:[ErrorItem]
others) = [ErrorItem]
final_items

    filtered_items :: [ErrorItem]
filtered_items = forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. ErrorItem -> Bool
ei_suppress) [ErrorItem]
items
    final_items :: [ErrorItem]
final_items | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [ErrorItem]
filtered_items = [ErrorItem]
items
                    -- they're all suppressed; must report *something*
                    -- NB: even though reportWanteds asserts that not
                    -- all items are suppressed, it's possible all the
                    -- irreducibles are suppressed, and so this function
                    -- might get all suppressed items
                | Bool
otherwise           = [ErrorItem]
filtered_items

{- Note [Constructing Hole Errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Whether or not 'mkHoleError' returns an error is not influenced by cec_suppress. In other terms,
these "hole" errors are /not/ suppressed by cec_suppress. We want to see them!

There are two cases to consider:

1. For out-of-scope variables we always report an error, unless -fdefer-out-of-scope-variables is on,
   in which case the messages are discarded. See also #12170 and #12406. If deferring, report a warning
   only if -Wout-of-scope-variables is on.

2. For the general case, when -XPartialTypeSignatures is on, warnings (instead of errors) are generated
   for holes in partial type signatures, unless -Wpartial-type-signatures is not on, in which case
   the messages are discarded. If deferring, report a warning only if -Wtyped-holes is on.

The above can be summarised into the following table:

| Hole Type    | Active Flags                                             | Outcome          |
|--------------|----------------------------------------------------------|------------------|
| out-of-scope | None                                                     | Error            |
| out-of-scope | -fdefer-out-of-scope-variables, -Wout-of-scope-variables | Warning          |
| out-of-scope | -fdefer-out-of-scope-variables                           | Ignore (discard) |
| type         | None                                                     | Error            |
| type         | -XPartialTypeSignatures, -Wpartial-type-signatures       | Warning          |
| type         | -XPartialTypeSignatures                                  | Ignore (discard) |
| expression   | None                                                     | Error            |
| expression   | -Wdefer-typed-holes, -Wtyped-holes                       | Warning          |
| expression   | -Wdefer-typed-holes                                      | Ignore (discard) |

See also 'reportUnsolved'.

-}

----------------
-- | Constructs a new hole error, unless this is deferred. See Note [Constructing Hole Errors].
mkHoleError :: NameEnv Type -> [ErrorItem] -> SolverReportErrCtxt -> Hole -> TcM (MsgEnvelope TcRnMessage)
mkHoleError :: NameEnv Type
-> [ErrorItem]
-> SolverReportErrCtxt
-> Hole
-> TcM (MsgEnvelope TcRnMessage)
mkHoleError NameEnv Type
_ [ErrorItem]
_tidy_simples SolverReportErrCtxt
ctxt hole :: Hole
hole@(Hole { hole_occ :: Hole -> OccName
hole_occ = OccName
occ, hole_loc :: Hole -> CtLoc
hole_loc = CtLoc
ct_loc })
  | Hole -> Bool
isOutOfScopeHole Hole
hole
  = do { DynFlags
dflags  <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; GlobalRdrEnv
rdr_env <- TcRn GlobalRdrEnv
getGlobalRdrEnv
       ; ImportAvails
imp_info <- TcRn ImportAvails
getImports
       ; Module
curr_mod <- forall (m :: * -> *). HasModule m => m Module
getModule
       ; HomePackageTable
hpt <- forall gbl lcl. TcRnIf gbl lcl HomePackageTable
getHpt
       ; let ([ImportError]
imp_errs, [GhcHint]
hints)
                = WhatLooking
-> DynFlags
-> HomePackageTable
-> Module
-> GlobalRdrEnv
-> LocalRdrEnv
-> ImportAvails
-> RdrName
-> ([ImportError], [GhcHint])
unknownNameSuggestions WhatLooking
WL_Anything
                    DynFlags
dflags HomePackageTable
hpt Module
curr_mod GlobalRdrEnv
rdr_env
                    (TcLclEnv -> LocalRdrEnv
tcl_rdr TcLclEnv
lcl_env) ImportAvails
imp_info (OccName -> RdrName
mkRdrUnqual OccName
occ)
             errs :: [SolverReportWithCtxt]
errs   = [SolverReportErrCtxt -> TcSolverReportMsg -> SolverReportWithCtxt
SolverReportWithCtxt SolverReportErrCtxt
ctxt (Hole -> HoleError -> TcSolverReportMsg
ReportHoleError Hole
hole forall a b. (a -> b) -> a -> b
$ [ImportError] -> HoleError
OutOfScopeHole [ImportError]
imp_errs)]
             report :: SolverReport
report = [SolverReportWithCtxt]
-> [SolverReportSupplementary] -> [GhcHint] -> SolverReport
SolverReport [SolverReportWithCtxt]
errs [] [GhcHint]
hints

       ; SolverReportErrCtxt -> Hole -> SolverReport -> TcM ()
maybeAddDeferredBindings SolverReportErrCtxt
ctxt Hole
hole SolverReport
report
       ; TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport TcLclEnv
lcl_env ([SolverReportWithCtxt]
-> DiagnosticReason -> [GhcHint] -> TcRnMessage
TcRnSolverReport [SolverReportWithCtxt]
errs (SolverReportErrCtxt -> DiagnosticReason
cec_out_of_scope_holes SolverReportErrCtxt
ctxt) [GhcHint]
hints) forall a. Maybe a
Nothing []
          -- Pass the value 'Nothing' for the context, as it's generally not helpful
          -- to include the context here.
       }
  where
    lcl_env :: TcLclEnv
lcl_env = CtLoc -> TcLclEnv
ctLocEnv CtLoc
ct_loc

 -- general case: not an out-of-scope error
mkHoleError NameEnv Type
lcl_name_cache [ErrorItem]
tidy_simples SolverReportErrCtxt
ctxt
  hole :: Hole
hole@(Hole { hole_ty :: Hole -> Type
hole_ty = Type
hole_ty
             , hole_sort :: Hole -> HoleSort
hole_sort = HoleSort
sort
             , hole_loc :: Hole -> CtLoc
hole_loc = CtLoc
ct_loc })
  = do { RelevantBindings
rel_binds
           <- Bool
-> TcLclEnv -> NameEnv Type -> TyCoVarSet -> TcM RelevantBindings
relevant_bindings Bool
False TcLclEnv
lcl_env NameEnv Type
lcl_name_cache (Type -> TyCoVarSet
tyCoVarsOfType Type
hole_ty)
               -- The 'False' means "don't filter the bindings"; see Trac #8191

       ; Bool
show_hole_constraints <- forall gbl lcl. GeneralFlag -> TcRnIf gbl lcl Bool
goptM GeneralFlag
Opt_ShowHoleConstraints
       ; let relevant_cts :: [(Type, RealSrcSpan)]
relevant_cts
               | ExprHole HoleExprRef
_ <- HoleSort
sort, Bool
show_hole_constraints
               = SolverReportErrCtxt -> [(Type, RealSrcSpan)]
givenConstraints SolverReportErrCtxt
ctxt
               | Bool
otherwise
               = []

       ; Bool
show_valid_hole_fits <- forall gbl lcl. GeneralFlag -> TcRnIf gbl lcl Bool
goptM GeneralFlag
Opt_ShowValidHoleFits
       ; (SolverReportErrCtxt
ctxt, ValidHoleFits
hole_fits) <- if Bool
show_valid_hole_fits
                              then SolverReportErrCtxt
-> [ErrorItem] -> Hole -> TcM (SolverReportErrCtxt, ValidHoleFits)
validHoleFits SolverReportErrCtxt
ctxt [ErrorItem]
tidy_simples Hole
hole
                              else forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
ctxt, ValidHoleFits
noValidHoleFits)
       ; ([(SkolemInfoAnon, [TcId])]
grouped_skvs, [TcId]
other_tvs) <- Type -> TcM ([(SkolemInfoAnon, [TcId])], [TcId])
zonkAndGroupSkolTvs Type
hole_ty
       ; let reason :: DiagnosticReason
reason | ExprHole HoleExprRef
_ <- HoleSort
sort = SolverReportErrCtxt -> DiagnosticReason
cec_expr_holes SolverReportErrCtxt
ctxt
                    | Bool
otherwise          = SolverReportErrCtxt -> DiagnosticReason
cec_type_holes SolverReportErrCtxt
ctxt
             errs :: [SolverReportWithCtxt]
errs = [SolverReportErrCtxt -> TcSolverReportMsg -> SolverReportWithCtxt
SolverReportWithCtxt SolverReportErrCtxt
ctxt forall a b. (a -> b) -> a -> b
$ Hole -> HoleError -> TcSolverReportMsg
ReportHoleError Hole
hole forall a b. (a -> b) -> a -> b
$ HoleSort -> [TcId] -> [(SkolemInfoAnon, [TcId])] -> HoleError
HoleError HoleSort
sort [TcId]
other_tvs [(SkolemInfoAnon, [TcId])]
grouped_skvs]
             supp :: [SolverReportSupplementary]
supp = [ RelevantBindings -> SolverReportSupplementary
SupplementaryBindings RelevantBindings
rel_binds
                    , [(Type, RealSrcSpan)] -> SolverReportSupplementary
SupplementaryCts      [(Type, RealSrcSpan)]
relevant_cts
                    , ValidHoleFits -> SolverReportSupplementary
SupplementaryHoleFits ValidHoleFits
hole_fits ]

       ; SolverReportErrCtxt -> Hole -> SolverReport -> TcM ()
maybeAddDeferredBindings SolverReportErrCtxt
ctxt Hole
hole ([SolverReportWithCtxt]
-> [SolverReportSupplementary] -> [GhcHint] -> SolverReport
SolverReport [SolverReportWithCtxt]
errs [SolverReportSupplementary]
supp [])

       ; TcLclEnv
-> TcRnMessage
-> Maybe SolverReportErrCtxt
-> [SolverReportSupplementary]
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport TcLclEnv
lcl_env ([SolverReportWithCtxt]
-> DiagnosticReason -> [GhcHint] -> TcRnMessage
TcRnSolverReport [SolverReportWithCtxt]
errs DiagnosticReason
reason [GhcHint]
noHints) (forall a. a -> Maybe a
Just SolverReportErrCtxt
ctxt) [SolverReportSupplementary]
supp
       }

  where
    lcl_env :: TcLclEnv
lcl_env = CtLoc -> TcLclEnv
ctLocEnv CtLoc
ct_loc

-- | For all the skolem type variables in a type, zonk the skolem info and group together
-- all the type variables with the same origin.
zonkAndGroupSkolTvs :: Type -> TcM ([(SkolemInfoAnon, [TcTyVar])], [TcTyVar])
zonkAndGroupSkolTvs :: Type -> TcM ([(SkolemInfoAnon, [TcId])], [TcId])
zonkAndGroupSkolTvs Type
hole_ty = do
  [(SkolemInfoAnon, [TcId])]
zonked_info <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\(SkolemInfo
sk, [(TcId, Int)]
tv) -> (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (SkolemInfoAnon -> IOEnv (Env TcGblEnv TcLclEnv) SkolemInfoAnon
zonkSkolemInfoAnon forall b c a. (b -> c) -> (a -> b) -> a -> c
. SkolemInfo -> SkolemInfoAnon
getSkolemInfo forall a b. (a -> b) -> a -> b
$ SkolemInfo
sk) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall a b. (a, b) -> a
fst forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [(TcId, Int)]
tv)) [(SkolemInfo, [(TcId, Int)])]
skolem_list
  forall (m :: * -> *) a. Monad m => a -> m a
return ([(SkolemInfoAnon, [TcId])]
zonked_info, [TcId]
other_tvs)
  where
    tvs :: [TcId]
tvs = Type -> [TcId]
tyCoVarsOfTypeList Type
hole_ty
    ([TcId]
skol_tvs, [TcId]
other_tvs) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition (\TcId
tv -> TcId -> Bool
isTcTyVar TcId
tv Bool -> Bool -> Bool
&& TcId -> Bool
isSkolemTyVar TcId
tv) [TcId]
tvs

    group_skolems :: UM.UniqMap SkolemInfo ([(TcTyVar, Int)])
    group_skolems :: UniqMap SkolemInfo [(TcId, Int)]
group_skolems = forall a. Bag a -> [a]
bagToList forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall k a. Uniquable k => (a -> a -> a) -> [(k, a)] -> UniqMap k a
UM.listToUniqMap_C forall a. Bag a -> Bag a -> Bag a
unionBags [(TcId -> SkolemInfo
skolemSkolInfo TcId
tv, forall a. a -> Bag a
unitBag (TcId
tv, Int
n)) | TcId
tv <- [TcId]
skol_tvs | Int
n <- [Int
0..]]

    skolem_list :: [(SkolemInfo, [(TcId, Int)])]
skolem_list = forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy (forall a b. Ord a => (b -> a) -> b -> b -> Ordering
comparing (forall a. Ord a => [a] -> [a]
sort forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> b
snd)) (forall k a. UniqMap k a -> [(k, a)]
UM.nonDetEltsUniqMap UniqMap SkolemInfo [(TcId, Int)]
group_skolems)

{- Note [Adding deferred bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When working with typed holes we have to deal with the case where
we want holes to be reported as warnings to users during compile time but
as errors during runtime. Therefore, we have to call 'maybeAddDeferredBindings'
so that the correct 'Severity' can be computed out of that later on.

-}


-- | Adds deferred bindings (as errors).
-- See Note [Adding deferred bindings].
maybeAddDeferredBindings :: SolverReportErrCtxt
                         -> Hole
                         -> SolverReport
                         -> TcM ()
maybeAddDeferredBindings :: SolverReportErrCtxt -> Hole -> SolverReport -> TcM ()
maybeAddDeferredBindings SolverReportErrCtxt
ctxt Hole
hole SolverReport
report = do
  case Hole -> HoleSort
hole_sort Hole
hole of
    ExprHole (HER IORef EvTerm
ref Type
ref_ty Unique
_) -> do
      -- Only add bindings for holes in expressions
      -- not for holes in partial type signatures
      -- cf. addDeferredBinding
      forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (SolverReportErrCtxt -> Bool
deferringAnyBindings SolverReportErrCtxt
ctxt) forall a b. (a -> b) -> a -> b
$ do
        EvTerm
err_tm <- SolverReportErrCtxt -> CtLoc -> Type -> SolverReport -> TcM EvTerm
mkErrorTerm SolverReportErrCtxt
ctxt (Hole -> CtLoc
hole_loc Hole
hole) Type
ref_ty SolverReport
report
          -- NB: ref_ty, not hole_ty. hole_ty might be rewritten.
          -- See Note [Holes] in GHC.Tc.Types.Constraint
        forall a env. IORef a -> a -> IOEnv env ()
writeMutVar IORef EvTerm
ref EvTerm
err_tm
    HoleSort
_ -> forall (f :: * -> *) a. Applicative f => a -> f a
pure ()

-- We unwrap the SolverReportErrCtxt here, to avoid introducing a loop in module
-- imports
validHoleFits :: SolverReportErrCtxt    -- ^ The context we're in, i.e. the
                                        -- implications and the tidy environment
              -> [ErrorItem]      -- ^ Unsolved simple constraints
              -> Hole             -- ^ The hole
              -> TcM (SolverReportErrCtxt, ValidHoleFits)
                -- ^ We return the new context
                -- with a possibly updated
                -- tidy environment, and
                -- the valid hole fits.
validHoleFits :: SolverReportErrCtxt
-> [ErrorItem] -> Hole -> TcM (SolverReportErrCtxt, ValidHoleFits)
validHoleFits ctxt :: SolverReportErrCtxt
ctxt@(CEC { cec_encl :: SolverReportErrCtxt -> [Implication]
cec_encl = [Implication]
implics
                        , cec_tidy :: SolverReportErrCtxt -> TidyEnv
cec_tidy = TidyEnv
lcl_env}) [ErrorItem]
simps Hole
hole
  = do { (TidyEnv
tidy_env, ValidHoleFits
fits) <- TidyEnv
-> [Implication]
-> [CtEvidence]
-> Hole
-> TcM (TidyEnv, ValidHoleFits)
findValidHoleFits TidyEnv
lcl_env [Implication]
implics (forall a b. (a -> b) -> [a] -> [b]
map ErrorItem -> CtEvidence
mk_wanted [ErrorItem]
simps) Hole
hole
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
ctxt {cec_tidy :: TidyEnv
cec_tidy = TidyEnv
tidy_env}, ValidHoleFits
fits) }
  where
    mk_wanted :: ErrorItem -> CtEvidence
    mk_wanted :: ErrorItem -> CtEvidence
mk_wanted (EI { ei_pred :: ErrorItem -> Type
ei_pred = Type
pred, ei_evdest :: ErrorItem -> Maybe TcEvDest
ei_evdest = Just TcEvDest
dest, ei_loc :: ErrorItem -> CtLoc
ei_loc = CtLoc
loc })
         = CtWanted { ctev_pred :: Type
ctev_pred      = Type
pred
                    , ctev_dest :: TcEvDest
ctev_dest      = TcEvDest
dest
                    , ctev_loc :: CtLoc
ctev_loc       = CtLoc
loc
                    , ctev_rewriters :: RewriterSet
ctev_rewriters = RewriterSet
emptyRewriterSet }
    mk_wanted ErrorItem
item = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"validHoleFits no evdest" (forall a. Outputable a => a -> SDoc
ppr ErrorItem
item)

-- See Note [Constraints include ...]
givenConstraints :: SolverReportErrCtxt -> [(Type, RealSrcSpan)]
givenConstraints :: SolverReportErrCtxt -> [(Type, RealSrcSpan)]
givenConstraints SolverReportErrCtxt
ctxt
  = do { implic :: Implication
implic@Implic{ ic_given :: Implication -> [TcId]
ic_given = [TcId]
given } <- SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt
       ; TcId
constraint <- [TcId]
given
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (TcId -> Type
varType TcId
constraint, TcLclEnv -> RealSrcSpan
tcl_loc (Implication -> TcLclEnv
ic_env Implication
implic)) }

----------------

mkIPErr :: SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
-- What would happen if an item is suppressed because of
-- Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint? Very unclear
-- what's best. Let's not worry about this.
mkIPErr :: SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkIPErr SolverReportErrCtxt
ctxt [ErrorItem]
items
  = do { (SolverReportErrCtxt
ctxt, RelevantBindings
binds_msg, ErrorItem
item1) <- Bool
-> SolverReportErrCtxt
-> ErrorItem
-> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem)
relevantBindings Bool
True SolverReportErrCtxt
ctxt ErrorItem
item1
       ; let msg :: SolverReport
msg = SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important SolverReportErrCtxt
ctxt forall a b. (a -> b) -> a -> b
$ NonEmpty ErrorItem -> TcSolverReportMsg
UnboundImplicitParams (ErrorItem
item1 forall a. a -> [a] -> NonEmpty a
:| [ErrorItem]
others)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ SolverReport
msg forall a. Monoid a => a -> a -> a
`mappend` RelevantBindings -> SolverReport
mk_relevant_bindings RelevantBindings
binds_msg }
  where
    ErrorItem
item1:[ErrorItem]
others = [ErrorItem]
items

----------------

-- | Report a representation-polymorphism error to the user:
-- a type is required to havehave a fixed runtime representation,
-- but doesn't.
--
-- See Note [Reporting representation-polymorphism errors] in GHC.Tc.Types.Origin.
mkFRRErr :: HasDebugCallStack => SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkFRRErr :: HasDebugCallStack =>
SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkFRRErr SolverReportErrCtxt
ctxt [ErrorItem]
items
  = do { -- Process the error items.
       ; (TidyEnv
_tidy_env, [FixedRuntimeRepErrorInfo]
frr_infos) <-
          TidyEnv
-> [FixedRuntimeRepErrorInfo]
-> TcM (TidyEnv, [FixedRuntimeRepErrorInfo])
zonkTidyFRRInfos (SolverReportErrCtxt -> TidyEnv
cec_tidy SolverReportErrCtxt
ctxt) forall a b. (a -> b) -> a -> b
$
            -- Zonk/tidy to show useful variable names.
          forall a. (a -> a -> Ordering) -> [a] -> [a]
nubOrdBy (Type -> Type -> Ordering
nonDetCmpType forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` (FixedRuntimeRepOrigin -> Type
frr_type forall b c a. (b -> c) -> (a -> b) -> a -> c
. FixedRuntimeRepErrorInfo -> FixedRuntimeRepOrigin
frr_info_origin)) forall a b. (a -> b) -> a -> b
$
            -- Remove duplicates: only one representation-polymorphism error per type.
          forall a b. (a -> b) -> [a] -> [b]
map (forall a. HasCallStack => String -> Maybe a -> a
expectJust String
"mkFRRErr" forall b c a. (b -> c) -> (a -> b) -> a -> c
. HasDebugCallStack => ErrorItem -> Maybe FixedRuntimeRepErrorInfo
fixedRuntimeRepOrigin_maybe)
          [ErrorItem]
items
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important SolverReportErrCtxt
ctxt forall a b. (a -> b) -> a -> b
$ [FixedRuntimeRepErrorInfo] -> TcSolverReportMsg
FixedRuntimeRepError [FixedRuntimeRepErrorInfo]
frr_infos }

-- | Whether to report something using the @FixedRuntimeRep@ mechanism.
fixedRuntimeRepOrigin_maybe :: HasDebugCallStack => ErrorItem -> Maybe FixedRuntimeRepErrorInfo
fixedRuntimeRepOrigin_maybe :: HasDebugCallStack => ErrorItem -> Maybe FixedRuntimeRepErrorInfo
fixedRuntimeRepOrigin_maybe ErrorItem
item
  -- An error that arose directly from a representation-polymorphism check.
  | FRROrigin FixedRuntimeRepOrigin
frr_orig <- ErrorItem -> CtOrigin
errorItemOrigin ErrorItem
item
  = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ FRR_Info { frr_info_origin :: FixedRuntimeRepOrigin
frr_info_origin = FixedRuntimeRepOrigin
frr_orig
                    , frr_info_not_concrete :: Maybe (TcId, Type)
frr_info_not_concrete = forall a. Maybe a
Nothing }
  -- Unsolved nominal equalities involving a concrete type variable,
  -- such as @alpha[conc] ~# rr[sk]@ or @beta[conc] ~# RR@ for a
  -- type family application @RR@, are handled by 'mkTyVarEqErr''.
  | Bool
otherwise
  = forall a. Maybe a
Nothing

{-
Note [Constraints include ...]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'givenConstraintsMsg' returns the "Constraints include ..." message enabled by
-fshow-hole-constraints. For example, the following hole:

    foo :: (Eq a, Show a) => a -> String
    foo x = _

would generate the message:

    Constraints include
      Eq a (from foo.hs:1:1-36)
      Show a (from foo.hs:1:1-36)

Constraints are displayed in order from innermost (closest to the hole) to
outermost. There's currently no filtering or elimination of duplicates.

************************************************************************
*                                                                      *
                Equality errors
*                                                                      *
************************************************************************

Note [Inaccessible code]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   data T a where
     T1 :: T a
     T2 :: T Bool

   f :: (a ~ Int) => T a -> Int
   f T1 = 3
   f T2 = 4   -- Unreachable code

Here the second equation is unreachable. The original constraint
(a~Int) from the signature gets rewritten by the pattern-match to
(Bool~Int), so the danger is that we report the error as coming from
the *signature* (#7293).  So, for Given errors we replace the
env (and hence src-loc) on its CtLoc with that from the immediately
enclosing implication.

Note [Error messages for untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#9109)
  data G a where { GBool :: G Bool }
  foo x = case x of GBool -> True

Here we can't solve (t ~ Bool), where t is the untouchable result
meta-var 't', because of the (a ~ Bool) from the pattern match.
So we infer the type
   f :: forall a t. G a -> t
making the meta-var 't' into a skolem.  So when we come to report
the unsolved (t ~ Bool), t won't look like an untouchable meta-var
any more.  So we don't assert that it is.
-}

-- Don't have multiple equality errors from the same location
-- E.g.   (Int,Bool) ~ (Bool,Int)   one error will do!
mkEqErr :: SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkEqErr :: SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkEqErr SolverReportErrCtxt
ctxt [ErrorItem]
items
  | ErrorItem
item:[ErrorItem]
_ <- forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. ErrorItem -> Bool
ei_suppress) [ErrorItem]
items
  = SolverReportErrCtxt -> ErrorItem -> TcM SolverReport
mkEqErr1 SolverReportErrCtxt
ctxt ErrorItem
item

  | ErrorItem
item:[ErrorItem]
_ <- [ErrorItem]
items  -- they're all suppressed. still need an error message
                     -- for -fdefer-type-errors though
  = SolverReportErrCtxt -> ErrorItem -> TcM SolverReport
mkEqErr1 SolverReportErrCtxt
ctxt ErrorItem
item

  | Bool
otherwise
  = forall a. String -> a
panic String
"mkEqErr"  -- guaranteed to have at least one item

mkEqErr1 :: SolverReportErrCtxt -> ErrorItem -> TcM SolverReport
mkEqErr1 :: SolverReportErrCtxt -> ErrorItem -> TcM SolverReport
mkEqErr1 SolverReportErrCtxt
ctxt ErrorItem
item   -- Wanted only
                     -- givens handled in mkGivenErrorReporter
  = do { (SolverReportErrCtxt
ctxt, RelevantBindings
binds_msg, ErrorItem
item) <- Bool
-> SolverReportErrCtxt
-> ErrorItem
-> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem)
relevantBindings Bool
True SolverReportErrCtxt
ctxt ErrorItem
item
       ; GlobalRdrEnv
rdr_env <- TcRn GlobalRdrEnv
getGlobalRdrEnv
       ; FamInstEnvs
fam_envs <- TcM FamInstEnvs
tcGetFamInstEnvs
       ; let mb_coercible_msg :: Maybe TcSolverReportInfo
mb_coercible_msg = case ErrorItem -> EqRel
errorItemEqRel ErrorItem
item of
               EqRel
NomEq  -> forall a. Maybe a
Nothing
               EqRel
ReprEq -> CoercibleMsg -> TcSolverReportInfo
ReportCoercibleMsg forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> GlobalRdrEnv -> FamInstEnvs -> Type -> Type -> Maybe CoercibleMsg
mkCoercibleExplanation GlobalRdrEnv
rdr_env FamInstEnvs
fam_envs Type
ty1 Type
ty2
       ; String -> SDoc -> TcM ()
traceTc String
"mkEqErr1" (forall a. Outputable a => a -> SDoc
ppr ErrorItem
item SDoc -> SDoc -> SDoc
$$ CtOrigin -> SDoc
pprCtOrigin (ErrorItem -> CtOrigin
errorItemOrigin ErrorItem
item))
       ; (TcSolverReportMsg
last_msg :| [TcSolverReportMsg]
prev_msgs, [GhcHint]
hints) <- SolverReportErrCtxt
-> ErrorItem -> Type -> Type -> TcM (AccReportMsgs, [GhcHint])
mkEqErr_help SolverReportErrCtxt
ctxt ErrorItem
item Type
ty1 Type
ty2
       ; let
           report :: SolverReport
report = forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important SolverReportErrCtxt
ctxt) (forall a. [a] -> [a]
reverse [TcSolverReportMsg]
prev_msgs)
                  forall a. Monoid a => a -> a -> a
`mappend` (SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important SolverReportErrCtxt
ctxt forall a b. (a -> b) -> a -> b
$ TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo TcSolverReportMsg
last_msg forall a b. (a -> b) -> a -> b
$ forall a. Maybe a -> [a]
maybeToList Maybe TcSolverReportInfo
mb_coercible_msg)
                  forall a. Monoid a => a -> a -> a
`mappend` (RelevantBindings -> SolverReport
mk_relevant_bindings RelevantBindings
binds_msg)
                  forall a. Monoid a => a -> a -> a
`mappend` ([GhcHint] -> SolverReport
mk_report_hints [GhcHint]
hints)
       ; forall (m :: * -> *) a. Monad m => a -> m a
return SolverReport
report }
  where
    (Type
ty1, Type
ty2) = Type -> (Type, Type)
getEqPredTys (ErrorItem -> Type
errorItemPred ErrorItem
item)

-- | This function tries to reconstruct why a "Coercible ty1 ty2" constraint
-- is left over.
mkCoercibleExplanation :: GlobalRdrEnv -> FamInstEnvs
                       -> TcType -> TcType -> Maybe CoercibleMsg
mkCoercibleExplanation :: GlobalRdrEnv -> FamInstEnvs -> Type -> Type -> Maybe CoercibleMsg
mkCoercibleExplanation GlobalRdrEnv
rdr_env FamInstEnvs
fam_envs Type
ty1 Type
ty2
  | Just (TyCon
tc, [Type]
tys) <- HasCallStack => Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe Type
ty1
  , (TyCon
rep_tc, [Type]
_, TcCoercionN
_) <- FamInstEnvs -> TyCon -> [Type] -> (TyCon, [Type], TcCoercionN)
tcLookupDataFamInst FamInstEnvs
fam_envs TyCon
tc [Type]
tys
  , Just CoercibleMsg
msg <- TyCon -> Maybe CoercibleMsg
coercible_msg_for_tycon TyCon
rep_tc
  = forall a. a -> Maybe a
Just CoercibleMsg
msg
  | Just (TyCon
tc, [Type]
tys) <- HasDebugCallStack => Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
ty2
  , (TyCon
rep_tc, [Type]
_, TcCoercionN
_) <- FamInstEnvs -> TyCon -> [Type] -> (TyCon, [Type], TcCoercionN)
tcLookupDataFamInst FamInstEnvs
fam_envs TyCon
tc [Type]
tys
  , Just CoercibleMsg
msg <- TyCon -> Maybe CoercibleMsg
coercible_msg_for_tycon TyCon
rep_tc
  = forall a. a -> Maybe a
Just CoercibleMsg
msg
  | Just (Type
s1, Type
_) <- Type -> Maybe (Type, Type)
tcSplitAppTy_maybe Type
ty1
  , Just (Type
s2, Type
_) <- Type -> Maybe (Type, Type)
tcSplitAppTy_maybe Type
ty2
  , Type
s1 Type -> Type -> Bool
`eqType` Type
s2
  , Type -> Bool
has_unknown_roles Type
s1
  = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Type -> CoercibleMsg
UnknownRoles Type
s1
  | Bool
otherwise
  = forall a. Maybe a
Nothing
  where
    coercible_msg_for_tycon :: TyCon -> Maybe CoercibleMsg
coercible_msg_for_tycon TyCon
tc
        | TyCon -> Bool
isAbstractTyCon TyCon
tc
        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ TyCon -> CoercibleMsg
TyConIsAbstract TyCon
tc
        | TyCon -> Bool
isNewTyCon TyCon
tc
        , [DataCon
data_con] <- TyCon -> [DataCon]
tyConDataCons TyCon
tc
        , let dc_name :: Name
dc_name = DataCon -> Name
dataConName DataCon
data_con
        , forall a. Maybe a -> Bool
isNothing (GlobalRdrEnv -> Name -> Maybe GlobalRdrElt
lookupGRE_Name GlobalRdrEnv
rdr_env Name
dc_name)
        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ TyCon -> DataCon -> CoercibleMsg
OutOfScopeNewtypeConstructor TyCon
tc DataCon
data_con
        | Bool
otherwise = forall a. Maybe a
Nothing

    has_unknown_roles :: Type -> Bool
has_unknown_roles Type
ty
      | Just (TyCon
tc, [Type]
tys) <- HasCallStack => Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe Type
ty
      = [Type]
tys forall a. [a] -> Int -> Bool
`lengthAtLeast` TyCon -> Int
tyConArity TyCon
tc  -- oversaturated tycon
      | Just (Type
s, Type
_) <- Type -> Maybe (Type, Type)
tcSplitAppTy_maybe Type
ty
      = Type -> Bool
has_unknown_roles Type
s
      | Type -> Bool
isTyVarTy Type
ty
      = Bool
True
      | Bool
otherwise
      = Bool
False

-- | Accumulated messages in reverse order.
type AccReportMsgs = NonEmpty TcSolverReportMsg

mkEqErr_help :: SolverReportErrCtxt
             -> ErrorItem
             -> TcType -> TcType -> TcM (AccReportMsgs, [GhcHint])
mkEqErr_help :: SolverReportErrCtxt
-> ErrorItem -> Type -> Type -> TcM (AccReportMsgs, [GhcHint])
mkEqErr_help SolverReportErrCtxt
ctxt ErrorItem
item Type
ty1 Type
ty2
  | Just (TcId, TcCoercionN)
casted_tv1 <- Type -> Maybe (TcId, TcCoercionN)
tcGetCastedTyVar_maybe Type
ty1
  = SolverReportErrCtxt
-> ErrorItem
-> (TcId, TcCoercionN)
-> Type
-> TcM (AccReportMsgs, [GhcHint])
mkTyVarEqErr SolverReportErrCtxt
ctxt ErrorItem
item (TcId, TcCoercionN)
casted_tv1 Type
ty2
  | Just (TcId, TcCoercionN)
casted_tv2 <- Type -> Maybe (TcId, TcCoercionN)
tcGetCastedTyVar_maybe Type
ty2
  = SolverReportErrCtxt
-> ErrorItem
-> (TcId, TcCoercionN)
-> Type
-> TcM (AccReportMsgs, [GhcHint])
mkTyVarEqErr SolverReportErrCtxt
ctxt ErrorItem
item (TcId, TcCoercionN)
casted_tv2 Type
ty1
  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
-> ErrorItem -> Type -> Type -> TcSolverReportMsg
reportEqErr SolverReportErrCtxt
ctxt ErrorItem
item Type
ty1 Type
ty2 forall a. a -> [a] -> NonEmpty a
:| [], [])

reportEqErr :: SolverReportErrCtxt
            -> ErrorItem
            -> TcType -> TcType -> TcSolverReportMsg
reportEqErr :: SolverReportErrCtxt
-> ErrorItem -> Type -> Type -> TcSolverReportMsg
reportEqErr SolverReportErrCtxt
ctxt ErrorItem
item Type
ty1 Type
ty2
  = TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo TcSolverReportMsg
mismatch [TcSolverReportInfo]
eqInfos
  where
    mismatch :: TcSolverReportMsg
mismatch = Bool
-> SolverReportErrCtxt
-> ErrorItem
-> Type
-> Type
-> TcSolverReportMsg
misMatchOrCND Bool
False SolverReportErrCtxt
ctxt ErrorItem
item Type
ty1 Type
ty2
    eqInfos :: [TcSolverReportInfo]
eqInfos  = Type -> Type -> [TcSolverReportInfo]
eqInfoMsgs Type
ty1 Type
ty2

mkTyVarEqErr :: SolverReportErrCtxt -> ErrorItem
             -> (TcTyVar, TcCoercionN) -> TcType -> TcM (AccReportMsgs, [GhcHint])
-- tv1 and ty2 are already tidied
mkTyVarEqErr :: SolverReportErrCtxt
-> ErrorItem
-> (TcId, TcCoercionN)
-> Type
-> TcM (AccReportMsgs, [GhcHint])
mkTyVarEqErr SolverReportErrCtxt
ctxt ErrorItem
item (TcId, TcCoercionN)
casted_tv1 Type
ty2
  = do { String -> SDoc -> TcM ()
traceTc String
"mkTyVarEqErr" (forall a. Outputable a => a -> SDoc
ppr ErrorItem
item SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr (TcId, TcCoercionN)
casted_tv1 SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr Type
ty2)
       ; SolverReportErrCtxt
-> ErrorItem
-> (TcId, TcCoercionN)
-> Type
-> TcM (AccReportMsgs, [GhcHint])
mkTyVarEqErr' SolverReportErrCtxt
ctxt ErrorItem
item (TcId, TcCoercionN)
casted_tv1 Type
ty2 }

mkTyVarEqErr' :: SolverReportErrCtxt -> ErrorItem
              -> (TcTyVar, TcCoercionN) -> TcType -> TcM (AccReportMsgs, [GhcHint])
mkTyVarEqErr' :: SolverReportErrCtxt
-> ErrorItem
-> (TcId, TcCoercionN)
-> Type
-> TcM (AccReportMsgs, [GhcHint])
mkTyVarEqErr' SolverReportErrCtxt
ctxt ErrorItem
item (TcId
tv1, TcCoercionN
co1) Type
ty2

  -- Is this a representation-polymorphism error, e.g.
  -- alpha[conc] ~# rr[sk] ? If so, handle that first.
  | Just FixedRuntimeRepErrorInfo
frr_info <- Maybe FixedRuntimeRepErrorInfo
mb_concrete_reason
  = do
      (TidyEnv
_, [FixedRuntimeRepErrorInfo]
infos) <- TidyEnv
-> [FixedRuntimeRepErrorInfo]
-> TcM (TidyEnv, [FixedRuntimeRepErrorInfo])
zonkTidyFRRInfos (SolverReportErrCtxt -> TidyEnv
cec_tidy SolverReportErrCtxt
ctxt) [FixedRuntimeRepErrorInfo
frr_info]
      forall (m :: * -> *) a. Monad m => a -> m a
return ([FixedRuntimeRepErrorInfo] -> TcSolverReportMsg
FixedRuntimeRepError [FixedRuntimeRepErrorInfo]
infos forall a. a -> [a] -> NonEmpty a
:| [], [])

  -- Impredicativity is a simple error to understand; try it before
  -- anything more complicated.
  | CheckTyEqResult
check_eq_result CheckTyEqResult -> CheckTyEqProblem -> Bool
`cterHasProblem` CheckTyEqProblem
cteImpredicative
  = do
    [TcSolverReportInfo]
tyvar_eq_info <- TcId -> Type -> TcM [TcSolverReportInfo]
extraTyVarEqInfo TcId
tv1 Type
ty2
    let
        poly_msg :: TcSolverReportMsg
poly_msg = ErrorItem -> TcId -> Type -> TcSolverReportMsg
CannotUnifyWithPolytype ErrorItem
item TcId
tv1 Type
ty2
        poly_msg_with_info :: TcSolverReportMsg
poly_msg_with_info
          | TcId -> Bool
isSkolemTyVar TcId
tv1
          = TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo TcSolverReportMsg
poly_msg [TcSolverReportInfo]
tyvar_eq_info
          | Bool
otherwise
          = TcSolverReportMsg
poly_msg
        -- Unlike the other reports, this discards the old 'report_important'
        -- instead of augmenting it.  This is because the details are not likely
        -- to be helpful since this is just an unimplemented feature.
    forall (m :: * -> *) a. Monad m => a -> m a
return (TcSolverReportMsg
poly_msg_with_info forall a. a -> NonEmpty a -> NonEmpty a
<| TcSolverReportMsg
headline_msg forall a. a -> [a] -> NonEmpty a
:| [], [])

  | TcId -> Bool
isSkolemTyVar TcId
tv1  -- ty2 won't be a meta-tyvar; we would have
                       -- swapped in Solver.Canonical.canEqTyVarHomo
    Bool -> Bool -> Bool
|| TcId -> Bool
isTyVarTyVar TcId
tv1 Bool -> Bool -> Bool
&& Bool -> Bool
not (Type -> Bool
isTyVarTy Type
ty2)
    Bool -> Bool -> Bool
|| ErrorItem -> EqRel
errorItemEqRel ErrorItem
item forall a. Eq a => a -> a -> Bool
== EqRel
ReprEq
     -- The cases below don't really apply to ReprEq (except occurs check)
  = do
    [TcSolverReportInfo]
tv_extra     <- TcId -> Type -> TcM [TcSolverReportInfo]
extraTyVarEqInfo TcId
tv1 Type
ty2
    forall (m :: * -> *) a. Monad m => a -> m a
return (TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo TcSolverReportMsg
headline_msg [TcSolverReportInfo]
tv_extra forall a. a -> [a] -> NonEmpty a
:| [], [GhcHint]
add_sig)

  | CheckTyEqResult -> Bool
cterHasOccursCheck CheckTyEqResult
check_eq_result
    -- We report an "occurs check" even for  a ~ F t a, where F is a type
    -- function; it's not insoluble (because in principle F could reduce)
    -- but we have certainly been unable to solve it
  = let extras2 :: [TcSolverReportInfo]
extras2 = Type -> Type -> [TcSolverReportInfo]
eqInfoMsgs Type
ty1 Type
ty2

        interesting_tyvars :: [TcId]
interesting_tyvars = forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Bool
noFreeVarsOfType forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcId -> Type
tyVarKind) forall a b. (a -> b) -> a -> b
$
                             forall a. (a -> Bool) -> [a] -> [a]
filter TcId -> Bool
isTyVar forall a b. (a -> b) -> a -> b
$
                             FV -> [TcId]
fvVarList forall a b. (a -> b) -> a -> b
$
                             Type -> FV
tyCoFVsOfType Type
ty1 FV -> FV -> FV
`unionFV` Type -> FV
tyCoFVsOfType Type
ty2

        extras3 :: [TcSolverReportInfo]
extras3 = case [TcId]
interesting_tyvars of
          [] -> []
          (TcId
tv : [TcId]
tvs) -> [NonEmpty TcId -> TcSolverReportInfo
OccursCheckInterestingTyVars (TcId
tv forall a. a -> [a] -> NonEmpty a
:| [TcId]
tvs)]

    in forall (m :: * -> *) a. Monad m => a -> m a
return (TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo TcSolverReportMsg
headline_msg ([TcSolverReportInfo]
extras2 forall a. [a] -> [a] -> [a]
++ [TcSolverReportInfo]
extras3) forall a. a -> [a] -> NonEmpty a
:| [], [])

    -- This is wrinkle (4) in Note [Equalities with incompatible kinds] in
    -- GHC.Tc.Solver.Canonical
  | TcCoercionN -> Bool
hasCoercionHoleCo TcCoercionN
co1 Bool -> Bool -> Bool
|| Type -> Bool
hasCoercionHoleTy Type
ty2
  = forall (m :: * -> *) a. Monad m => a -> m a
return (ErrorItem -> TcSolverReportMsg
mkBlockedEqErr ErrorItem
item forall a. a -> [a] -> NonEmpty a
:| [], [])

  -- If the immediately-enclosing implication has 'tv' a skolem, and
  -- we know by now its an InferSkol kind of skolem, then presumably
  -- it started life as a TyVarTv, else it'd have been unified, given
  -- that there's no occurs-check or forall problem
  | (Implication
implic:[Implication]
_) <- SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt
  , Implic { ic_skols :: Implication -> [TcId]
ic_skols = [TcId]
skols } <- Implication
implic
  , TcId
tv1 forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [TcId]
skols
  = do
    [TcSolverReportInfo]
tv_extra     <- TcId -> Type -> TcM [TcSolverReportInfo]
extraTyVarEqInfo TcId
tv1 Type
ty2
    forall (m :: * -> *) a. Monad m => a -> m a
return (TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo TcSolverReportMsg
mismatch_msg [TcSolverReportInfo]
tv_extra forall a. a -> [a] -> NonEmpty a
:| [], [])

  -- Check for skolem escape
  | (Implication
implic:[Implication]
_) <- SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt   -- Get the innermost context
  , Implic { ic_skols :: Implication -> [TcId]
ic_skols = [TcId]
skols } <- Implication
implic
  , let esc_skols :: [TcId]
esc_skols = forall a. (a -> Bool) -> [a] -> [a]
filter (TcId -> TyCoVarSet -> Bool
`elemVarSet` (Type -> TyCoVarSet
tyCoVarsOfType Type
ty2)) [TcId]
skols
  , Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcId]
esc_skols)
  = forall (m :: * -> *) a. Monad m => a -> m a
return (ErrorItem -> Implication -> [TcId] -> TcSolverReportMsg
SkolemEscape ErrorItem
item Implication
implic [TcId]
esc_skols forall a. a -> [a] -> NonEmpty a
:| [TcSolverReportMsg
mismatch_msg], [])

  -- Nastiest case: attempt to unify an untouchable variable
  -- So tv is a meta tyvar (or started that way before we
  -- generalised it).  So presumably it is an *untouchable*
  -- meta tyvar or a TyVarTv, else it'd have been unified
  -- See Note [Error messages for untouchables]
  | (Implication
implic:[Implication]
_) <- SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt   -- Get the innermost context
  , Implic { ic_tclvl :: Implication -> TcLevel
ic_tclvl = TcLevel
lvl } <- Implication
implic
  = forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Bool -> Bool
not (TcLevel -> TcId -> Bool
isTouchableMetaTyVar TcLevel
lvl TcId
tv1))
              (forall a. Outputable a => a -> SDoc
ppr TcId
tv1 SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr TcLevel
lvl) forall a b. (a -> b) -> a -> b
$ do -- See Note [Error messages for untouchables]
    let tclvl_extra :: TcSolverReportMsg
tclvl_extra = TcId -> Implication -> TcSolverReportMsg
UntouchableVariable TcId
tv1 Implication
implic
    [TcSolverReportInfo]
tv_extra     <- TcId -> Type -> TcM [TcSolverReportInfo]
extraTyVarEqInfo TcId
tv1 Type
ty2
    forall (m :: * -> *) a. Monad m => a -> m a
return (TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo TcSolverReportMsg
tclvl_extra [TcSolverReportInfo]
tv_extra forall a. a -> [a] -> NonEmpty a
:| [TcSolverReportMsg
mismatch_msg], [GhcHint]
add_sig)

  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
-> ErrorItem -> Type -> Type -> TcSolverReportMsg
reportEqErr SolverReportErrCtxt
ctxt ErrorItem
item (TcId -> Type
mkTyVarTy TcId
tv1) Type
ty2 forall a. a -> [a] -> NonEmpty a
:| [], [])
        -- This *can* happen (#6123)
        -- Consider an ambiguous top-level constraint (a ~ F a)
        -- Not an occurs check, because F is a type function.
  where
    headline_msg :: TcSolverReportMsg
headline_msg = Bool
-> SolverReportErrCtxt
-> ErrorItem
-> Type
-> Type
-> TcSolverReportMsg
misMatchOrCND Bool
insoluble_occurs_check SolverReportErrCtxt
ctxt ErrorItem
item Type
ty1 Type
ty2
    mismatch_msg :: TcSolverReportMsg
mismatch_msg = ErrorItem -> Type -> Type -> TcSolverReportMsg
mkMismatchMsg ErrorItem
item Type
ty1 Type
ty2
    add_sig :: [GhcHint]
add_sig      = forall a. Maybe a -> [a]
maybeToList forall a b. (a -> b) -> a -> b
$ SolverReportErrCtxt -> Type -> Type -> Maybe GhcHint
suggestAddSig SolverReportErrCtxt
ctxt Type
ty1 Type
ty2

    -- The following doesn't use the cterHasProblem mechanism because
    -- we need to retrieve the ConcreteTvOrigin. Just knowing whether
    -- there is an error is not sufficient. See #21430.
    mb_concrete_reason :: Maybe FixedRuntimeRepErrorInfo
mb_concrete_reason
      | Just ConcreteTvOrigin
frr_orig <- TcId -> Maybe ConcreteTvOrigin
isConcreteTyVar_maybe TcId
tv1
      , Bool -> Bool
not (Type -> Bool
isConcrete Type
ty2)
      = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ ConcreteTvOrigin -> TcId -> Type -> FixedRuntimeRepErrorInfo
frr_reason ConcreteTvOrigin
frr_orig TcId
tv1 Type
ty2
      | Just (TcId
tv2, ConcreteTvOrigin
frr_orig) <- Type -> Maybe (TcId, ConcreteTvOrigin)
isConcreteTyVarTy_maybe Type
ty2
      , Bool -> Bool
not (TcId -> Bool
isConcreteTyVar TcId
tv1)
      = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ ConcreteTvOrigin -> TcId -> Type -> FixedRuntimeRepErrorInfo
frr_reason ConcreteTvOrigin
frr_orig TcId
tv2 Type
ty1
      -- NB: if it's an unsolved equality in which both sides are concrete
      -- (e.g. a concrete type variable on both sides), then it's not a
      -- representation-polymorphism problem.
      | Bool
otherwise
      = forall a. Maybe a
Nothing
    frr_reason :: ConcreteTvOrigin -> TcId -> Type -> FixedRuntimeRepErrorInfo
frr_reason (ConcreteFRR FixedRuntimeRepOrigin
frr_orig) TcId
conc_tv Type
not_conc
      = FRR_Info { frr_info_origin :: FixedRuntimeRepOrigin
frr_info_origin = FixedRuntimeRepOrigin
frr_orig
                 , frr_info_not_concrete :: Maybe (TcId, Type)
frr_info_not_concrete = forall a. a -> Maybe a
Just (TcId
conc_tv, Type
not_conc) }

    ty1 :: Type
ty1 = TcId -> Type
mkTyVarTy TcId
tv1

    check_eq_result :: CheckTyEqResult
check_eq_result = case ErrorItem -> Maybe CtIrredReason
ei_m_reason ErrorItem
item of
      Just (NonCanonicalReason CheckTyEqResult
result) -> CheckTyEqResult
result
      Maybe CtIrredReason
_ -> TcId -> Type -> CheckTyEqResult
checkTyVarEq TcId
tv1 Type
ty2
        -- in T2627b, we report an error for F (F a0) ~ a0. Note that the type
        -- variable is on the right, so we don't get useful info for the CIrredCan,
        -- and have to compute the result of checkTyVarEq here.

    insoluble_occurs_check :: Bool
insoluble_occurs_check = CheckTyEqResult
check_eq_result CheckTyEqResult -> CheckTyEqProblem -> Bool
`cterHasProblem` CheckTyEqProblem
cteInsolubleOccurs

eqInfoMsgs :: TcType -> TcType -> [TcSolverReportInfo]
-- Report (a) ambiguity if either side is a type function application
--            e.g. F a0 ~ Int
--        (b) warning about injectivity if both sides are the same
--            type function application   F a ~ F b
--            See Note [Non-injective type functions]
eqInfoMsgs :: Type -> Type -> [TcSolverReportInfo]
eqInfoMsgs Type
ty1 Type
ty2
  = forall a. [Maybe a] -> [a]
catMaybes [Maybe TcSolverReportInfo
tyfun_msg, Maybe TcSolverReportInfo
ambig_msg]
  where
    mb_fun1 :: Maybe TyCon
mb_fun1 = Type -> Maybe TyCon
isTyFun_maybe Type
ty1
    mb_fun2 :: Maybe TyCon
mb_fun2 = Type -> Maybe TyCon
isTyFun_maybe Type
ty2

      -- if a type isn't headed by a type function, then any ambiguous
      -- variables need not be reported as such. e.g.: F a ~ t0 -> t0, where a is a skolem
    ambig_tkvs1 :: ([TcId], [TcId])
ambig_tkvs1 = forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall a. Monoid a => a
mempty (\TyCon
_ -> Type -> ([TcId], [TcId])
ambigTkvsOfTy Type
ty1) Maybe TyCon
mb_fun1
    ambig_tkvs2 :: ([TcId], [TcId])
ambig_tkvs2 = forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall a. Monoid a => a
mempty (\TyCon
_ -> Type -> ([TcId], [TcId])
ambigTkvsOfTy Type
ty2) Maybe TyCon
mb_fun2

    ambig_tkvs :: ([TcId], [TcId])
ambig_tkvs@([TcId]
ambig_kvs, [TcId]
ambig_tvs) = ([TcId], [TcId])
ambig_tkvs1 forall a. Semigroup a => a -> a -> a
S.<> ([TcId], [TcId])
ambig_tkvs2

    ambig_msg :: Maybe TcSolverReportInfo
ambig_msg | forall a. Maybe a -> Bool
isJust Maybe TyCon
mb_fun1 Bool -> Bool -> Bool
|| forall a. Maybe a -> Bool
isJust Maybe TyCon
mb_fun2
              , Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcId]
ambig_kvs Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcId]
ambig_tvs)
              = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Bool -> ([TcId], [TcId]) -> TcSolverReportInfo
Ambiguity Bool
False ([TcId], [TcId])
ambig_tkvs
              | Bool
otherwise
              = forall a. Maybe a
Nothing

    tyfun_msg :: Maybe TcSolverReportInfo
tyfun_msg | Just TyCon
tc1 <- Maybe TyCon
mb_fun1
              , Just TyCon
tc2 <- Maybe TyCon
mb_fun2
              , TyCon
tc1 forall a. Eq a => a -> a -> Bool
== TyCon
tc2
              , Bool -> Bool
not (TyCon -> Role -> Bool
isInjectiveTyCon TyCon
tc1 Role
Nominal)
              = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ TyCon -> TcSolverReportInfo
NonInjectiveTyFam TyCon
tc1
              | Bool
otherwise
              = forall a. Maybe a
Nothing

misMatchOrCND :: Bool -> SolverReportErrCtxt -> ErrorItem
              -> TcType -> TcType -> TcSolverReportMsg
-- If oriented then ty1 is actual, ty2 is expected
misMatchOrCND :: Bool
-> SolverReportErrCtxt
-> ErrorItem
-> Type
-> Type
-> TcSolverReportMsg
misMatchOrCND Bool
insoluble_occurs_check SolverReportErrCtxt
ctxt ErrorItem
item Type
ty1 Type
ty2
  | Bool
insoluble_occurs_check  -- See Note [Insoluble occurs check]
    Bool -> Bool -> Bool
|| (Type -> Bool
isRigidTy Type
ty1 Bool -> Bool -> Bool
&& Type -> Bool
isRigidTy Type
ty2)
    Bool -> Bool -> Bool
|| (ErrorItem -> CtFlavour
ei_flavour ErrorItem
item forall a. Eq a => a -> a -> Bool
== CtFlavour
Given)
    Bool -> Bool -> Bool
|| forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Implication]
givens
  = -- If the equality is unconditionally insoluble
    -- or there is no context, don't report the context
    ErrorItem -> Type -> Type -> TcSolverReportMsg
mkMismatchMsg ErrorItem
item Type
ty1 Type
ty2

  | Bool
otherwise
  = [Implication]
-> NonEmpty ErrorItem -> Maybe CND_Extra -> TcSolverReportMsg
CouldNotDeduce [Implication]
givens (ErrorItem
item forall a. a -> [a] -> NonEmpty a
:| []) (forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ TypeOrKind -> Type -> Type -> CND_Extra
CND_Extra TypeOrKind
level Type
ty1 Type
ty2)

  where
    level :: TypeOrKind
level   = CtLoc -> Maybe TypeOrKind
ctLocTypeOrKind_maybe (ErrorItem -> CtLoc
errorItemCtLoc ErrorItem
item) forall a. Maybe a -> a -> a
`orElse` TypeOrKind
TypeLevel
    givens :: [Implication]
givens  = [ Implication
given | Implication
given <- SolverReportErrCtxt -> [Implication]
getUserGivens SolverReportErrCtxt
ctxt, Implication -> HasGivenEqs
ic_given_eqs Implication
given forall a. Eq a => a -> a -> Bool
/= HasGivenEqs
NoGivenEqs ]
              -- Keep only UserGivens that have some equalities.
              -- See Note [Suppress redundant givens during error reporting]

-- These are for the "blocked" equalities, as described in TcCanonical
-- Note [Equalities with incompatible kinds], wrinkle (2). There should
-- always be another unsolved wanted around, which will ordinarily suppress
-- this message. But this can still be printed out with -fdefer-type-errors
-- (sigh), so we must produce a message.
mkBlockedEqErr :: ErrorItem -> TcSolverReportMsg
mkBlockedEqErr :: ErrorItem -> TcSolverReportMsg
mkBlockedEqErr ErrorItem
item = ErrorItem -> TcSolverReportMsg
BlockedEquality ErrorItem
item

{-
Note [Suppress redundant givens during error reporting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When GHC is unable to solve a constraint and prints out an error message, it
will print out what given constraints are in scope to provide some context to
the programmer. But we shouldn't print out /every/ given, since some of them
are not terribly helpful to diagnose type errors. Consider this example:

  foo :: Int :~: Int -> a :~: b -> a :~: c
  foo Refl Refl = Refl

When reporting that GHC can't solve (a ~ c), there are two givens in scope:
(Int ~ Int) and (a ~ b). But (Int ~ Int) is trivially soluble (i.e.,
redundant), so it's not terribly useful to report it in an error message.
To accomplish this, we discard any Implications that do not bind any
equalities by filtering the `givens` selected in `misMatchOrCND` (based on
the `ic_given_eqs` field of the Implication). Note that we discard givens
that have no equalities whatsoever, but we want to keep ones with only *local*
equalities, as these may be helpful to the user in understanding what went
wrong.

But this is not enough to avoid all redundant givens! Consider this example,
from #15361:

  goo :: forall (a :: Type) (b :: Type) (c :: Type).
         a :~~: b -> a :~~: c
  goo HRefl = HRefl

Matching on HRefl brings the /single/ given (* ~ *, a ~ b) into scope.
The (* ~ *) part arises due the kinds of (:~~:) being unified. More
importantly, (* ~ *) is redundant, so we'd like not to report it. However,
the Implication (* ~ *, a ~ b) /does/ bind an equality (as reported by its
ic_given_eqs field), so the test above will keep it wholesale.

To refine this given, we apply mkMinimalBySCs on it to extract just the (a ~ b)
part. This works because mkMinimalBySCs eliminates reflexive equalities in
addition to superclasses (see Note [Remove redundant provided dicts]
in GHC.Tc.TyCl.PatSyn).
-}

extraTyVarEqInfo :: TcTyVar -> TcType -> TcM [TcSolverReportInfo]
-- Add on extra info about skolem constants
-- NB: The types themselves are already tidied
extraTyVarEqInfo :: TcId -> Type -> TcM [TcSolverReportInfo]
extraTyVarEqInfo TcId
tv1 Type
ty2
  = (:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TcId -> TcM TcSolverReportInfo
extraTyVarInfo TcId
tv1 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> TcM [TcSolverReportInfo]
ty_extra Type
ty2
  where
    ty_extra :: Type -> TcM [TcSolverReportInfo]
ty_extra Type
ty = case Type -> Maybe (TcId, TcCoercionN)
tcGetCastedTyVar_maybe Type
ty of
                    Just (TcId
tv, TcCoercionN
_) -> (forall a. a -> [a] -> [a]
:[]) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TcId -> TcM TcSolverReportInfo
extraTyVarInfo TcId
tv
                    Maybe (TcId, TcCoercionN)
Nothing      -> forall (m :: * -> *) a. Monad m => a -> m a
return []

extraTyVarInfo :: TcTyVar -> TcM TcSolverReportInfo
extraTyVarInfo :: TcId -> TcM TcSolverReportInfo
extraTyVarInfo TcId
tv = forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (TcId -> Bool
isTyVar TcId
tv) (forall a. Outputable a => a -> SDoc
ppr TcId
tv) forall a b. (a -> b) -> a -> b
$
  case TcId -> TcTyVarDetails
tcTyVarDetails TcId
tv of
    SkolemTv SkolemInfo
skol_info TcLevel
lvl Bool
overlaps -> do
      SkolemInfo
new_skol_info <- SkolemInfo -> TcM SkolemInfo
zonkSkolemInfo SkolemInfo
skol_info
      forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ TcId -> TcSolverReportInfo
TyVarInfo (Name -> Type -> TcTyVarDetails -> TcId
mkTcTyVar (TcId -> Name
tyVarName TcId
tv) (TcId -> Type
tyVarKind TcId
tv) (SkolemInfo -> TcLevel -> Bool -> TcTyVarDetails
SkolemTv SkolemInfo
new_skol_info TcLevel
lvl Bool
overlaps))
    TcTyVarDetails
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ TcId -> TcSolverReportInfo
TyVarInfo TcId
tv


suggestAddSig :: SolverReportErrCtxt -> TcType -> TcType -> Maybe GhcHint
-- See Note [Suggest adding a type signature]
suggestAddSig :: SolverReportErrCtxt -> Type -> Type -> Maybe GhcHint
suggestAddSig SolverReportErrCtxt
ctxt Type
ty1 Type
_ty2
  | Name
bndr : [Name]
bndrs <- [Name]
inferred_bndrs
  = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ AvailableBindings -> GhcHint
SuggestAddTypeSignatures forall a b. (a -> b) -> a -> b
$ NonEmpty Name -> AvailableBindings
NamedBindings (Name
bndr forall a. a -> [a] -> NonEmpty a
:| [Name]
bndrs)
  | Bool
otherwise
  = forall a. Maybe a
Nothing
  where
    inferred_bndrs :: [Name]
inferred_bndrs =
      case Type -> Maybe TcId
tcGetTyVar_maybe Type
ty1 of
        Just TcId
tv | TcId -> Bool
isSkolemTyVar TcId
tv -> [Implication] -> Bool -> TcId -> [Name]
find (SolverReportErrCtxt -> [Implication]
cec_encl SolverReportErrCtxt
ctxt) Bool
False TcId
tv
        Maybe TcId
_                          -> []

    -- 'find' returns the binders of an InferSkol for 'tv',
    -- provided there is an intervening implication with
    -- ic_given_eqs /= NoGivenEqs (i.e. a GADT match)
    find :: [Implication] -> Bool -> TcId -> [Name]
find [] Bool
_ TcId
_ = []
    find (Implication
implic:[Implication]
implics) Bool
seen_eqs TcId
tv
       | TcId
tv forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` Implication -> [TcId]
ic_skols Implication
implic
       , InferSkol [(Name, Type)]
prs <- Implication -> SkolemInfoAnon
ic_info Implication
implic
       , Bool
seen_eqs
       = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst [(Name, Type)]
prs
       | Bool
otherwise
       = [Implication] -> Bool -> TcId -> [Name]
find [Implication]
implics (Bool
seen_eqs Bool -> Bool -> Bool
|| Implication -> HasGivenEqs
ic_given_eqs Implication
implic forall a. Eq a => a -> a -> Bool
/= HasGivenEqs
NoGivenEqs) TcId
tv

--------------------
mkMismatchMsg :: ErrorItem -> Type -> Type -> TcSolverReportMsg
mkMismatchMsg :: ErrorItem -> Type -> Type -> TcSolverReportMsg
mkMismatchMsg ErrorItem
item Type
ty1 Type
ty2 =
  case CtOrigin
orig of
    TypeEqOrigin { Type
uo_actual :: CtOrigin -> Type
uo_actual :: Type
uo_actual, Type
uo_expected :: CtOrigin -> Type
uo_expected :: Type
uo_expected, uo_thing :: CtOrigin -> Maybe TypedThing
uo_thing = Maybe TypedThing
mb_thing } ->
      TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo
        (TypeEqMismatch
          { teq_mismatch_ppr_explicit_kinds :: Bool
teq_mismatch_ppr_explicit_kinds = Bool
ppr_explicit_kinds
          , teq_mismatch_item :: ErrorItem
teq_mismatch_item = ErrorItem
item
          , teq_mismatch_ty1 :: Type
teq_mismatch_ty1  = Type
ty1
          , teq_mismatch_ty2 :: Type
teq_mismatch_ty2  = Type
ty2
          , teq_mismatch_actual :: Type
teq_mismatch_actual   = Type
uo_actual
          , teq_mismatch_expected :: Type
teq_mismatch_expected = Type
uo_expected
          , teq_mismatch_what :: Maybe TypedThing
teq_mismatch_what     = Maybe TypedThing
mb_thing})
        [TcSolverReportInfo]
extras
    KindEqOrigin Type
cty1 Type
cty2 CtOrigin
sub_o Maybe TypeOrKind
mb_sub_t_or_k ->
      TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo (Bool -> ErrorItem -> Type -> Type -> TcSolverReportMsg
Mismatch Bool
False ErrorItem
item Type
ty1 Type
ty2)
        (Type -> Type -> CtOrigin -> Maybe TypeOrKind -> TcSolverReportInfo
WhenMatching Type
cty1 Type
cty2 CtOrigin
sub_o Maybe TypeOrKind
mb_sub_t_or_k forall a. a -> [a] -> [a]
: [TcSolverReportInfo]
extras)
    CtOrigin
_ ->
      TcSolverReportMsg -> [TcSolverReportInfo] -> TcSolverReportMsg
mkTcReportWithInfo
        (Bool -> ErrorItem -> Type -> Type -> TcSolverReportMsg
Mismatch Bool
False ErrorItem
item Type
ty1 Type
ty2)
        [TcSolverReportInfo]
extras
  where
    orig :: CtOrigin
orig = ErrorItem -> CtOrigin
errorItemOrigin ErrorItem
item
    extras :: [TcSolverReportInfo]
extras = Type -> Type -> [TcSolverReportInfo]
sameOccExtras Type
ty2 Type
ty1
    ppr_explicit_kinds :: Bool
ppr_explicit_kinds = Type -> Type -> CtOrigin -> Bool
shouldPprWithExplicitKinds Type
ty1 Type
ty2 CtOrigin
orig

-- | Whether to print explicit kinds (with @-fprint-explicit-kinds@)
-- in an 'SDoc' when a type mismatch occurs to due invisible kind arguments.
--
-- This function first checks to see if the 'CtOrigin' argument is a
-- 'TypeEqOrigin'. If so, it first checks whether the equality is a visible
-- equality; if it's not, definitely print the kinds. Even if the equality is
-- a visible equality, check the expected/actual types to see if the types
-- have equal visible components. If the 'CtOrigin' is
-- not a 'TypeEqOrigin', fall back on the actual mismatched types themselves.
shouldPprWithExplicitKinds :: Type -> Type -> CtOrigin -> Bool
shouldPprWithExplicitKinds :: Type -> Type -> CtOrigin -> Bool
shouldPprWithExplicitKinds Type
_ty1 Type
_ty2 (TypeEqOrigin { uo_actual :: CtOrigin -> Type
uo_actual = Type
act
                                                   , uo_expected :: CtOrigin -> Type
uo_expected = Type
exp
                                                   , uo_visible :: CtOrigin -> Bool
uo_visible = Bool
vis })
  | Bool -> Bool
not Bool
vis   = Bool
True                  -- See tests T15870, T16204c
  | Bool
otherwise = Type -> Type -> Bool
tcEqTypeVis Type
act Type
exp   -- See tests T9171, T9144.
shouldPprWithExplicitKinds Type
ty1 Type
ty2 CtOrigin
_ct
  = Type -> Type -> Bool
tcEqTypeVis Type
ty1 Type
ty2

{- Note [Insoluble occurs check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider [G] a ~ [a],  [W] a ~ [a] (#13674).  The Given is insoluble
so we don't use it for rewriting.  The Wanted is also insoluble, and
we don't solve it from the Given.  It's very confusing to say
    Cannot solve a ~ [a] from given constraints a ~ [a]

And indeed even thinking about the Givens is silly; [W] a ~ [a] is
just as insoluble as Int ~ Bool.

Conclusion: if there's an insoluble occurs check (cteInsolubleOccurs)
then report it directly, not in the "cannot deduce X from Y" form.
This is done in misMatchOrCND (via the insoluble_occurs_check arg)

(NB: there are potentially-soluble ones, like (a ~ F a b), and we don't
want to be as draconian with them.)
-}

sameOccExtras :: TcType -> TcType -> [TcSolverReportInfo]
-- See Note [Disambiguating (X ~ X) errors]
sameOccExtras :: Type -> Type -> [TcSolverReportInfo]
sameOccExtras Type
ty1 Type
ty2
  | Just (TyCon
tc1, [Type]
_) <- HasCallStack => Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe Type
ty1
  , Just (TyCon
tc2, [Type]
_) <- HasCallStack => Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe Type
ty2
  , let n1 :: Name
n1 = TyCon -> Name
tyConName TyCon
tc1
        n2 :: Name
n2 = TyCon -> Name
tyConName TyCon
tc2
        same_occ :: Bool
same_occ = Name -> OccName
nameOccName Name
n1                   forall a. Eq a => a -> a -> Bool
== Name -> OccName
nameOccName Name
n2
        same_pkg :: Bool
same_pkg = forall unit. GenModule unit -> unit
moduleUnit (HasDebugCallStack => Name -> Module
nameModule Name
n1) forall a. Eq a => a -> a -> Bool
== forall unit. GenModule unit -> unit
moduleUnit (HasDebugCallStack => Name -> Module
nameModule Name
n2)
  , Name
n1 forall a. Eq a => a -> a -> Bool
/= Name
n2   -- Different Names
  , Bool
same_occ   -- but same OccName
  = [Bool -> Name -> Name -> TcSolverReportInfo
SameOcc Bool
same_pkg Name
n1 Name
n2]
  | Bool
otherwise
  = []

{- Note [Suggest adding a type signature]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The OutsideIn algorithm rejects GADT programs that don't have a principal
type, and indeed some that do.  Example:
   data T a where
     MkT :: Int -> T Int

   f (MkT n) = n

Does this have type f :: T a -> a, or f :: T a -> Int?
The error that shows up tends to be an attempt to unify an
untouchable type variable.  So suggestAddSig sees if the offending
type variable is bound by an *inferred* signature, and suggests
adding a declared signature instead.

More specifically, we suggest adding a type sig if we have p ~ ty, and
p is a skolem bound by an InferSkol.  Those skolems were created from
unification variables in simplifyInfer.  Why didn't we unify?  It must
have been because of an intervening GADT or existential, making it
untouchable. Either way, a type signature would help.  For GADTs, it
might make it typeable; for existentials the attempt to write a
signature will fail -- or at least will produce a better error message
next time

This initially came up in #8968, concerning pattern synonyms.

Note [Disambiguating (X ~ X) errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #8278

Note [Reporting occurs-check errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given (a ~ [a]), if 'a' is a rigid type variable bound by a user-supplied
type signature, then the best thing is to report that we can't unify
a with [a], because a is a skolem variable.  That avoids the confusing
"occur-check" error message.

But nowadays when inferring the type of a function with no type signature,
even if there are errors inside, we still generalise its signature and
carry on. For example
   f x = x:x
Here we will infer something like
   f :: forall a. a -> [a]
with a deferred error of (a ~ [a]).  So in the deferred unsolved constraint
'a' is now a skolem, but not one bound by the programmer in the context!
Here we really should report an occurs check.

So isUserSkolem distinguishes the two.

Note [Non-injective type functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very confusing to get a message like
     Couldn't match expected type `Depend s'
            against inferred type `Depend s1'
so mkTyFunInfoMsg adds:
       NB: `Depend' is type function, and hence may not be injective

Warn of loopy local equalities that were dropped.


************************************************************************
*                                                                      *
                 Type-class errors
*                                                                      *
************************************************************************
-}

mkDictErr :: HasDebugCallStack => SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkDictErr :: HasDebugCallStack =>
SolverReportErrCtxt -> [ErrorItem] -> TcM SolverReport
mkDictErr SolverReportErrCtxt
ctxt [ErrorItem]
orig_items
  = forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [ErrorItem]
items)) forall a b. (a -> b) -> a -> b
$
    do { InstEnvs
inst_envs <- TcM InstEnvs
tcGetInstEnvs
       ; let min_items :: [ErrorItem]
min_items = [ErrorItem] -> [ErrorItem]
elim_superclasses [ErrorItem]
items
             lookups :: [(ErrorItem, ClsInstLookupResult)]
lookups = forall a b. (a -> b) -> [a] -> [b]
map (InstEnvs -> ErrorItem -> (ErrorItem, ClsInstLookupResult)
lookup_cls_inst InstEnvs
inst_envs) [ErrorItem]
min_items
             ([(ErrorItem, ClsInstLookupResult)]
no_inst_items, [(ErrorItem, ClsInstLookupResult)]
overlap_items) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition (ErrorItem, ClsInstLookupResult) -> Bool
is_no_inst [(ErrorItem, ClsInstLookupResult)]
lookups

       -- Report definite no-instance errors,
       -- or (iff there are none) overlap errors
       -- But we report only one of them (hence 'head') because they all
       -- have the same source-location origin, to try avoid a cascade
       -- of error from one location
       ; TcSolverReportMsg
err <- HasCallStack =>
SolverReportErrCtxt
-> (ErrorItem, ClsInstLookupResult) -> TcM TcSolverReportMsg
mk_dict_err SolverReportErrCtxt
ctxt (forall a. [a] -> a
head ([(ErrorItem, ClsInstLookupResult)]
no_inst_items forall a. [a] -> [a] -> [a]
++ [(ErrorItem, ClsInstLookupResult)]
overlap_items))
       ; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important SolverReportErrCtxt
ctxt TcSolverReportMsg
err }
  where
    filtered_items :: [ErrorItem]
filtered_items = forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. ErrorItem -> Bool
ei_suppress) [ErrorItem]
orig_items
    items :: [ErrorItem]
items | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [ErrorItem]
filtered_items = [ErrorItem]
orig_items  -- all suppressed, but must report
                                              -- something for -fdefer-type-errors
          | Bool
otherwise           = [ErrorItem]
filtered_items  -- common case

    no_givens :: Bool
no_givens = forall (t :: * -> *) a. Foldable t => t a -> Bool
null (SolverReportErrCtxt -> [Implication]
getUserGivens SolverReportErrCtxt
ctxt)

    is_no_inst :: (ErrorItem, ClsInstLookupResult) -> Bool
is_no_inst (ErrorItem
item, ([InstMatch]
matches, PotentialUnifiers
unifiers, [InstMatch]
_))
      =  Bool
no_givens
      Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null [InstMatch]
matches
      Bool -> Bool -> Bool
&& (PotentialUnifiers -> Bool
nullUnifiers PotentialUnifiers
unifiers Bool -> Bool -> Bool
|| forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcId -> Bool
isAmbiguousTyVar) (Type -> [TcId]
tyCoVarsOfTypeList (ErrorItem -> Type
errorItemPred ErrorItem
item)))

    lookup_cls_inst :: InstEnvs -> ErrorItem -> (ErrorItem, ClsInstLookupResult)
lookup_cls_inst InstEnvs
inst_envs ErrorItem
item
      = (ErrorItem
item, Bool -> InstEnvs -> Class -> [Type] -> ClsInstLookupResult
lookupInstEnv Bool
True InstEnvs
inst_envs Class
clas [Type]
tys)
      where
        (Class
clas, [Type]
tys) = HasDebugCallStack => Type -> (Class, [Type])
getClassPredTys (ErrorItem -> Type
errorItemPred ErrorItem
item)


    -- When simplifying [W] Ord (Set a), we need
    --    [W] Eq a, [W] Ord a
    -- but we really only want to report the latter
    elim_superclasses :: [ErrorItem] -> [ErrorItem]
elim_superclasses [ErrorItem]
items = forall a. (a -> Type) -> [a] -> [a]
mkMinimalBySCs ErrorItem -> Type
errorItemPred [ErrorItem]
items

-- Note [mk_dict_err]
-- ~~~~~~~~~~~~~~~~~~~
-- Different dictionary error messages are reported depending on the number of
-- matches and unifiers:
--
--   - No matches, regardless of unifiers: report "No instance for ...".
--   - Two or more matches, regardless of unifiers: report "Overlapping instances for ...",
--     and show the matching and unifying instances.
--   - One match, one or more unifiers: report "Overlapping instances for", show the
--     matching and unifying instances, and say "The choice depends on the instantion of ...,
--     and the result of evaluating ...".
mk_dict_err :: HasCallStack => SolverReportErrCtxt -> (ErrorItem, ClsInstLookupResult)
            -> TcM TcSolverReportMsg
-- Report an overlap error if this class constraint results
-- from an overlap (returning Left clas), otherwise return (Right pred)
mk_dict_err :: HasCallStack =>
SolverReportErrCtxt
-> (ErrorItem, ClsInstLookupResult) -> TcM TcSolverReportMsg
mk_dict_err SolverReportErrCtxt
ctxt (ErrorItem
item, ([InstMatch]
matches, PotentialUnifiers
unifiers, [InstMatch]
unsafe_overlapped))
  | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [InstMatch]
matches  -- No matches but perhaps several unifiers
  = do { (SolverReportErrCtxt
_, RelevantBindings
rel_binds, ErrorItem
item) <- Bool
-> SolverReportErrCtxt
-> ErrorItem
-> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem)
relevantBindings Bool
True SolverReportErrCtxt
ctxt ErrorItem
item
       ; [ClsInst]
candidate_insts <- TcM [ClsInst]
get_candidate_instances
       ; ([ImportError]
imp_errs, [GhcHint]
field_suggestions) <- TcM ([ImportError], [GhcHint])
record_field_suggestions
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (ErrorItem
-> [ClsInst]
-> RelevantBindings
-> [ImportError]
-> [GhcHint]
-> TcSolverReportMsg
cannot_resolve_msg ErrorItem
item [ClsInst]
candidate_insts RelevantBindings
rel_binds [ImportError]
imp_errs [GhcHint]
field_suggestions) }

  | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [InstMatch]
unsafe_overlapped   -- Some matches => overlap errors
  = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ TcSolverReportMsg
overlap_msg

  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ TcSolverReportMsg
safe_haskell_msg
  where
    orig :: CtOrigin
orig          = ErrorItem -> CtOrigin
errorItemOrigin ErrorItem
item
    pred :: Type
pred          = ErrorItem -> Type
errorItemPred ErrorItem
item
    (Class
clas, [Type]
tys)   = HasDebugCallStack => Type -> (Class, [Type])
getClassPredTys Type
pred
    ispecs :: [ClsInst]
ispecs        = [ClsInst
ispec | (ClsInst
ispec, [Maybe Type]
_) <- [InstMatch]
matches]
    unsafe_ispecs :: [ClsInst]
unsafe_ispecs = [ClsInst
ispec | (ClsInst
ispec, [Maybe Type]
_) <- [InstMatch]
unsafe_overlapped]

    get_candidate_instances :: TcM [ClsInst]
    -- See Note [Report candidate instances]
    get_candidate_instances :: TcM [ClsInst]
get_candidate_instances
      | [Type
ty] <- [Type]
tys   -- Only try for single-parameter classes
      = do { InstEnvs
instEnvs <- TcM InstEnvs
tcGetInstEnvs
           ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. (a -> Bool) -> [a] -> [a]
filter (Type -> ClsInst -> Bool
is_candidate_inst Type
ty)
                            (InstEnvs -> Class -> [ClsInst]
classInstances InstEnvs
instEnvs Class
clas)) }
      | Bool
otherwise = forall (m :: * -> *) a. Monad m => a -> m a
return []

    is_candidate_inst :: Type -> ClsInst -> Bool
is_candidate_inst Type
ty ClsInst
inst -- See Note [Report candidate instances]
      | [Type
other_ty] <- ClsInst -> [Type]
is_tys ClsInst
inst
      , Just (TyCon
tc1, [Type]
_) <- HasCallStack => Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe Type
ty
      , Just (TyCon
tc2, [Type]
_) <- HasCallStack => Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe Type
other_ty
      = let n1 :: Name
n1 = TyCon -> Name
tyConName TyCon
tc1
            n2 :: Name
n2 = TyCon -> Name
tyConName TyCon
tc2
            different_names :: Bool
different_names = Name
n1 forall a. Eq a => a -> a -> Bool
/= Name
n2
            same_occ_names :: Bool
same_occ_names = Name -> OccName
nameOccName Name
n1 forall a. Eq a => a -> a -> Bool
== Name -> OccName
nameOccName Name
n2
        in Bool
different_names Bool -> Bool -> Bool
&& Bool
same_occ_names
      | Bool
otherwise = Bool
False

    -- See Note [Out-of-scope fields with -XOverloadedRecordDot]
    record_field_suggestions :: TcM ([ImportError], [GhcHint])
    record_field_suggestions :: TcM ([ImportError], [GhcHint])
record_field_suggestions = forall a b c. (a -> b -> c) -> b -> a -> c
flip (forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. Monad m => a -> m a
return ([], [GhcHint]
noHints)) Maybe OccName
record_field forall a b. (a -> b) -> a -> b
$ \OccName
name ->
       do { GlobalRdrEnv
glb_env <- TcRn GlobalRdrEnv
getGlobalRdrEnv
          ; LocalRdrEnv
lcl_env <- RnM LocalRdrEnv
getLocalRdrEnv
          ; if GlobalRdrEnv -> LocalRdrEnv -> OccName -> Bool
occ_name_in_scope GlobalRdrEnv
glb_env LocalRdrEnv
lcl_env OccName
name
            then forall (m :: * -> *) a. Monad m => a -> m a
return ([], [GhcHint]
noHints)
            else do { DynFlags
dflags   <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
                    ; ImportAvails
imp_info <- TcRn ImportAvails
getImports
                    ; Module
curr_mod <- forall (m :: * -> *). HasModule m => m Module
getModule
                    ; HomePackageTable
hpt      <- forall gbl lcl. TcRnIf gbl lcl HomePackageTable
getHpt
                    ; forall (m :: * -> *) a. Monad m => a -> m a
return (WhatLooking
-> DynFlags
-> HomePackageTable
-> Module
-> GlobalRdrEnv
-> LocalRdrEnv
-> ImportAvails
-> RdrName
-> ([ImportError], [GhcHint])
unknownNameSuggestions WhatLooking
WL_RecField DynFlags
dflags HomePackageTable
hpt Module
curr_mod
                        GlobalRdrEnv
glb_env LocalRdrEnv
emptyLocalRdrEnv ImportAvails
imp_info (OccName -> RdrName
mkRdrUnqual OccName
name)) } }

    occ_name_in_scope :: GlobalRdrEnv -> LocalRdrEnv -> OccName -> Bool
occ_name_in_scope GlobalRdrEnv
glb_env LocalRdrEnv
lcl_env OccName
occ_name = Bool -> Bool
not forall a b. (a -> b) -> a -> b
$
      forall (t :: * -> *) a. Foldable t => t a -> Bool
null (GlobalRdrEnv -> OccName -> [GlobalRdrElt]
lookupGlobalRdrEnv GlobalRdrEnv
glb_env OccName
occ_name) Bool -> Bool -> Bool
&&
      forall a. Maybe a -> Bool
isNothing (LocalRdrEnv -> OccName -> Maybe Name
lookupLocalRdrOcc LocalRdrEnv
lcl_env OccName
occ_name)

    record_field :: Maybe OccName
record_field = case CtOrigin
orig of
      HasFieldOrigin FastString
name -> forall a. a -> Maybe a
Just (FastString -> OccName
mkVarOccFS FastString
name)
      CtOrigin
_                   -> forall a. Maybe a
Nothing

    cannot_resolve_msg :: ErrorItem -> [ClsInst] -> RelevantBindings
                       -> [ImportError] -> [GhcHint] -> TcSolverReportMsg
    cannot_resolve_msg :: ErrorItem
-> [ClsInst]
-> RelevantBindings
-> [ImportError]
-> [GhcHint]
-> TcSolverReportMsg
cannot_resolve_msg ErrorItem
item [ClsInst]
candidate_insts RelevantBindings
binds [ImportError]
imp_errs [GhcHint]
field_suggestions
      = ErrorItem
-> [ClsInst]
-> [ClsInst]
-> [ImportError]
-> [GhcHint]
-> RelevantBindings
-> TcSolverReportMsg
CannotResolveInstance ErrorItem
item (PotentialUnifiers -> [ClsInst]
getPotentialUnifiers PotentialUnifiers
unifiers) [ClsInst]
candidate_insts [ImportError]
imp_errs [GhcHint]
field_suggestions RelevantBindings
binds

    -- Overlap errors.
    overlap_msg, safe_haskell_msg :: TcSolverReportMsg
    -- Normal overlap error
    overlap_msg :: TcSolverReportMsg
overlap_msg
      = forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [InstMatch]
matches)) forall a b. (a -> b) -> a -> b
$ ErrorItem -> [ClsInst] -> [ClsInst] -> TcSolverReportMsg
OverlappingInstances ErrorItem
item [ClsInst]
ispecs (PotentialUnifiers -> [ClsInst]
getPotentialUnifiers PotentialUnifiers
unifiers)

    -- Overlap error because of Safe Haskell (first
    -- match should be the most specific match)
    safe_haskell_msg :: TcSolverReportMsg
safe_haskell_msg
     = forall a. HasCallStack => Bool -> a -> a
assert ([InstMatch]
matches forall a. [a] -> Int -> Bool
`lengthIs` Int
1 Bool -> Bool -> Bool
&& Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [ClsInst]
unsafe_ispecs)) forall a b. (a -> b) -> a -> b
$
       ErrorItem -> [ClsInst] -> [ClsInst] -> TcSolverReportMsg
UnsafeOverlap ErrorItem
item [ClsInst]
ispecs [ClsInst]
unsafe_ispecs

{- Note [Report candidate instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have an unsolved (Num Int), where `Int` is not the Prelude Int,
but comes from some other module, then it may be helpful to point out
that there are some similarly named instances elsewhere.  So we get
something like
    No instance for (Num Int) arising from the literal ‘3’
    There are instances for similar types:
      instance Num GHC.Types.Int -- Defined in ‘GHC.Num’
Discussion in #9611.

Note [Highlighting ambiguous type variables]
~-------------------------------------------
When we encounter ambiguous type variables (i.e. type variables
that remain metavariables after type inference), we need a few more
conditions before we can reason that *ambiguity* prevents constraints
from being solved:
  - We can't have any givens, as encountering a typeclass error
    with given constraints just means we couldn't deduce
    a solution satisfying those constraints and as such couldn't
    bind the type variable to a known type.
  - If we don't have any unifiers, we don't even have potential
    instances from which an ambiguity could arise.
  - Lastly, I don't want to mess with error reporting for
    unknown runtime types so we just fall back to the old message there.
Once these conditions are satisfied, we can safely say that ambiguity prevents
the constraint from being solved.

Note [Out-of-scope fields with -XOverloadedRecordDot]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With -XOverloadedRecordDot, when a field isn't in scope, the error that appears
is produces here, and it says
    No instance for (GHC.Record.HasField "<fieldname>" ...).

Additionally, though, we want to suggest similar field names that are in scope
or could be in scope with different import lists.

However, we can still get an error about a missing HasField instance when a
field is in scope (if the types are wrong), and so it's important that we don't
suggest similar names here if the record field is in scope, either qualified or
unqualified, since qualification doesn't matter for -XOverloadedRecordDot.

Example:

    import Data.Monoid (Alt(..))

    foo = undefined.getAll

results in

     No instance for (GHC.Records.HasField "getAll" r0 a0)
        arising from selecting the field ‘getAll’
      Perhaps you meant ‘getAlt’ (imported from Data.Monoid)
      Perhaps you want to add ‘getAll’ to the import list
      in the import of ‘Data.Monoid’
-}

{-
Note [Kind arguments in error messages]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It can be terribly confusing to get an error message like (#9171)

    Couldn't match expected type ‘GetParam Base (GetParam Base Int)’
                with actual type ‘GetParam Base (GetParam Base Int)’

The reason may be that the kinds don't match up.  Typically you'll get
more useful information, but not when it's as a result of ambiguity.

To mitigate this, GHC attempts to enable the -fprint-explicit-kinds flag
whenever any error message arises due to a kind mismatch. This means that
the above error message would instead be displayed as:

    Couldn't match expected type
                  ‘GetParam @* @k2 @* Base (GetParam @* @* @k2 Base Int)’
                with actual type
                  ‘GetParam @* @k20 @* Base (GetParam @* @* @k20 Base Int)’

Which makes it clearer that the culprit is the mismatch between `k2` and `k20`.
-}

-----------------------
-- relevantBindings looks at the value environment and finds values whose
-- types mention any of the offending type variables.  It has to be
-- careful to zonk the Id's type first, so it has to be in the monad.
-- We must be careful to pass it a zonked type variable, too.
--
-- We always remove closed top-level bindings, though,
-- since they are never relevant (cf #8233)

relevantBindings :: Bool  -- True <=> filter by tyvar; False <=> no filtering
                          -- See #8191
                 -> SolverReportErrCtxt -> ErrorItem
                 -> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem)
-- Also returns the zonked and tidied CtOrigin of the constraint
relevantBindings :: Bool
-> SolverReportErrCtxt
-> ErrorItem
-> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem)
relevantBindings Bool
want_filtering SolverReportErrCtxt
ctxt ErrorItem
item
  = do { String -> SDoc -> TcM ()
traceTc String
"relevantBindings" (forall a. Outputable a => a -> SDoc
ppr ErrorItem
item)
       ; (TidyEnv
env1, CtOrigin
tidy_orig) <- TidyEnv -> CtOrigin -> TcM (TidyEnv, CtOrigin)
zonkTidyOrigin (SolverReportErrCtxt -> TidyEnv
cec_tidy SolverReportErrCtxt
ctxt) (CtLoc -> CtOrigin
ctLocOrigin CtLoc
loc)

             -- For *kind* errors, report the relevant bindings of the
             -- enclosing *type* equality, because that's more useful for the programmer
       ; let extra_tvs :: TyCoVarSet
extra_tvs = case CtOrigin
tidy_orig of
                             KindEqOrigin Type
t1 Type
t2 CtOrigin
_ Maybe TypeOrKind
_ -> [Type] -> TyCoVarSet
tyCoVarsOfTypes [Type
t1,Type
t2]
                             CtOrigin
_                      -> TyCoVarSet
emptyVarSet
             ct_fvs :: TyCoVarSet
ct_fvs = Type -> TyCoVarSet
tyCoVarsOfType (ErrorItem -> Type
errorItemPred ErrorItem
item) TyCoVarSet -> TyCoVarSet -> TyCoVarSet
`unionVarSet` TyCoVarSet
extra_tvs

             -- Put a zonked, tidied CtOrigin into the ErrorItem
             loc' :: CtLoc
loc'   = CtLoc -> CtOrigin -> CtLoc
setCtLocOrigin CtLoc
loc CtOrigin
tidy_orig
             item' :: ErrorItem
item'  = ErrorItem
item { ei_loc :: CtLoc
ei_loc = CtLoc
loc' }

       ; (TidyEnv
env2, NameEnv Type
lcl_name_cache) <- TidyEnv -> [TcLclEnv] -> TcM (TidyEnv, NameEnv Type)
zonkTidyTcLclEnvs TidyEnv
env1 [TcLclEnv
lcl_env]

       ; RelevantBindings
relev_bds <- Bool
-> TcLclEnv -> NameEnv Type -> TyCoVarSet -> TcM RelevantBindings
relevant_bindings Bool
want_filtering TcLclEnv
lcl_env NameEnv Type
lcl_name_cache TyCoVarSet
ct_fvs
       ; let ctxt' :: SolverReportErrCtxt
ctxt'  = SolverReportErrCtxt
ctxt { cec_tidy :: TidyEnv
cec_tidy = TidyEnv
env2 }
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (SolverReportErrCtxt
ctxt', RelevantBindings
relev_bds, ErrorItem
item') }
  where
    loc :: CtLoc
loc     = ErrorItem -> CtLoc
errorItemCtLoc ErrorItem
item
    lcl_env :: TcLclEnv
lcl_env = CtLoc -> TcLclEnv
ctLocEnv CtLoc
loc

-- slightly more general version, to work also with holes
relevant_bindings :: Bool
                  -> TcLclEnv
                  -> NameEnv Type -- Cache of already zonked and tidied types
                  -> TyCoVarSet
                  -> TcM RelevantBindings
relevant_bindings :: Bool
-> TcLclEnv -> NameEnv Type -> TyCoVarSet -> TcM RelevantBindings
relevant_bindings Bool
want_filtering TcLclEnv
lcl_env NameEnv Type
lcl_name_env TyCoVarSet
ct_tvs
  = do { DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; String -> SDoc -> TcM ()
traceTc String
"relevant_bindings" forall a b. (a -> b) -> a -> b
$
           [SDoc] -> SDoc
vcat [ forall a. Outputable a => a -> SDoc
ppr TyCoVarSet
ct_tvs
                , forall a. (a -> SDoc) -> [a] -> SDoc
pprWithCommas forall a. a -> a
id [ forall a. Outputable a => a -> SDoc
ppr TcId
id SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (TcId -> Type
idType TcId
id)
                                   | TcIdBndr TcId
id TopLevelFlag
_ <- TcLclEnv -> TcBinderStack
tcl_bndrs TcLclEnv
lcl_env ]
                , forall a. (a -> SDoc) -> [a] -> SDoc
pprWithCommas forall a. a -> a
id
                    [ forall a. Outputable a => a -> SDoc
ppr Name
id | TcIdBndr_ExpType Name
id ExpType
_ TopLevelFlag
_ <- TcLclEnv -> TcBinderStack
tcl_bndrs TcLclEnv
lcl_env ] ]

       ; DynFlags
-> Maybe Int
-> TyCoVarSet
-> RelevantBindings
-> TcBinderStack
-> TcM RelevantBindings
go DynFlags
dflags (DynFlags -> Maybe Int
maxRelevantBinds DynFlags
dflags)
                    TyCoVarSet
emptyVarSet ([(Name, Type)] -> Bool -> RelevantBindings
RelevantBindings [] Bool
False)
                    (forall a. HasOccName a => [a] -> [a]
removeBindingShadowing forall a b. (a -> b) -> a -> b
$ TcLclEnv -> TcBinderStack
tcl_bndrs TcLclEnv
lcl_env)
         -- tcl_bndrs has the innermost bindings first,
         -- which are probably the most relevant ones
  }
  where
    run_out :: Maybe Int -> Bool
    run_out :: Maybe Int -> Bool
run_out Maybe Int
Nothing = Bool
False
    run_out (Just Int
n) = Int
n forall a. Ord a => a -> a -> Bool
<= Int
0

    dec_max :: Maybe Int -> Maybe Int
    dec_max :: Maybe Int -> Maybe Int
dec_max = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\Int
n -> Int
n forall a. Num a => a -> a -> a
- Int
1)


    go :: DynFlags -> Maybe Int -> TcTyVarSet
       -> RelevantBindings
       -> [TcBinder]
       -> TcM RelevantBindings
    go :: DynFlags
-> Maybe Int
-> TyCoVarSet
-> RelevantBindings
-> TcBinderStack
-> TcM RelevantBindings
go DynFlags
_ Maybe Int
_ TyCoVarSet
_ (RelevantBindings [(Name, Type)]
bds Bool
discards) []
      = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ [(Name, Type)] -> Bool -> RelevantBindings
RelevantBindings (forall a. [a] -> [a]
reverse [(Name, Type)]
bds) Bool
discards
    go DynFlags
dflags Maybe Int
n_left TyCoVarSet
tvs_seen rels :: RelevantBindings
rels@(RelevantBindings [(Name, Type)]
bds Bool
discards) (TcBinder
tc_bndr : TcBinderStack
tc_bndrs)
      = case TcBinder
tc_bndr of
          TcTvBndr {} -> TcM RelevantBindings
discard_it
          TcIdBndr TcId
id TopLevelFlag
top_lvl -> Name -> TopLevelFlag -> TcM RelevantBindings
go2 (TcId -> Name
idName TcId
id) TopLevelFlag
top_lvl
          TcIdBndr_ExpType Name
name ExpType
et TopLevelFlag
top_lvl ->
            do { Maybe Type
mb_ty <- ExpType -> TcM (Maybe Type)
readExpType_maybe ExpType
et
                   -- et really should be filled in by now. But there's a chance
                   -- it hasn't, if, say, we're reporting a kind error en route to
                   -- checking a term. See test indexed-types/should_fail/T8129
                   -- Or we are reporting errors from the ambiguity check on
                   -- a local type signature
               ; case Maybe Type
mb_ty of
                   Just Type
_ty -> Name -> TopLevelFlag -> TcM RelevantBindings
go2 Name
name TopLevelFlag
top_lvl
                   Maybe Type
Nothing -> TcM RelevantBindings
discard_it  -- No info; discard
               }
      where
        discard_it :: TcM RelevantBindings
discard_it = DynFlags
-> Maybe Int
-> TyCoVarSet
-> RelevantBindings
-> TcBinderStack
-> TcM RelevantBindings
go DynFlags
dflags Maybe Int
n_left TyCoVarSet
tvs_seen RelevantBindings
rels TcBinderStack
tc_bndrs
        go2 :: Name -> TopLevelFlag -> TcM RelevantBindings
go2 Name
id_name TopLevelFlag
top_lvl
          = do { let tidy_ty :: Type
tidy_ty = case forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv NameEnv Type
lcl_name_env Name
id_name of
                                  Just Type
tty -> Type
tty
                                  Maybe Type
Nothing -> forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"relevant_bindings" (forall a. Outputable a => a -> SDoc
ppr Name
id_name)
               ; String -> SDoc -> TcM ()
traceTc String
"relevantBindings 1" (forall a. Outputable a => a -> SDoc
ppr Name
id_name SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
tidy_ty)
               ; let id_tvs :: TyCoVarSet
id_tvs = Type -> TyCoVarSet
tyCoVarsOfType Type
tidy_ty
                     bd :: (Name, Type)
bd = (Name
id_name, Type
tidy_ty)
                     new_seen :: TyCoVarSet
new_seen = TyCoVarSet
tvs_seen TyCoVarSet -> TyCoVarSet -> TyCoVarSet
`unionVarSet` TyCoVarSet
id_tvs

               ; if (Bool
want_filtering Bool -> Bool -> Bool
&& Bool -> Bool
not (DynFlags -> Bool
hasPprDebug DynFlags
dflags)
                                    Bool -> Bool -> Bool
&& TyCoVarSet
id_tvs TyCoVarSet -> TyCoVarSet -> Bool
`disjointVarSet` TyCoVarSet
ct_tvs)
                          -- We want to filter out this binding anyway
                          -- so discard it silently
                 then TcM RelevantBindings
discard_it

                 else if TopLevelFlag -> Bool
isTopLevel TopLevelFlag
top_lvl Bool -> Bool -> Bool
&& Bool -> Bool
not (forall a. Maybe a -> Bool
isNothing Maybe Int
n_left)
                          -- It's a top-level binding and we have not specified
                          -- -fno-max-relevant-bindings, so discard it silently
                 then TcM RelevantBindings
discard_it

                 else if Maybe Int -> Bool
run_out Maybe Int
n_left Bool -> Bool -> Bool
&& TyCoVarSet
id_tvs TyCoVarSet -> TyCoVarSet -> Bool
`subVarSet` TyCoVarSet
tvs_seen
                          -- We've run out of n_left fuel and this binding only
                          -- mentions already-seen type variables, so discard it
                 then DynFlags
-> Maybe Int
-> TyCoVarSet
-> RelevantBindings
-> TcBinderStack
-> TcM RelevantBindings
go DynFlags
dflags Maybe Int
n_left TyCoVarSet
tvs_seen ([(Name, Type)] -> Bool -> RelevantBindings
RelevantBindings [(Name, Type)]
bds Bool
True) -- Record that we have now discarded something
                         TcBinderStack
tc_bndrs

                          -- Keep this binding, decrement fuel
                 else DynFlags
-> Maybe Int
-> TyCoVarSet
-> RelevantBindings
-> TcBinderStack
-> TcM RelevantBindings
go DynFlags
dflags (Maybe Int -> Maybe Int
dec_max Maybe Int
n_left) TyCoVarSet
new_seen
                         ([(Name, Type)] -> Bool -> RelevantBindings
RelevantBindings ((Name, Type)
bdforall a. a -> [a] -> [a]
:[(Name, Type)]
bds) Bool
discards) TcBinderStack
tc_bndrs }

-----------------------
warnDefaulting :: TcTyVar -> [Ct] -> Type -> TcM ()
warnDefaulting :: TcId -> [Ct] -> Type -> TcM ()
warnDefaulting TcId
_ [] Type
_
  = forall a. String -> a
panic String
"warnDefaulting: empty Wanteds"
warnDefaulting TcId
the_tv wanteds :: [Ct]
wanteds@(Ct
ct:[Ct]
_) Type
default_ty
  = do { Bool
warn_default <- forall gbl lcl. WarningFlag -> TcRnIf gbl lcl Bool
woptM WarningFlag
Opt_WarnTypeDefaults
       ; TidyEnv
env0 <- TcM TidyEnv
tcInitTidyEnv
            -- don't want to report all the superclass constraints, which
            -- add unhelpful clutter
       ; let filtered :: [Ct]
filtered = forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. CtOrigin -> Bool
isWantedSuperclassOrigin forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ct -> CtOrigin
ctOrigin) [Ct]
wanteds
             tidy_env :: TidyEnv
tidy_env = TidyEnv -> [TcId] -> TidyEnv
tidyFreeTyCoVars TidyEnv
env0 forall a b. (a -> b) -> a -> b
$
                        Cts -> [TcId]
tyCoVarsOfCtsList (forall a. [a] -> Bag a
listToBag [Ct]
filtered)
             tidy_wanteds :: [Ct]
tidy_wanteds = forall a b. (a -> b) -> [a] -> [b]
map (TidyEnv -> Ct -> Ct
tidyCt TidyEnv
tidy_env) [Ct]
filtered
             tidy_tv :: Maybe TcId
tidy_tv = forall a. VarEnv a -> TcId -> Maybe a
lookupVarEnv (forall a b. (a, b) -> b
snd TidyEnv
tidy_env) TcId
the_tv
             diag :: TcRnMessage
diag = [Ct] -> Maybe TcId -> Type -> TcRnMessage
TcRnWarnDefaulting [Ct]
tidy_wanteds Maybe TcId
tidy_tv Type
default_ty
             loc :: CtLoc
loc = Ct -> CtLoc
ctLoc Ct
ct
       ; forall a. CtLoc -> TcM a -> TcM a
setCtLocM CtLoc
loc forall a b. (a -> b) -> a -> b
$ Bool -> TcRnMessage -> TcM ()
diagnosticTc Bool
warn_default TcRnMessage
diag }

{-
Note [Runtime skolems]
~~~~~~~~~~~~~~~~~~~~~~
We want to give a reasonably helpful error message for ambiguity
arising from *runtime* skolems in the debugger.  These
are created by in GHC.Runtime.Heap.Inspect.zonkRTTIType.
-}

{-**********************************************************************
*                                                                      *
                      GHC API helper functions
*                                                                      *
**********************************************************************-}

-- | If the 'TcSolverReportMsg' is a type mismatch between
-- an actual and an expected type, return the actual and expected types
-- (in that order).
--
-- Prefer using this over manually inspecting the 'TcSolverReportMsg' datatype
-- if you just want this information, as the datatype itself is subject to change
-- across GHC versions.
solverReportMsg_ExpectedActuals :: TcSolverReportMsg -> [(Type, Type)]
solverReportMsg_ExpectedActuals :: TcSolverReportMsg -> [(Type, Type)]
solverReportMsg_ExpectedActuals
  = \case
    TcReportWithInfo TcSolverReportMsg
msg NonEmpty TcSolverReportInfo
infos ->
      TcSolverReportMsg -> [(Type, Type)]
solverReportMsg_ExpectedActuals TcSolverReportMsg
msg
      forall a. [a] -> [a] -> [a]
++ (TcSolverReportInfo -> [(Type, Type)]
solverReportInfo_ExpectedActuals forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (t :: * -> *) a. Foldable t => t a -> [a]
toList NonEmpty TcSolverReportInfo
infos)
    Mismatch { mismatch_ty1 :: TcSolverReportMsg -> Type
mismatch_ty1 = Type
exp, mismatch_ty2 :: TcSolverReportMsg -> Type
mismatch_ty2 = Type
act } ->
      [(Type
exp, Type
act)]
    KindMismatch { kmismatch_expected :: TcSolverReportMsg -> Type
kmismatch_expected = Type
exp, kmismatch_actual :: TcSolverReportMsg -> Type
kmismatch_actual = Type
act } ->
      [(Type
exp, Type
act)]
    TypeEqMismatch { teq_mismatch_expected :: TcSolverReportMsg -> Type
teq_mismatch_expected = Type
exp, teq_mismatch_actual :: TcSolverReportMsg -> Type
teq_mismatch_actual = Type
act } ->
      [(Type
exp,Type
act)]
    TcSolverReportMsg
_ -> []

-- | Retrieves all @"expected"/"actual"@ messages from a 'TcSolverReportInfo'.
--
-- Prefer using this over inspecting the 'TcSolverReportInfo' datatype if
-- you just need this information, as the datatype itself is subject to change
-- across GHC versions.
solverReportInfo_ExpectedActuals :: TcSolverReportInfo -> [(Type, Type)]
solverReportInfo_ExpectedActuals :: TcSolverReportInfo -> [(Type, Type)]
solverReportInfo_ExpectedActuals
  = \case
    ExpectedActual { ea_expected :: TcSolverReportInfo -> Type
ea_expected = Type
exp, ea_actual :: TcSolverReportInfo -> Type
ea_actual = Type
act } ->
      [(Type
exp, Type
act)]
    ExpectedActualAfterTySynExpansion
      { ea_expanded_expected :: TcSolverReportInfo -> Type
ea_expanded_expected = Type
exp, ea_expanded_actual :: TcSolverReportInfo -> Type
ea_expanded_actual = Type
act } ->
      [(Type
exp, Type
act)]
    TcSolverReportInfo
_ -> []