{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE RecursiveDo #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.Tc.Utils.Unify (
tcWrapResult, tcWrapResultO, tcWrapResultMono,
tcTopSkolemise, tcSkolemiseScoped, tcSkolemiseExpType,
tcSubType, tcSubTypeNC, tcSubTypeSigma, tcSubTypePat,
tcSubTypeAmbiguity, tcSubMult,
checkConstraints, checkTvConstraints,
buildImplicationFor, buildTvImplication, emitResidualTvConstraint,
unifyType, unifyKind, unifyExpectedType,
uType, promoteTcType,
swapOverTyVars, startSolvingByUnification,
tcInfer,
matchExpectedListTy,
matchExpectedTyConApp,
matchExpectedAppTy,
matchExpectedFunTys,
matchExpectedFunKind,
matchActualFunTySigma, matchActualFunTysRho,
checkTyVarEq, checkTyFamEq, checkTypeEq
) where
import GHC.Prelude
import GHC.Hs
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr( debugPprType )
import GHC.Tc.Utils.Concrete ( hasFixedRuntimeRep, makeTypeConcrete, hasFixedRuntimeRep_syntactic )
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.Instantiate
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.TcType
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.Multiplicity
import qualified GHC.LanguageExtensions as LangExt
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.Constraint
import GHC.Tc.Types.Origin
import GHC.Core.TyCon
import GHC.Builtin.Types
import GHC.Types.Name( Name, isSystemName )
import GHC.Types.Var as Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Error
import GHC.Driver.Session
import GHC.Types.Basic
import GHC.Data.Bag
import GHC.Data.FastString( fsLit )
import GHC.Utils.Misc
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Exts ( inline )
import Control.Monad
import qualified Data.Semigroup as S ( (<>) )
matchActualFunTySigma
:: ExpectedFunTyOrigin
-> Maybe TypedThing
-> (Arity, [Scaled TcSigmaType])
-> TcRhoType
-> TcM (HsWrapper, Scaled TcSigmaTypeFRR, TcSigmaType)
matchActualFunTySigma :: ExpectedFunTyOrigin
-> Maybe TypedThing
-> (Int, [Scaled Type])
-> Type
-> TcM (HsWrapper, Scaled Type, Type)
matchActualFunTySigma ExpectedFunTyOrigin
herald Maybe TypedThing
mb_thing (Int, [Scaled Type])
err_info Type
fun_ty
= forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Type -> Bool
isRhoTy Type
fun_ty) (forall a. Outputable a => a -> SDoc
ppr Type
fun_ty) forall a b. (a -> b) -> a -> b
$
Type -> TcM (HsWrapper, Scaled Type, Type)
go Type
fun_ty
where
go :: TcRhoType
-> TcM (HsWrapper, Scaled TcSigmaTypeFRR, TcSigmaType)
go :: Type -> TcM (HsWrapper, Scaled Type, Type)
go Type
ty | Just Type
ty' <- Type -> Maybe Type
tcView Type
ty = Type -> TcM (HsWrapper, Scaled Type, Type)
go Type
ty'
go (FunTy { ft_af :: Type -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_mult :: Type -> Type
ft_mult = Type
w, ft_arg :: Type -> Type
ft_arg = Type
arg_ty, ft_res :: Type -> Type
ft_res = Type
res_ty })
= forall a. HasCallStack => Bool -> a -> a
assert (AnonArgFlag
af forall a. Eq a => a -> a -> Bool
== AnonArgFlag
VisArg) forall a b. (a -> b) -> a -> b
$
do { HasDebugCallStack => FixedRuntimeRepContext -> Type -> TcM ()
hasFixedRuntimeRep_syntactic (ExpectedFunTyOrigin -> Int -> FixedRuntimeRepContext
FRRExpectedFunTy ExpectedFunTyOrigin
herald Int
1) Type
arg_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, forall a. Type -> a -> Scaled a
Scaled Type
w Type
arg_ty, Type
res_ty) }
go ty :: Type
ty@(TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect Type
ty' -> Type -> TcM (HsWrapper, Scaled Type, Type)
go Type
ty'
MetaDetails
Flexi -> Type -> TcM (HsWrapper, Scaled Type, Type)
defer Type
ty }
go Type
ty = forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM (Type -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt Type
ty) (Type -> TcM (HsWrapper, Scaled Type, Type)
defer Type
ty)
defer :: Type -> TcM (HsWrapper, Scaled Type, Type)
defer Type
fun_ty
= do { Type
arg_ty <- TcM Type
newOpenFlexiTyVarTy
; Type
res_ty <- TcM Type
newOpenFlexiTyVarTy
; Type
mult <- Type -> TcM Type
newFlexiTyVarTy Type
multiplicityTy
; let unif_fun_ty :: Type
unif_fun_ty = Type -> Type -> Type -> Type
mkVisFunTy Type
mult Type
arg_ty Type
res_ty
; Coercion
co <- Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
mb_thing Type
fun_ty Type
unif_fun_ty
; HasDebugCallStack => FixedRuntimeRepContext -> Type -> TcM ()
hasFixedRuntimeRep_syntactic (ExpectedFunTyOrigin -> Int -> FixedRuntimeRepContext
FRRExpectedFunTy ExpectedFunTyOrigin
herald Int
1) Type
arg_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co, forall a. Type -> a -> Scaled a
Scaled Type
mult Type
arg_ty, Type
res_ty) }
mk_ctxt :: TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt :: Type -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt Type
res_ty TidyEnv
env = TidyEnv
-> ExpectedFunTyOrigin
-> [Scaled Type]
-> Type
-> Int
-> TcM (TidyEnv, SDoc)
mkFunTysMsg TidyEnv
env ExpectedFunTyOrigin
herald (forall a. [a] -> [a]
reverse [Scaled Type]
arg_tys_so_far)
Type
res_ty Int
n_val_args_in_call
(Int
n_val_args_in_call, [Scaled Type]
arg_tys_so_far) = (Int, [Scaled Type])
err_info
matchActualFunTysRho :: ExpectedFunTyOrigin
-> CtOrigin
-> Maybe TypedThing
-> Arity
-> TcSigmaType
-> TcM (HsWrapper, [Scaled TcSigmaTypeFRR], TcRhoType)
matchActualFunTysRho :: ExpectedFunTyOrigin
-> CtOrigin
-> Maybe TypedThing
-> Int
-> Type
-> TcM (HsWrapper, [Scaled Type], Type)
matchActualFunTysRho ExpectedFunTyOrigin
herald CtOrigin
ct_orig Maybe TypedThing
mb_thing Int
n_val_args_wanted Type
fun_ty
= Int
-> [Scaled Type] -> Type -> TcM (HsWrapper, [Scaled Type], Type)
go Int
n_val_args_wanted [] Type
fun_ty
where
go :: Int
-> [Scaled Type] -> Type -> TcM (HsWrapper, [Scaled Type], Type)
go Int
n [Scaled Type]
so_far Type
fun_ty
| Bool -> Bool
not (Type -> Bool
isRhoTy Type
fun_ty)
= do { (HsWrapper
wrap1, Type
rho) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
topInstantiate CtOrigin
ct_orig Type
fun_ty
; (HsWrapper
wrap2, [Scaled Type]
arg_tys, Type
res_ty) <- Int
-> [Scaled Type] -> Type -> TcM (HsWrapper, [Scaled Type], Type)
go Int
n [Scaled Type]
so_far Type
rho
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap1, [Scaled Type]
arg_tys, Type
res_ty) }
go Int
0 [Scaled Type]
_ Type
fun_ty = forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, [], Type
fun_ty)
go Int
n [Scaled Type]
so_far Type
fun_ty
= do { (HsWrapper
wrap_fun1, Scaled Type
arg_ty1, Type
res_ty1) <- ExpectedFunTyOrigin
-> Maybe TypedThing
-> (Int, [Scaled Type])
-> Type
-> TcM (HsWrapper, Scaled Type, Type)
matchActualFunTySigma
ExpectedFunTyOrigin
herald Maybe TypedThing
mb_thing
(Int
n_val_args_wanted, [Scaled Type]
so_far)
Type
fun_ty
; (HsWrapper
wrap_res, [Scaled Type]
arg_tys, Type
res_ty) <- Int
-> [Scaled Type] -> Type -> TcM (HsWrapper, [Scaled Type], Type)
go (Int
nforall a. Num a => a -> a -> a
-Int
1) (Scaled Type
arg_ty1forall a. a -> [a] -> [a]
:[Scaled Type]
so_far) Type
res_ty1
; let wrap_fun2 :: HsWrapper
wrap_fun2 = HsWrapper -> HsWrapper -> Scaled Type -> Type -> HsWrapper
mkWpFun HsWrapper
idHsWrapper HsWrapper
wrap_res Scaled Type
arg_ty1 Type
res_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap_fun2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap_fun1, Scaled Type
arg_ty1forall a. a -> [a] -> [a]
:[Scaled Type]
arg_tys, Type
res_ty) }
matchExpectedFunTys :: forall a.
ExpectedFunTyOrigin
-> UserTypeCtxt
-> Arity
-> ExpRhoType
-> ([Scaled ExpSigmaTypeFRR] -> ExpRhoType -> TcM a)
-> TcM (HsWrapper, a)
matchExpectedFunTys :: forall a.
ExpectedFunTyOrigin
-> UserTypeCtxt
-> Int
-> ExpRhoType
-> ([Scaled ExpRhoType] -> ExpRhoType -> TcM a)
-> TcM (HsWrapper, a)
matchExpectedFunTys ExpectedFunTyOrigin
herald UserTypeCtxt
ctx Int
arity ExpRhoType
orig_ty [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside
= case ExpRhoType
orig_ty of
Check Type
ty -> [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [] Int
arity Type
ty
ExpRhoType
_ -> [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [] Int
arity ExpRhoType
orig_ty
where
go :: [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty
| ([TcTyVar]
tvs, ThetaType
theta, Type
_) <- Type -> ([TcTyVar], ThetaType, Type)
tcSplitSigmaTy Type
ty
, Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta)
= do { (HsWrapper
wrap_gen, (HsWrapper
wrap_res, a
result)) <- forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise UserTypeCtxt
ctx Type
ty forall a b. (a -> b) -> a -> b
$ \Type
ty' ->
[Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty'
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap_gen HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap_res, a
result) }
go [Scaled ExpRhoType]
acc_arg_tys Int
0 Type
rho_ty
= do { a
result <- [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside (forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
acc_arg_tys) (Type -> ExpRhoType
mkCheckExpType Type
rho_ty)
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, a
result) }
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty
| Just Type
ty' <- Type -> Maybe Type
tcView Type
ty = [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty'
go [Scaled ExpRhoType]
acc_arg_tys Int
n (FunTy { ft_mult :: Type -> Type
ft_mult = Type
mult, ft_af :: Type -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_arg :: Type -> Type
ft_arg = Type
arg_ty, ft_res :: Type -> Type
ft_res = Type
res_ty })
= forall a. HasCallStack => Bool -> a -> a
assert (AnonArgFlag
af forall a. Eq a => a -> a -> Bool
== AnonArgFlag
VisArg) forall a b. (a -> b) -> a -> b
$
do { let arg_pos :: Int
arg_pos = Int
1 forall a. Num a => a -> a -> a
+ forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled ExpRhoType]
acc_arg_tys
; (Coercion
arg_co, Type
arg_ty) <- HasDebugCallStack =>
FixedRuntimeRepContext -> Type -> TcM (Coercion, Type)
hasFixedRuntimeRep (ExpectedFunTyOrigin -> Int -> FixedRuntimeRepContext
FRRExpectedFunTy ExpectedFunTyOrigin
herald Int
arg_pos) Type
arg_ty
; (HsWrapper
wrap_res, a
result) <- [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go ((forall a. Type -> a -> Scaled a
Scaled Type
mult forall a b. (a -> b) -> a -> b
$ Type -> ExpRhoType
mkCheckExpType Type
arg_ty) forall a. a -> [a] -> [a]
: [Scaled ExpRhoType]
acc_arg_tys)
(Int
nforall a. Num a => a -> a -> a
-Int
1) Type
res_ty
; let wrap_arg :: HsWrapper
wrap_arg = Coercion -> HsWrapper
mkWpCastN Coercion
arg_co
fun_wrap :: HsWrapper
fun_wrap = HsWrapper -> HsWrapper -> Scaled Type -> Type -> HsWrapper
mkWpFun HsWrapper
wrap_arg HsWrapper
wrap_res (forall a. Type -> a -> Scaled a
Scaled Type
mult Type
arg_ty) Type
res_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
fun_wrap, a
result) }
go [Scaled ExpRhoType]
acc_arg_tys Int
n ty :: Type
ty@(TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect Type
ty' -> [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty'
MetaDetails
Flexi -> [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n (Type -> ExpRhoType
mkCheckExpType Type
ty) }
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty = forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM ([Scaled ExpRhoType] -> Type -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt [Scaled ExpRhoType]
acc_arg_tys Type
ty) forall a b. (a -> b) -> a -> b
$
[Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n (Type -> ExpRhoType
mkCheckExpType Type
ty)
defer :: [Scaled ExpSigmaTypeFRR] -> Arity -> ExpRhoType -> TcM (HsWrapper, a)
defer :: [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n ExpRhoType
fun_ty
= do { let last_acc_arg_pos :: Int
last_acc_arg_pos = forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled ExpRhoType]
acc_arg_tys
; [Scaled ExpRhoType]
more_arg_tys <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Int -> TcM (Scaled ExpRhoType)
new_exp_arg_ty [Int
last_acc_arg_pos forall a. Num a => a -> a -> a
+ Int
1 .. Int
last_acc_arg_pos forall a. Num a => a -> a -> a
+ Int
n]
; ExpRhoType
res_ty <- TcM ExpRhoType
newInferExpType
; a
result <- [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside (forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
acc_arg_tys forall a. [a] -> [a] -> [a]
++ [Scaled ExpRhoType]
more_arg_tys) ExpRhoType
res_ty
; [Scaled Type]
more_arg_tys <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\(Scaled Type
m ExpRhoType
t) -> forall a. Type -> a -> Scaled a
Scaled Type
m forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExpRhoType -> TcM Type
readExpType ExpRhoType
t) [Scaled ExpRhoType]
more_arg_tys
; Type
res_ty <- ExpRhoType -> TcM Type
readExpType ExpRhoType
res_ty
; let unif_fun_ty :: Type
unif_fun_ty = [Scaled Type] -> Type -> Type
mkVisFunTys [Scaled Type]
more_arg_tys Type
res_ty
; HsWrapper
wrap <- CtOrigin -> UserTypeCtxt -> Type -> ExpRhoType -> TcM HsWrapper
tcSubType CtOrigin
AppOrigin UserTypeCtxt
ctx Type
unif_fun_ty ExpRhoType
fun_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap, a
result) }
new_exp_arg_ty :: Int -> TcM (Scaled ExpSigmaTypeFRR)
new_exp_arg_ty :: Int -> TcM (Scaled ExpRhoType)
new_exp_arg_ty Int
arg_pos
= forall a. Type -> a -> Scaled a
mkScaled forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> TcM Type
newFlexiTyVarTy Type
multiplicityTy
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> FixedRuntimeRepContext -> TcM ExpRhoType
newInferExpTypeFRR (ExpectedFunTyOrigin -> Int -> FixedRuntimeRepContext
FRRExpectedFunTy ExpectedFunTyOrigin
herald Int
arg_pos)
mk_ctxt :: [Scaled ExpSigmaTypeFRR] -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt :: [Scaled ExpRhoType] -> Type -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt [Scaled ExpRhoType]
arg_tys Type
res_ty TidyEnv
env
= TidyEnv
-> ExpectedFunTyOrigin
-> [Scaled Type]
-> Type
-> Int
-> TcM (TidyEnv, SDoc)
mkFunTysMsg TidyEnv
env ExpectedFunTyOrigin
herald [Scaled Type]
arg_tys' Type
res_ty Int
arity
where
arg_tys' :: [Scaled Type]
arg_tys' = forall a b. (a -> b) -> [a] -> [b]
map (\(Scaled Type
u ExpRhoType
v) -> forall a. Type -> a -> Scaled a
Scaled Type
u (String -> ExpRhoType -> Type
checkingExpType String
"matchExpectedFunTys" ExpRhoType
v)) forall a b. (a -> b) -> a -> b
$
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
arg_tys
mkFunTysMsg :: TidyEnv
-> ExpectedFunTyOrigin
-> [Scaled TcType] -> TcType -> Arity
-> TcM (TidyEnv, SDoc)
mkFunTysMsg :: TidyEnv
-> ExpectedFunTyOrigin
-> [Scaled Type]
-> Type
-> Int
-> TcM (TidyEnv, SDoc)
mkFunTysMsg TidyEnv
env ExpectedFunTyOrigin
herald [Scaled Type]
arg_tys Type
res_ty Int
n_val_args_in_call
= do { (TidyEnv
env', Type
fun_rho) <- TidyEnv -> Type -> TcM (TidyEnv, Type)
zonkTidyTcType TidyEnv
env forall a b. (a -> b) -> a -> b
$
[Scaled Type] -> Type -> Type
mkVisFunTys [Scaled Type]
arg_tys Type
res_ty
; let ([Scaled Type]
all_arg_tys, Type
_) = Type -> ([Scaled Type], Type)
splitFunTys Type
fun_rho
n_fun_args :: Int
n_fun_args = forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled Type]
all_arg_tys
msg :: SDoc
msg | Int
n_val_args_in_call forall a. Ord a => a -> a -> Bool
<= Int
n_fun_args
= String -> SDoc
text String
"In the result of a function call"
| Bool
otherwise
= SDoc -> Int -> SDoc -> SDoc
hang (SDoc
full_herald SDoc -> SDoc -> SDoc
<> SDoc
comma)
Int
2 ([SDoc] -> SDoc
sep [ String -> SDoc
text String
"but its type" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (Type -> SDoc
pprType Type
fun_rho)
, if Int
n_fun_args forall a. Eq a => a -> a -> Bool
== Int
0 then String -> SDoc
text String
"has none"
else String -> SDoc
text String
"has only" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
speakN Int
n_fun_args])
; forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
env', SDoc
msg) }
where
full_herald :: SDoc
full_herald = ExpectedFunTyOrigin -> SDoc
pprExpectedFunTyHerald ExpectedFunTyOrigin
herald
SDoc -> SDoc -> SDoc
<+> Int -> SDoc -> SDoc
speakNOf Int
n_val_args_in_call (String -> SDoc
text String
"value argument")
matchExpectedListTy :: TcRhoType -> TcM (TcCoercionN, TcRhoType)
matchExpectedListTy :: Type -> TcM (Coercion, Type)
matchExpectedListTy Type
exp_ty
= do { (Coercion
co, [Type
elt_ty]) <- TyCon -> Type -> TcM (Coercion, ThetaType)
matchExpectedTyConApp TyCon
listTyCon Type
exp_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, Type
elt_ty) }
matchExpectedTyConApp :: TyCon
-> TcRhoType
-> TcM (TcCoercionN,
[TcSigmaType])
matchExpectedTyConApp :: TyCon -> Type -> TcM (Coercion, ThetaType)
matchExpectedTyConApp TyCon
tc Type
orig_ty
= forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ TyCon -> Bool
isFunTyCon TyCon
tc) forall a b. (a -> b) -> a -> b
$ Type -> TcM (Coercion, ThetaType)
go Type
orig_ty
where
go :: Type -> TcM (Coercion, ThetaType)
go Type
ty
| Just Type
ty' <- Type -> Maybe Type
tcView Type
ty
= Type -> TcM (Coercion, ThetaType)
go Type
ty'
go ty :: Type
ty@(TyConApp TyCon
tycon ThetaType
args)
| TyCon
tc forall a. Eq a => a -> a -> Bool
== TyCon
tycon
= forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkTcNomReflCo Type
ty, ThetaType
args)
go (TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect Type
ty -> Type -> TcM (Coercion, ThetaType)
go Type
ty
MetaDetails
Flexi -> TcM (Coercion, ThetaType)
defer }
go Type
_ = TcM (Coercion, ThetaType)
defer
defer :: TcM (Coercion, ThetaType)
defer
= do { (TCvSubst
_, [TcTyVar]
arg_tvs) <- [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
newMetaTyVars (TyCon -> [TcTyVar]
tyConTyVars TyCon
tc)
; String -> SDoc -> TcM ()
traceTc String
"matchExpectedTyConApp" (forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr (TyCon -> [TcTyVar]
tyConTyVars TyCon
tc) SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
arg_tvs)
; let args :: ThetaType
args = [TcTyVar] -> ThetaType
mkTyVarTys [TcTyVar]
arg_tvs
tc_template :: Type
tc_template = TyCon -> ThetaType -> Type
mkTyConApp TyCon
tc ThetaType
args
; Coercion
co <- Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType forall a. Maybe a
Nothing Type
tc_template Type
orig_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, ThetaType
args) }
matchExpectedAppTy :: TcRhoType
-> TcM (TcCoercion,
(TcSigmaType, TcSigmaType))
matchExpectedAppTy :: Type -> TcM (Coercion, (Type, Type))
matchExpectedAppTy Type
orig_ty
= Type -> TcM (Coercion, (Type, Type))
go Type
orig_ty
where
go :: Type -> TcM (Coercion, (Type, Type))
go Type
ty
| Just Type
ty' <- Type -> Maybe Type
tcView Type
ty = Type -> TcM (Coercion, (Type, Type))
go Type
ty'
| Just (Type
fun_ty, Type
arg_ty) <- Type -> Maybe (Type, Type)
tcSplitAppTy_maybe Type
ty
= forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkTcNomReflCo Type
orig_ty, (Type
fun_ty, Type
arg_ty))
go (TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect Type
ty -> Type -> TcM (Coercion, (Type, Type))
go Type
ty
MetaDetails
Flexi -> TcM (Coercion, (Type, Type))
defer }
go Type
_ = TcM (Coercion, (Type, Type))
defer
defer :: TcM (Coercion, (Type, Type))
defer
= do { Type
ty1 <- Type -> TcM Type
newFlexiTyVarTy Type
kind1
; Type
ty2 <- Type -> TcM Type
newFlexiTyVarTy Type
kind2
; Coercion
co <- Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType forall a. Maybe a
Nothing (Type -> Type -> Type
mkAppTy Type
ty1 Type
ty2) Type
orig_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, (Type
ty1, Type
ty2)) }
orig_kind :: Type
orig_kind = HasDebugCallStack => Type -> Type
tcTypeKind Type
orig_ty
kind1 :: Type
kind1 = Type -> Type -> Type
mkVisFunTyMany Type
liftedTypeKind Type
orig_kind
kind2 :: Type
kind2 = Type
liftedTypeKind
fillInferResult :: TcType -> InferResult -> TcM TcCoercionN
fillInferResult :: Type -> InferResult -> TcM Coercion
fillInferResult Type
act_res_ty (IR { ir_uniq :: InferResult -> Unique
ir_uniq = Unique
u
, ir_lvl :: InferResult -> TcLevel
ir_lvl = TcLevel
res_lvl
, ir_frr :: InferResult -> Maybe FixedRuntimeRepContext
ir_frr = Maybe FixedRuntimeRepContext
mb_frr
, ir_ref :: InferResult -> IORef (Maybe Type)
ir_ref = IORef (Maybe Type)
ref })
= do { Maybe Type
mb_exp_res_ty <- forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
readTcRef IORef (Maybe Type)
ref
; case Maybe Type
mb_exp_res_ty of
Just Type
exp_res_ty
-> do { String -> SDoc -> TcM ()
traceTc String
"Joining inferred ExpType" forall a b. (a -> b) -> a -> b
$
forall a. Outputable a => a -> SDoc
ppr Unique
u SDoc -> SDoc -> SDoc
<> SDoc
colon SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
act_res_ty SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
'~' SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
exp_res_ty
; TcLevel
cur_lvl <- TcM TcLevel
getTcLevel
; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (TcLevel
cur_lvl TcLevel -> TcLevel -> Bool
`sameDepthAs` TcLevel
res_lvl) forall a b. (a -> b) -> a -> b
$
Type -> TcM ()
ensureMonoType Type
act_res_ty
; Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType forall a. Maybe a
Nothing Type
act_res_ty Type
exp_res_ty }
Maybe Type
Nothing
-> do { String -> SDoc -> TcM ()
traceTc String
"Filling inferred ExpType" forall a b. (a -> b) -> a -> b
$
forall a. Outputable a => a -> SDoc
ppr Unique
u SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":=" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
act_res_ty
; (Coercion
prom_co, Type
act_res_ty) <- TcLevel -> Type -> TcM (Coercion, Type)
promoteTcType TcLevel
res_lvl Type
act_res_ty
; (Coercion
frr_co, Type
act_res_ty) <-
case Maybe FixedRuntimeRepContext
mb_frr of
Maybe FixedRuntimeRepContext
Nothing -> forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
act_res_ty, Type
act_res_ty)
Just FixedRuntimeRepContext
frr_orig -> HasDebugCallStack =>
FixedRuntimeRepContext -> Type -> TcM (Coercion, Type)
hasFixedRuntimeRep FixedRuntimeRepContext
frr_orig Type
act_res_ty
; let final_co :: Coercion
final_co = Coercion
prom_co Coercion -> Coercion -> Coercion
`mkTcTransCo` Coercion
frr_co
; forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
writeTcRef IORef (Maybe Type)
ref (forall a. a -> Maybe a
Just Type
act_res_ty)
; forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
final_co }
}
tcWrapResult :: HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResult :: HsExpr GhcRn
-> HsExpr GhcTc -> Type -> ExpRhoType -> TcM (HsExpr GhcTc)
tcWrapResult HsExpr GhcRn
rn_expr = CtOrigin
-> HsExpr GhcRn
-> HsExpr GhcTc
-> Type
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO (HsExpr GhcRn -> CtOrigin
exprCtOrigin HsExpr GhcRn
rn_expr) HsExpr GhcRn
rn_expr
tcWrapResultO :: CtOrigin -> HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO :: CtOrigin
-> HsExpr GhcRn
-> HsExpr GhcTc
-> Type
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO CtOrigin
orig HsExpr GhcRn
rn_expr HsExpr GhcTc
expr Type
actual_ty ExpRhoType
res_ty
= do { String -> SDoc -> TcM ()
traceTc String
"tcWrapResult" ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Actual: " SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
actual_ty
, String -> SDoc
text String
"Expected:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr ExpRhoType
res_ty ])
; HsWrapper
wrap <- CtOrigin
-> UserTypeCtxt
-> Maybe TypedThing
-> Type
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
orig UserTypeCtxt
GenSigCtxt (forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ HsExpr GhcRn -> TypedThing
HsExprRnThing HsExpr GhcRn
rn_expr) Type
actual_ty ExpRhoType
res_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap HsWrapper
wrap HsExpr GhcTc
expr) }
tcWrapResultMono :: HsExpr GhcRn -> HsExpr GhcTc
-> TcRhoType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultMono :: HsExpr GhcRn
-> HsExpr GhcTc -> Type -> ExpRhoType -> TcM (HsExpr GhcTc)
tcWrapResultMono HsExpr GhcRn
rn_expr HsExpr GhcTc
expr Type
act_ty ExpRhoType
res_ty
= forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Type -> Bool
isRhoTy Type
act_ty) (forall a. Outputable a => a -> SDoc
ppr Type
act_ty SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr HsExpr GhcRn
rn_expr) forall a b. (a -> b) -> a -> b
$
do { Coercion
co <- HsExpr GhcRn -> Type -> ExpRhoType -> TcM Coercion
unifyExpectedType HsExpr GhcRn
rn_expr Type
act_ty ExpRhoType
res_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCo Coercion
co HsExpr GhcTc
expr) }
unifyExpectedType :: HsExpr GhcRn
-> TcRhoType
-> ExpRhoType
-> TcM TcCoercionN
unifyExpectedType :: HsExpr GhcRn -> Type -> ExpRhoType -> TcM Coercion
unifyExpectedType HsExpr GhcRn
rn_expr Type
act_ty ExpRhoType
exp_ty
= case ExpRhoType
exp_ty of
Infer InferResult
inf_res -> Type -> InferResult -> TcM Coercion
fillInferResult Type
act_ty InferResult
inf_res
Check Type
exp_ty -> Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType (forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ HsExpr GhcRn -> TypedThing
HsExprRnThing HsExpr GhcRn
rn_expr) Type
act_ty Type
exp_ty
tcSubTypePat :: CtOrigin -> UserTypeCtxt
-> ExpSigmaType -> TcSigmaType -> TcM HsWrapper
tcSubTypePat :: CtOrigin -> UserTypeCtxt -> ExpRhoType -> Type -> TcM HsWrapper
tcSubTypePat CtOrigin
inst_orig UserTypeCtxt
ctxt (Check Type
ty_actual) Type
ty_expected
= (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type Type -> Type -> TcM Coercion
unifyTypeET CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
tcSubTypePat CtOrigin
_ UserTypeCtxt
_ (Infer InferResult
inf_res) Type
ty_expected
= do { Coercion
co <- Type -> InferResult -> TcM Coercion
fillInferResult Type
ty_expected InferResult
inf_res
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN (Coercion -> Coercion
mkTcSymCo Coercion
co)) }
tcSubType :: CtOrigin -> UserTypeCtxt
-> TcSigmaType
-> ExpRhoType
-> TcM HsWrapper
tcSubType :: CtOrigin -> UserTypeCtxt -> Type -> ExpRhoType -> TcM HsWrapper
tcSubType CtOrigin
orig UserTypeCtxt
ctxt Type
ty_actual ExpRhoType
ty_expected
= forall a. Type -> ExpRhoType -> TcM a -> TcM a
addSubTypeCtxt Type
ty_actual ExpRhoType
ty_expected forall a b. (a -> b) -> a -> b
$
do { String -> SDoc -> TcM ()
traceTc String
"tcSubType" ([SDoc] -> SDoc
vcat [UserTypeCtxt -> SDoc
pprUserTypeCtxt UserTypeCtxt
ctxt, forall a. Outputable a => a -> SDoc
ppr Type
ty_actual, forall a. Outputable a => a -> SDoc
ppr ExpRhoType
ty_expected])
; CtOrigin
-> UserTypeCtxt
-> Maybe TypedThing
-> Type
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
orig UserTypeCtxt
ctxt forall a. Maybe a
Nothing Type
ty_actual ExpRhoType
ty_expected }
tcSubTypeNC :: CtOrigin
-> UserTypeCtxt
-> Maybe TypedThing
-> TcSigmaType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC :: CtOrigin
-> UserTypeCtxt
-> Maybe TypedThing
-> Type
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
inst_orig UserTypeCtxt
ctxt Maybe TypedThing
m_thing Type
ty_actual ExpRhoType
res_ty
= case ExpRhoType
res_ty of
Check Type
ty_expected -> (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type (Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
m_thing) CtOrigin
inst_orig UserTypeCtxt
ctxt
Type
ty_actual Type
ty_expected
Infer InferResult
inf_res -> do { (HsWrapper
wrap, Type
rho) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
topInstantiate CtOrigin
inst_orig Type
ty_actual
; Coercion
co <- Type -> InferResult -> TcM Coercion
fillInferResult Type
rho InferResult
inf_res
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap) }
tcSubTypeSigma :: CtOrigin
-> UserTypeCtxt
-> TcSigmaType -> TcSigmaType -> TcM HsWrapper
tcSubTypeSigma :: CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tcSubTypeSigma CtOrigin
orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
= (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type (Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType forall a. Maybe a
Nothing) CtOrigin
orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
tcSubTypeAmbiguity :: UserTypeCtxt
-> TcSigmaType -> TcSigmaType -> TcM HsWrapper
tcSubTypeAmbiguity :: UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tcSubTypeAmbiguity UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
= (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_shallow (Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType forall a. Maybe a
Nothing)
(UserTypeCtxt -> CtOrigin
AmbiguityCheckOrigin UserTypeCtxt
ctxt)
UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
addSubTypeCtxt :: TcType -> ExpType -> TcM a -> TcM a
addSubTypeCtxt :: forall a. Type -> ExpRhoType -> TcM a -> TcM a
addSubTypeCtxt Type
ty_actual ExpRhoType
ty_expected TcM a
thing_inside
| Type -> Bool
isRhoTy Type
ty_actual
, ExpRhoType -> Bool
isRhoExpTy ExpRhoType
ty_expected
= TcM a
thing_inside
| Bool
otherwise
= forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM TidyEnv -> TcM (TidyEnv, SDoc)
mk_msg TcM a
thing_inside
where
mk_msg :: TidyEnv -> TcM (TidyEnv, SDoc)
mk_msg TidyEnv
tidy_env
= do { (TidyEnv
tidy_env, Type
ty_actual) <- TidyEnv -> Type -> TcM (TidyEnv, Type)
zonkTidyTcType TidyEnv
tidy_env Type
ty_actual
; Type
ty_expected <- ExpRhoType -> TcM Type
readExpType ExpRhoType
ty_expected
; (TidyEnv
tidy_env, Type
ty_expected) <- TidyEnv -> Type -> TcM (TidyEnv, Type)
zonkTidyTcType TidyEnv
tidy_env Type
ty_expected
; let msg :: SDoc
msg = [SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"When checking that:")
Int
4 (forall a. Outputable a => a -> SDoc
ppr Type
ty_actual)
, Int -> SDoc -> SDoc
nest Int
2 (SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"is more polymorphic than:")
Int
2 (forall a. Outputable a => a -> SDoc
ppr Type
ty_expected)) ]
; forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
tidy_env, SDoc
msg) }
tc_sub_type, tc_sub_type_deep, tc_sub_type_shallow
:: (TcType -> TcType -> TcM TcCoercionN)
-> CtOrigin
-> UserTypeCtxt
-> TcSigmaType
-> TcSigmaType
-> TcM HsWrapper
tc_sub_type :: (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
= do { Bool
deep_subsumption <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.DeepSubsumption
; if Bool
deep_subsumption
then (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_deep Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
else (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_shallow Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
}
tc_sub_type_shallow :: (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_shallow Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
| Type -> Bool
definitely_poly Type
ty_expected
, Type -> Bool
definitely_mono_shallow Type
ty_actual
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type (drop to equality)" forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; Coercion -> HsWrapper
mkWpCastN forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
Type -> Type -> TcM Coercion
unify Type
ty_actual Type
ty_expected }
| Bool
otherwise
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type (general case)" forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; (HsWrapper
sk_wrap, HsWrapper
inner_wrap)
<- forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise UserTypeCtxt
ctxt Type
ty_expected forall a b. (a -> b) -> a -> b
$ \ Type
sk_rho ->
do { (HsWrapper
wrap, Type
rho_a) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
topInstantiate CtOrigin
inst_orig Type
ty_actual
; Coercion
cow <- Type -> Type -> TcM Coercion
unify Type
rho_a Type
sk_rho
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
cow HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap) }
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
sk_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inner_wrap) }
tc_sub_type_deep :: (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_deep Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
| Type -> Bool
definitely_poly Type
ty_expected
, Type -> Bool
definitely_mono_deep Type
ty_actual
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type_deep (drop to equality)" forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; Coercion -> HsWrapper
mkWpCastN forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
Type -> Type -> TcM Coercion
unify Type
ty_actual Type
ty_expected }
| Bool
otherwise
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type_deep (general case)" forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; (HsWrapper
sk_wrap, HsWrapper
inner_wrap)
<- forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcDeeplySkolemise UserTypeCtxt
ctxt Type
ty_expected forall a b. (a -> b) -> a -> b
$ \ Type
sk_rho ->
(Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
sk_rho
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
sk_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inner_wrap) }
definitely_mono_shallow :: TcType -> Bool
definitely_mono_shallow :: Type -> Bool
definitely_mono_shallow Type
ty = Type -> Bool
isRhoTy Type
ty
definitely_mono_deep :: TcType -> Bool
definitely_mono_deep :: Type -> Bool
definitely_mono_deep Type
ty
| Bool -> Bool
not (Type -> Bool
definitely_mono_shallow Type
ty) = Bool
False
| Just (Scaled Type
_, Type
res) <- Type -> Maybe (Scaled Type, Type)
tcSplitFunTy_maybe Type
ty = Type -> Bool
definitely_mono_deep Type
res
| Bool
otherwise = Bool
True
definitely_poly :: TcType -> Bool
definitely_poly :: Type -> Bool
definitely_poly Type
ty
| ([TcTyVar]
tvs, ThetaType
theta, Type
tau) <- Type -> ([TcTyVar], ThetaType, Type)
tcSplitSigmaTy Type
ty
, (TcTyVar
tv:[TcTyVar]
_) <- [TcTyVar]
tvs
, forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta
, TcTyVar -> Type -> CheckTyEqResult
checkTyVarEq TcTyVar
tv Type
tau CheckTyEqResult -> CheckTyEqProblem -> Bool
`cterHasProblem` CheckTyEqProblem
cteInsolubleOccurs
= Bool
True
| Bool
otherwise
= Bool
False
tcSubMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcSubMult :: CtOrigin -> Type -> Type -> TcM HsWrapper
tcSubMult CtOrigin
origin Type
w_actual Type
w_expected
| Just (Type
w1, Type
w2) <- Type -> Maybe (Type, Type)
isMultMul Type
w_actual =
do { HsWrapper
w1 <- CtOrigin -> Type -> Type -> TcM HsWrapper
tcSubMult CtOrigin
origin Type
w1 Type
w_expected
; HsWrapper
w2 <- CtOrigin -> Type -> Type -> TcM HsWrapper
tcSubMult CtOrigin
origin Type
w2 Type
w_expected
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
w1 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
w2) }
tcSubMult CtOrigin
origin Type
w_actual Type
w_expected =
case Type -> Type -> IsSubmult
submult Type
w_actual Type
w_expected of
IsSubmult
Submult -> forall (m :: * -> *) a. Monad m => a -> m a
return HsWrapper
WpHole
IsSubmult
Unknown -> CtOrigin -> Type -> Type -> TcM HsWrapper
tcEqMult CtOrigin
origin Type
w_actual Type
w_expected
tcEqMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcEqMult :: CtOrigin -> Type -> Type -> TcM HsWrapper
tcEqMult CtOrigin
origin Type
w_actual Type
w_expected = do
{
; Coercion
coercion <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin Type
w_actual Type
w_expected
; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ if Coercion -> Bool
isReflCo Coercion
coercion then HsWrapper
WpHole else Coercion -> HsWrapper
WpMultCoercion Coercion
coercion }
tc_sub_type_ds :: (TcType -> TcType -> TcM TcCoercionN)
-> CtOrigin
-> UserTypeCtxt
-> TcSigmaType
-> TcRhoType
-> TcM HsWrapper
tc_sub_type_ds :: (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type_ds" forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; Type -> Type -> TcM HsWrapper
go Type
ty_actual Type
ty_expected }
where
go :: Type -> Type -> TcM HsWrapper
go Type
ty_a Type
ty_e | Just Type
ty_a' <- Type -> Maybe Type
tcView Type
ty_a = Type -> Type -> TcM HsWrapper
go Type
ty_a' Type
ty_e
| Just Type
ty_e' <- Type -> Maybe Type
tcView Type
ty_e = Type -> Type -> TcM HsWrapper
go Type
ty_a Type
ty_e'
go (TyVarTy TcTyVar
tv_a) Type
ty_e
= do { Maybe Type
lookup_res <- TcTyVar -> TcM (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
tv_a
; case Maybe Type
lookup_res of
Just Type
ty_a' ->
do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type_ds following filled meta-tyvar:"
(forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv_a SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"-->" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty_a')
; (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_a' Type
ty_e }
Maybe Type
Nothing -> Type -> Type -> TcM HsWrapper
just_unify Type
ty_actual Type
ty_expected }
go ty_a :: Type
ty_a@(FunTy { ft_af :: Type -> AnonArgFlag
ft_af = AnonArgFlag
VisArg, ft_mult :: Type -> Type
ft_mult = Type
act_mult, ft_arg :: Type -> Type
ft_arg = Type
act_arg, ft_res :: Type -> Type
ft_res = Type
act_res })
ty_e :: Type
ty_e@(FunTy { ft_af :: Type -> AnonArgFlag
ft_af = AnonArgFlag
VisArg, ft_mult :: Type -> Type
ft_mult = Type
exp_mult, ft_arg :: Type -> Type
ft_arg = Type
exp_arg, ft_res :: Type -> Type
ft_res = Type
exp_res })
| Type -> Bool
isTauTy Type
ty_a, Type -> Bool
isTauTy Type
ty_e
= Type -> Type -> TcM HsWrapper
just_unify Type
ty_actual Type
ty_expected
| Bool
otherwise
=
do { HsWrapper
arg_wrap <- (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_deep Type -> Type -> TcM Coercion
unify CtOrigin
given_orig UserTypeCtxt
GenSigCtxt Type
exp_arg Type
act_arg
; HsWrapper
res_wrap <- (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
act_res Type
exp_res
; HsWrapper
mult_wrap <- CtOrigin -> Type -> Type -> TcM HsWrapper
tcEqMult CtOrigin
inst_orig Type
act_mult Type
exp_mult
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
mult_wrap HsWrapper -> HsWrapper -> HsWrapper
<.>
HsWrapper -> HsWrapper -> Scaled Type -> Type -> HsWrapper
mkWpFun HsWrapper
arg_wrap HsWrapper
res_wrap (forall a. Type -> a -> Scaled a
Scaled Type
exp_mult Type
exp_arg) Type
exp_res) }
where
given_orig :: CtOrigin
given_orig = SkolemInfoAnon -> CtOrigin
GivenOrigin (UserTypeCtxt -> Type -> [(Name, TcTyVar)] -> SkolemInfoAnon
SigSkol UserTypeCtxt
GenSigCtxt Type
exp_arg [])
go Type
ty_a Type
ty_e
| let ([TcTyVar]
tvs, ThetaType
theta, Type
_) = Type -> ([TcTyVar], ThetaType, Type)
tcSplitSigmaTy Type
ty_a
, Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta)
= do { (HsWrapper
in_wrap, Type
in_rho) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
topInstantiate CtOrigin
inst_orig Type
ty_a
; HsWrapper
body_wrap <- (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
in_rho Type
ty_e
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
body_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
in_wrap) }
| Bool
otherwise
= do {
(HsWrapper
inst_wrap, Type
rho_a) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
deeplyInstantiate CtOrigin
inst_orig Type
ty_actual
; HsWrapper
unify_wrap <- Type -> Type -> TcM HsWrapper
just_unify Type
rho_a Type
ty_expected
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
unify_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inst_wrap) }
just_unify :: Type -> Type -> TcM HsWrapper
just_unify Type
ty_a Type
ty_e = do { Coercion
cow <- Type -> Type -> TcM Coercion
unify Type
ty_a Type
ty_e
; forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
cow) }
tcDeeplySkolemise
:: UserTypeCtxt -> TcSigmaType
-> (TcType -> TcM result)
-> TcM (HsWrapper, result)
tcDeeplySkolemise :: forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcDeeplySkolemise UserTypeCtxt
ctxt Type
expected_ty Type -> TcM result
thing_inside
| Type -> Bool
isTauTy Type
expected_ty
= do { result
res <- Type -> TcM result
thing_inside Type
expected_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, result
res) }
| Bool
otherwise
= do {
rec { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, Type
rho_ty) <- SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
deeplySkolemise SkolemInfo
skol_info Type
expected_ty
; SkolemInfo
skol_info <- forall (m :: * -> *). MonadIO m => SkolemInfoAnon -> m SkolemInfo
mkSkolemInfo (UserTypeCtxt -> Type -> [(Name, TcTyVar)] -> SkolemInfoAnon
SigSkol UserTypeCtxt
ctxt Type
expected_ty [(Name, TcTyVar)]
tv_prs) }
; String -> SDoc -> TcM ()
traceTc String
"tcDeeplySkolemise" (forall a. Outputable a => a -> SDoc
ppr Type
expected_ty SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr Type
rho_ty SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [(Name, TcTyVar)]
tv_prs)
; let skol_tvs :: [TcTyVar]
skol_tvs = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
; (TcEvBinds
ev_binds, result
result)
<- forall result.
SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints (SkolemInfo -> SkolemInfoAnon
getSkolemInfo SkolemInfo
skol_info) [TcTyVar]
skol_tvs [TcTyVar]
given forall a b. (a -> b) -> a -> b
$
Type -> TcM result
thing_inside Type
rho_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
result) }
deeplySkolemise :: SkolemInfo -> TcSigmaType
-> TcM ( HsWrapper
, [(Name,TyVar)]
, [EvVar]
, TcRhoType )
deeplySkolemise :: SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
deeplySkolemise SkolemInfo
skol_info Type
ty
= TCvSubst
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
go TCvSubst
init_subst Type
ty
where
init_subst :: TCvSubst
init_subst = InScopeSet -> TCvSubst
mkEmptyTCvSubst (VarSet -> InScopeSet
mkInScopeSet (Type -> VarSet
tyCoVarsOfType Type
ty))
go :: TCvSubst
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
go TCvSubst
subst Type
ty
| Just ([Scaled Type]
arg_tys, [TcTyVar]
tvs, ThetaType
theta, Type
ty') <- Type -> Maybe ([Scaled Type], [TcTyVar], ThetaType, Type)
tcDeepSplitSigmaTy_maybe Type
ty
= do { let arg_tys' :: [Scaled Type]
arg_tys' = HasDebugCallStack => TCvSubst -> [Scaled Type] -> [Scaled Type]
substScaledTys TCvSubst
subst [Scaled Type]
arg_tys
; [TcTyVar]
ids1 <- forall gbl lcl.
FastString -> [Scaled Type] -> TcRnIf gbl lcl [TcTyVar]
newSysLocalIds (String -> FastString
fsLit String
"dk") [Scaled Type]
arg_tys'
; (TCvSubst
subst', [TcTyVar]
tvs1) <- SkolemInfo -> TCvSubst -> [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
tcInstSkolTyVarsX SkolemInfo
skol_info TCvSubst
subst [TcTyVar]
tvs
; [TcTyVar]
ev_vars1 <- ThetaType -> TcM [TcTyVar]
newEvVars (HasDebugCallStack => TCvSubst -> ThetaType -> ThetaType
substTheta TCvSubst
subst' ThetaType
theta)
; (HsWrapper
wrap, [(Name, TcTyVar)]
tvs_prs2, [TcTyVar]
ev_vars2, Type
rho) <- TCvSubst
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
go TCvSubst
subst' Type
ty'
; let tv_prs1 :: [(Name, TcTyVar)]
tv_prs1 = forall a b. (a -> b) -> [a] -> [b]
map TcTyVar -> Name
tyVarName [TcTyVar]
tvs forall a b. [a] -> [b] -> [(a, b)]
`zip` [TcTyVar]
tvs1
; forall (m :: * -> *) a. Monad m => a -> m a
return ( [TcTyVar] -> HsWrapper
mkWpLams [TcTyVar]
ids1
HsWrapper -> HsWrapper -> HsWrapper
<.> [TcTyVar] -> HsWrapper
mkWpTyLams [TcTyVar]
tvs1
HsWrapper -> HsWrapper -> HsWrapper
<.> [TcTyVar] -> HsWrapper
mkWpLams [TcTyVar]
ev_vars1
HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap
HsWrapper -> HsWrapper -> HsWrapper
<.> [TcTyVar] -> HsWrapper
mkWpEvVarApps [TcTyVar]
ids1
, [(Name, TcTyVar)]
tv_prs1 forall a. [a] -> [a] -> [a]
++ [(Name, TcTyVar)]
tvs_prs2
, [TcTyVar]
ev_vars1 forall a. [a] -> [a] -> [a]
++ [TcTyVar]
ev_vars2
, [Scaled Type] -> Type -> Type
mkVisFunTys [Scaled Type]
arg_tys' Type
rho ) }
| Bool
otherwise
= forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, [], [], HasDebugCallStack => TCvSubst -> Type -> Type
substTy TCvSubst
subst Type
ty)
deeplyInstantiate :: CtOrigin -> TcType -> TcM (HsWrapper, Type)
deeplyInstantiate :: CtOrigin -> Type -> TcM (HsWrapper, Type)
deeplyInstantiate CtOrigin
orig Type
ty
= TCvSubst -> Type -> TcM (HsWrapper, Type)
go TCvSubst
init_subst Type
ty
where
init_subst :: TCvSubst
init_subst = InScopeSet -> TCvSubst
mkEmptyTCvSubst (VarSet -> InScopeSet
mkInScopeSet (Type -> VarSet
tyCoVarsOfType Type
ty))
go :: TCvSubst -> Type -> TcM (HsWrapper, Type)
go TCvSubst
subst Type
ty
| Just ([Scaled Type]
arg_tys, [TcTyVar]
tvs, ThetaType
theta, Type
rho) <- Type -> Maybe ([Scaled Type], [TcTyVar], ThetaType, Type)
tcDeepSplitSigmaTy_maybe Type
ty
= do { (TCvSubst
subst', [TcTyVar]
tvs') <- TCvSubst -> [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
newMetaTyVarsX TCvSubst
subst [TcTyVar]
tvs
; let arg_tys' :: [Scaled Type]
arg_tys' = HasDebugCallStack => TCvSubst -> [Scaled Type] -> [Scaled Type]
substScaledTys TCvSubst
subst' [Scaled Type]
arg_tys
theta' :: ThetaType
theta' = HasDebugCallStack => TCvSubst -> ThetaType -> ThetaType
substTheta TCvSubst
subst' ThetaType
theta
; [TcTyVar]
ids1 <- forall gbl lcl.
FastString -> [Scaled Type] -> TcRnIf gbl lcl [TcTyVar]
newSysLocalIds (String -> FastString
fsLit String
"di") [Scaled Type]
arg_tys'
; HsWrapper
wrap1 <- CtOrigin -> ThetaType -> ThetaType -> TcM HsWrapper
instCall CtOrigin
orig ([TcTyVar] -> ThetaType
mkTyVarTys [TcTyVar]
tvs') ThetaType
theta'
; (HsWrapper
wrap2, Type
rho2) <- TCvSubst -> Type -> TcM (HsWrapper, Type)
go TCvSubst
subst' Type
rho
; forall (m :: * -> *) a. Monad m => a -> m a
return ([TcTyVar] -> HsWrapper
mkWpLams [TcTyVar]
ids1
HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap2
HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap1
HsWrapper -> HsWrapper -> HsWrapper
<.> [TcTyVar] -> HsWrapper
mkWpEvVarApps [TcTyVar]
ids1,
[Scaled Type] -> Type -> Type
mkVisFunTys [Scaled Type]
arg_tys' Type
rho2) }
| Bool
otherwise
= do { let ty' :: Type
ty' = HasDebugCallStack => TCvSubst -> Type -> Type
substTy TCvSubst
subst Type
ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, Type
ty') }
tcDeepSplitSigmaTy_maybe
:: TcSigmaType -> Maybe ([Scaled TcType], [TyVar], ThetaType, TcSigmaType)
tcDeepSplitSigmaTy_maybe :: Type -> Maybe ([Scaled Type], [TcTyVar], ThetaType, Type)
tcDeepSplitSigmaTy_maybe Type
ty
| Just (Scaled Type
arg_ty, Type
res_ty) <- Type -> Maybe (Scaled Type, Type)
tcSplitFunTy_maybe Type
ty
, Just ([Scaled Type]
arg_tys, [TcTyVar]
tvs, ThetaType
theta, Type
rho) <- Type -> Maybe ([Scaled Type], [TcTyVar], ThetaType, Type)
tcDeepSplitSigmaTy_maybe Type
res_ty
= forall a. a -> Maybe a
Just (Scaled Type
arg_tyforall a. a -> [a] -> [a]
:[Scaled Type]
arg_tys, [TcTyVar]
tvs, ThetaType
theta, Type
rho)
| ([TcTyVar]
tvs, ThetaType
theta, Type
rho) <- Type -> ([TcTyVar], ThetaType, Type)
tcSplitSigmaTy Type
ty
, Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta)
= forall a. a -> Maybe a
Just ([], [TcTyVar]
tvs, ThetaType
theta, Type
rho)
| Bool
otherwise = forall a. Maybe a
Nothing
tcTopSkolemise, tcSkolemiseScoped
:: UserTypeCtxt -> TcSigmaType
-> (TcType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseScoped :: forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcSkolemiseScoped UserTypeCtxt
ctxt Type
expected_ty Type -> TcM result
thing_inside
= do { Bool
deep_subsumption <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.DeepSubsumption
; let skolemise :: SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
skolemise | Bool
deep_subsumption = SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
deeplySkolemise
| Bool
otherwise = SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
topSkolemise
;
rec { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, Type
rho_ty) <- SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
skolemise SkolemInfo
skol_info Type
expected_ty
; SkolemInfo
skol_info <- forall (m :: * -> *). MonadIO m => SkolemInfoAnon -> m SkolemInfo
mkSkolemInfo (UserTypeCtxt -> Type -> [(Name, TcTyVar)] -> SkolemInfoAnon
SigSkol UserTypeCtxt
ctxt Type
expected_ty [(Name, TcTyVar)]
tv_prs) }
; let skol_tvs :: [TcTyVar]
skol_tvs = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
; (TcEvBinds
ev_binds, result
res)
<- forall result.
SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints (SkolemInfo -> SkolemInfoAnon
getSkolemInfo SkolemInfo
skol_info) [TcTyVar]
skol_tvs [TcTyVar]
given forall a b. (a -> b) -> a -> b
$
forall r. [(Name, TcTyVar)] -> TcM r -> TcM r
tcExtendNameTyVarEnv [(Name, TcTyVar)]
tv_prs forall a b. (a -> b) -> a -> b
$
Type -> TcM result
thing_inside Type
rho_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
res) }
tcTopSkolemise :: forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise UserTypeCtxt
ctxt Type
expected_ty Type -> TcM result
thing_inside
| Type -> Bool
isRhoTy Type
expected_ty
= do { result
res <- Type -> TcM result
thing_inside Type
expected_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, result
res) }
| Bool
otherwise
= do { rec { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, Type
rho_ty) <- SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
topSkolemise SkolemInfo
skol_info Type
expected_ty
; SkolemInfo
skol_info <- forall (m :: * -> *). MonadIO m => SkolemInfoAnon -> m SkolemInfo
mkSkolemInfo (UserTypeCtxt -> Type -> [(Name, TcTyVar)] -> SkolemInfoAnon
SigSkol UserTypeCtxt
ctxt Type
expected_ty [(Name, TcTyVar)]
tv_prs) }
; let skol_tvs :: [TcTyVar]
skol_tvs = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
; (TcEvBinds
ev_binds, result
result)
<- forall result.
SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints (SkolemInfo -> SkolemInfoAnon
getSkolemInfo SkolemInfo
skol_info) [TcTyVar]
skol_tvs [TcTyVar]
given forall a b. (a -> b) -> a -> b
$
Type -> TcM result
thing_inside Type
rho_ty
; forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
result) }
tcSkolemiseExpType :: UserTypeCtxt -> ExpSigmaType
-> (ExpRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseExpType :: forall result.
UserTypeCtxt
-> ExpRhoType
-> (ExpRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseExpType UserTypeCtxt
_ et :: ExpRhoType
et@(Infer {}) ExpRhoType -> TcM result
thing_inside
= (HsWrapper
idHsWrapper, ) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExpRhoType -> TcM result
thing_inside ExpRhoType
et
tcSkolemiseExpType UserTypeCtxt
ctxt (Check Type
ty) ExpRhoType -> TcM result
thing_inside
= do { Bool
deep_subsumption <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.DeepSubsumption
; let skolemise :: UserTypeCtxt
-> Type
-> (Type -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
skolemise | Bool
deep_subsumption = forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcDeeplySkolemise
| Bool
otherwise = forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise
; UserTypeCtxt
-> Type
-> (Type -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
skolemise UserTypeCtxt
ctxt Type
ty forall a b. (a -> b) -> a -> b
$ \Type
rho_ty ->
ExpRhoType -> TcM result
thing_inside (Type -> ExpRhoType
mkCheckExpType Type
rho_ty) }
checkConstraints :: SkolemInfoAnon
-> [TcTyVar]
-> [EvVar]
-> TcM result
-> TcM (TcEvBinds, result)
checkConstraints :: forall result.
SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given TcM result
thing_inside
= do { Bool
implication_needed <- SkolemInfoAnon -> [TcTyVar] -> [TcTyVar] -> TcM Bool
implicationNeeded SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given
; if Bool
implication_needed
then do { (TcLevel
tclvl, WantedConstraints
wanted, result
result) <- forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints TcM result
thing_inside
; (Bag Implication
implics, TcEvBinds
ev_binds) <- TcLevel
-> SkolemInfoAnon
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tclvl SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given WantedConstraints
wanted
; String -> SDoc -> TcM ()
traceTc String
"checkConstraints" (forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
skol_tvs)
; Bag Implication -> TcM ()
emitImplications Bag Implication
implics
; forall (m :: * -> *) a. Monad m => a -> m a
return (TcEvBinds
ev_binds, result
result) }
else
do { result
res <- TcM result
thing_inside
; forall (m :: * -> *) a. Monad m => a -> m a
return (TcEvBinds
emptyTcEvBinds, result
res) } }
checkTvConstraints :: SkolemInfo
-> [TcTyVar]
-> TcM result
-> TcM result
checkTvConstraints :: forall result. SkolemInfo -> [TcTyVar] -> TcM result -> TcM result
checkTvConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs TcM result
thing_inside
= do { (TcLevel
tclvl, WantedConstraints
wanted, result
result) <- forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints TcM result
thing_inside
; SkolemInfo -> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
; forall (m :: * -> *) a. Monad m => a -> m a
return result
result }
emitResidualTvConstraint :: SkolemInfo -> [TcTyVar]
-> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint :: SkolemInfo -> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
| Bool -> Bool
not (WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted) Bool -> Bool -> Bool
||
SkolemInfoAnon -> Bool
checkTelescopeSkol SkolemInfoAnon
skol_info_anon
=
do { Implication
implic <- SkolemInfoAnon
-> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication SkolemInfoAnon
skol_info_anon [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
; Implication -> TcM ()
emitImplication Implication
implic }
| Bool
otherwise
= forall (m :: * -> *) a. Monad m => a -> m a
return ()
where
skol_info_anon :: SkolemInfoAnon
skol_info_anon = SkolemInfo -> SkolemInfoAnon
getSkolemInfo SkolemInfo
skol_info
buildTvImplication :: SkolemInfoAnon -> [TcTyVar]
-> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication :: SkolemInfoAnon
-> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
= forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (TcTyVar -> Bool
isSkolemTyVar forall (f :: * -> *). Applicative f => f Bool -> f Bool -> f Bool
<||> TcTyVar -> Bool
isTyVarTyVar) [TcTyVar]
skol_tvs) (forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
skol_tvs) forall a b. (a -> b) -> a -> b
$
do { EvBindsVar
ev_binds <- TcM EvBindsVar
newNoTcEvBinds
; Implication
implic <- TcM Implication
newImplication
; let implic' :: Implication
implic' = Implication
implic { ic_tclvl :: TcLevel
ic_tclvl = TcLevel
tclvl
, ic_skols :: [TcTyVar]
ic_skols = [TcTyVar]
skol_tvs
, ic_given_eqs :: HasGivenEqs
ic_given_eqs = HasGivenEqs
NoGivenEqs
, ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wanted
, ic_binds :: EvBindsVar
ic_binds = EvBindsVar
ev_binds
, ic_info :: SkolemInfoAnon
ic_info = SkolemInfoAnon
skol_info }
; forall (m :: * -> *).
(HasCallStack, Applicative m) =>
Implication -> m ()
checkImplicationInvariants Implication
implic'
; forall (m :: * -> *) a. Monad m => a -> m a
return Implication
implic' }
implicationNeeded :: SkolemInfoAnon -> [TcTyVar] -> [EvVar] -> TcM Bool
implicationNeeded :: SkolemInfoAnon -> [TcTyVar] -> [TcTyVar] -> TcM Bool
implicationNeeded SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given
| forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
skol_tvs
, forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
given
, Bool -> Bool
not (SkolemInfoAnon -> Bool
alwaysBuildImplication SkolemInfoAnon
skol_info)
=
do { TcLevel
tc_lvl <- TcM TcLevel
getTcLevel
; if Bool -> Bool
not (TcLevel -> Bool
isTopTcLevel TcLevel
tc_lvl)
then forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
else
do { DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; forall (m :: * -> *) a. Monad m => a -> m a
return (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypeErrors DynFlags
dflags Bool -> Bool -> Bool
||
GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypedHoles DynFlags
dflags Bool -> Bool -> Bool
||
GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferOutOfScopeVariables DynFlags
dflags) } }
| Bool
otherwise
= forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
alwaysBuildImplication :: SkolemInfoAnon -> Bool
alwaysBuildImplication :: SkolemInfoAnon -> Bool
alwaysBuildImplication SkolemInfoAnon
_ = Bool
False
buildImplicationFor :: TcLevel -> SkolemInfoAnon -> [TcTyVar]
-> [EvVar] -> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor :: TcLevel
-> SkolemInfoAnon
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tclvl SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given WantedConstraints
wanted
| WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
given
= forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. Bag a
emptyBag, TcEvBinds
emptyTcEvBinds)
| Bool
otherwise
= forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (TcTyVar -> Bool
isSkolemTyVar forall (f :: * -> *). Applicative f => f Bool -> f Bool -> f Bool
<||> TcTyVar -> Bool
isTyVarTyVar) [TcTyVar]
skol_tvs) (forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
skol_tvs) forall a b. (a -> b) -> a -> b
$
do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
newTcEvBinds
; Implication
implic <- TcM Implication
newImplication
; let implic' :: Implication
implic' = Implication
implic { ic_tclvl :: TcLevel
ic_tclvl = TcLevel
tclvl
, ic_skols :: [TcTyVar]
ic_skols = [TcTyVar]
skol_tvs
, ic_given :: [TcTyVar]
ic_given = [TcTyVar]
given
, ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wanted
, ic_binds :: EvBindsVar
ic_binds = EvBindsVar
ev_binds_var
, ic_info :: SkolemInfoAnon
ic_info = SkolemInfoAnon
skol_info }
; forall (m :: * -> *).
(HasCallStack, Applicative m) =>
Implication -> m ()
checkImplicationInvariants Implication
implic'
; forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Bag a
unitBag Implication
implic', EvBindsVar -> TcEvBinds
TcEvBinds EvBindsVar
ev_binds_var) }
unifyType :: Maybe TypedThing
-> TcTauType -> TcTauType
-> TcM TcCoercionN
unifyType :: Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
thing Type
ty1 Type
ty2
= TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin Type
ty1 Type
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
ty1
, uo_expected :: Type
uo_expected = Type
ty2
, uo_thing :: Maybe TypedThing
uo_thing = Maybe TypedThing
thing
, uo_visible :: Bool
uo_visible = Bool
True }
unifyTypeET :: TcTauType -> TcTauType -> TcM CoercionN
unifyTypeET :: Type -> Type -> TcM Coercion
unifyTypeET Type
ty1 Type
ty2
= TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin Type
ty1 Type
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
ty2
, uo_expected :: Type
uo_expected = Type
ty1
, uo_thing :: Maybe TypedThing
uo_thing = forall a. Maybe a
Nothing
, uo_visible :: Bool
uo_visible = Bool
True }
unifyKind :: Maybe TypedThing -> TcKind -> TcKind -> TcM CoercionN
unifyKind :: Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyKind Maybe TypedThing
mb_thing Type
ty1 Type
ty2
= TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
origin Type
ty1 Type
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
ty1
, uo_expected :: Type
uo_expected = Type
ty2
, uo_thing :: Maybe TypedThing
uo_thing = Maybe TypedThing
mb_thing
, uo_visible :: Bool
uo_visible = Bool
True }
uType, uType_defer
:: TypeOrKind
-> CtOrigin
-> TcType
-> TcType
-> TcM CoercionN
uType_defer :: TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin Type
ty1 Type
ty2
= do { Coercion
co <- CtOrigin -> TypeOrKind -> Role -> Type -> Type -> TcM Coercion
emitWantedEq CtOrigin
origin TypeOrKind
t_or_k Role
Nominal Type
ty1 Type
ty2
; forall gbl lcl. DumpFlag -> TcRnIf gbl lcl () -> TcRnIf gbl lcl ()
whenDOptM DumpFlag
Opt_D_dump_tc_trace forall a b. (a -> b) -> a -> b
$ do
{ [ErrCtxt]
ctxt <- TcM [ErrCtxt]
getErrCtxt
; SDoc
doc <- TidyEnv -> [ErrCtxt] -> TcM SDoc
mkErrInfo TidyEnv
emptyTidyEnv [ErrCtxt]
ctxt
; String -> SDoc -> TcM ()
traceTc String
"utype_defer" ([SDoc] -> SDoc
vcat [ Type -> SDoc
debugPprType Type
ty1
, Type -> SDoc
debugPprType Type
ty2
, CtOrigin -> SDoc
pprCtOrigin CtOrigin
origin
, SDoc
doc])
; String -> SDoc -> TcM ()
traceTc String
"utype_defer2" (forall a. Outputable a => a -> SDoc
ppr Coercion
co)
}
; forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
uType :: TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin Type
orig_ty1 Type
orig_ty2
= do { TcLevel
tclvl <- TcM TcLevel
getTcLevel
; String -> SDoc -> TcM ()
traceTc String
"u_tys" forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
[ String -> SDoc
text String
"tclvl" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl
, [SDoc] -> SDoc
sep [ forall a. Outputable a => a -> SDoc
ppr Type
orig_ty1, String -> SDoc
text String
"~", forall a. Outputable a => a -> SDoc
ppr Type
orig_ty2]
, CtOrigin -> SDoc
pprCtOrigin CtOrigin
origin]
; Coercion
co <- Type -> Type -> TcM Coercion
go Type
orig_ty1 Type
orig_ty2
; if Coercion -> Bool
isReflCo Coercion
co
then String -> SDoc -> TcM ()
traceTc String
"u_tys yields no coercion" SDoc
Outputable.empty
else String -> SDoc -> TcM ()
traceTc String
"u_tys yields coercion:" (forall a. Outputable a => a -> SDoc
ppr Coercion
co)
; forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
where
go :: TcType -> TcType -> TcM CoercionN
go :: Type -> Type -> TcM Coercion
go (CastTy Type
t1 Coercion
co1) Type
t2
= do { Coercion
co_tys <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin Type
t1 Type
t2
; forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceLeftCo Role
Nominal Type
t1 Coercion
co1 Coercion
co_tys) }
go Type
t1 (CastTy Type
t2 Coercion
co2)
= do { Coercion
co_tys <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin Type
t1 Type
t2
; forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceRightCo Role
Nominal Type
t2 Coercion
co2 Coercion
co_tys) }
go (TyVarTy TcTyVar
tv1) Type
ty2
= do { Maybe Type
lookup_res <- TcTyVar -> TcM (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
tv1
; case Maybe Type
lookup_res of
Just Type
ty1 -> do { String -> SDoc -> TcM ()
traceTc String
"found filled tyvar" (forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":->" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty1)
; Type -> Type -> TcM Coercion
go Type
ty1 Type
ty2 }
Maybe Type
Nothing -> CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
NotSwapped TcTyVar
tv1 Type
ty2 }
go Type
ty1 (TyVarTy TcTyVar
tv2)
= do { Maybe Type
lookup_res <- TcTyVar -> TcM (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
tv2
; case Maybe Type
lookup_res of
Just Type
ty2 -> do { String -> SDoc -> TcM ()
traceTc String
"found filled tyvar" (forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv2 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":->" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty2)
; Type -> Type -> TcM Coercion
go Type
ty1 Type
ty2 }
Maybe Type
Nothing -> CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
IsSwapped TcTyVar
tv2 Type
ty1 }
go ty1 :: Type
ty1@(TyConApp TyCon
tc1 []) (TyConApp TyCon
tc2 [])
| TyCon
tc1 forall a. Eq a => a -> a -> Bool
== TyCon
tc2
= forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Type -> Coercion
mkNomReflCo Type
ty1
go Type
ty1 Type
ty2
| Just Type
ty1' <- Type -> Maybe Type
tcView Type
ty1 = Type -> Type -> TcM Coercion
go Type
ty1' Type
ty2
| Just Type
ty2' <- Type -> Maybe Type
tcView Type
ty2 = Type -> Type -> TcM Coercion
go Type
ty1 Type
ty2'
go (FunTy { ft_af :: Type -> AnonArgFlag
ft_af = AnonArgFlag
VisArg, ft_mult :: Type -> Type
ft_mult = Type
w1, ft_arg :: Type -> Type
ft_arg = Type
arg1, ft_res :: Type -> Type
ft_res = Type
res1 })
(FunTy { ft_af :: Type -> AnonArgFlag
ft_af = AnonArgFlag
VisArg, ft_mult :: Type -> Type
ft_mult = Type
w2, ft_arg :: Type -> Type
ft_arg = Type
arg2, ft_res :: Type -> Type
ft_res = Type
res2 })
= do { Coercion
co_l <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin Type
arg1 Type
arg2
; Coercion
co_r <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin Type
res1 Type
res2
; Coercion
co_w <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin Type
w1 Type
w2
; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Role -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCo Role
Nominal Coercion
co_w Coercion
co_l Coercion
co_r }
go ty1 :: Type
ty1@(TyConApp TyCon
tc1 ThetaType
_) Type
ty2
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc1 = Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
go Type
ty1 ty2 :: Type
ty2@(TyConApp TyCon
tc2 ThetaType
_)
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc2 = Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
go (TyConApp TyCon
tc1 ThetaType
tys1) (TyConApp TyCon
tc2 ThetaType
tys2)
| TyCon
tc1 forall a. Eq a => a -> a -> Bool
== TyCon
tc2, forall a b. [a] -> [b] -> Bool
equalLength ThetaType
tys1 ThetaType
tys2
= forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (TyCon -> Role -> Bool
isGenerativeTyCon TyCon
tc1 Role
Nominal) (forall a. Outputable a => a -> SDoc
ppr TyCon
tc1) forall a b. (a -> b) -> a -> b
$
do { [Coercion]
cos <- forall (m :: * -> *) a b c d.
Monad m =>
(a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m [d]
zipWith3M (TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k) [CtOrigin]
origins' ThetaType
tys1 ThetaType
tys2
; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Nominal TyCon
tc1 [Coercion]
cos }
where
origins' :: [CtOrigin]
origins' = forall a b. (a -> b) -> [a] -> [b]
map (\Bool
is_vis -> if Bool
is_vis then CtOrigin
origin else CtOrigin -> CtOrigin
toInvisibleOrigin CtOrigin
origin)
(TyCon -> [Bool]
tcTyConVisibilities TyCon
tc1)
go (LitTy TyLit
m) ty :: Type
ty@(LitTy TyLit
n)
| TyLit
m forall a. Eq a => a -> a -> Bool
== TyLit
n
= forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Type -> Coercion
mkNomReflCo Type
ty
go (AppTy Type
s1 Type
t1) (AppTy Type
s2 Type
t2)
= Bool -> Type -> Type -> Type -> Type -> TcM Coercion
go_app (Type -> Bool
isNextArgVisible Type
s1) Type
s1 Type
t1 Type
s2 Type
t2
go (AppTy Type
s1 Type
t1) (TyConApp TyCon
tc2 ThetaType
ts2)
| Just (ThetaType
ts2', Type
t2') <- forall a. [a] -> Maybe ([a], a)
snocView ThetaType
ts2
= forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (TyCon -> Bool
mustBeSaturated TyCon
tc2)) forall a b. (a -> b) -> a -> b
$
Bool -> Type -> Type -> Type -> Type -> TcM Coercion
go_app (TyCon -> ThetaType -> Bool
isNextTyConArgVisible TyCon
tc2 ThetaType
ts2') Type
s1 Type
t1 (TyCon -> ThetaType -> Type
TyConApp TyCon
tc2 ThetaType
ts2') Type
t2'
go (TyConApp TyCon
tc1 ThetaType
ts1) (AppTy Type
s2 Type
t2)
| Just (ThetaType
ts1', Type
t1') <- forall a. [a] -> Maybe ([a], a)
snocView ThetaType
ts1
= forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (TyCon -> Bool
mustBeSaturated TyCon
tc1)) forall a b. (a -> b) -> a -> b
$
Bool -> Type -> Type -> Type -> Type -> TcM Coercion
go_app (TyCon -> ThetaType -> Bool
isNextTyConArgVisible TyCon
tc1 ThetaType
ts1') (TyCon -> ThetaType -> Type
TyConApp TyCon
tc1 ThetaType
ts1') Type
t1' Type
s2 Type
t2
go (CoercionTy Coercion
co1) (CoercionTy Coercion
co2)
= do { let ty1 :: Type
ty1 = Coercion -> Type
coercionType Coercion
co1
ty2 :: Type
ty2 = Coercion -> Type
coercionType Coercion
co2
; Coercion
kco <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
KindLevel
(Type -> Type -> CtOrigin -> Maybe TypeOrKind -> CtOrigin
KindEqOrigin Type
orig_ty1 Type
orig_ty2 CtOrigin
origin
(forall a. a -> Maybe a
Just TypeOrKind
t_or_k))
Type
ty1 Type
ty2
; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
Nominal Coercion
kco Coercion
co1 Coercion
co2 }
go Type
ty1 Type
ty2 = Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
defer :: Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
| Type
ty1 HasDebugCallStack => Type -> Type -> Bool
`tcEqType` Type
ty2 = forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
ty1)
| Bool
otherwise = TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin Type
ty1 Type
ty2
go_app :: Bool -> Type -> Type -> Type -> Type -> TcM Coercion
go_app Bool
vis Type
s1 Type
t1 Type
s2 Type
t2
= do { Coercion
co_s <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin Type
s1 Type
s2
; let arg_origin :: CtOrigin
arg_origin
| Bool
vis = CtOrigin
origin
| Bool
otherwise = CtOrigin -> CtOrigin
toInvisibleOrigin CtOrigin
origin
; Coercion
co_t <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
arg_origin Type
t1 Type
t2
; forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Coercion -> Coercion -> Coercion
mkAppCo Coercion
co_s Coercion
co_t }
uUnfilledVar :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar
-> TcTauType
-> TcM Coercion
uUnfilledVar :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 Type
ty2
= do { Type
ty2 <- Type -> TcM Type
zonkTcType Type
ty2
; CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar1 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 Type
ty2 }
uUnfilledVar1 :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar
-> TcTauType
-> TcM Coercion
uUnfilledVar1 :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar1 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 Type
ty2
| Just TcTyVar
tv2 <- Type -> Maybe TcTyVar
tcGetTyVar_maybe Type
ty2
= TcTyVar -> TcM Coercion
go TcTyVar
tv2
| Bool
otherwise
= CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 Type
ty2
where
go :: TcTyVar -> TcM Coercion
go TcTyVar
tv2 | TcTyVar
tv1 forall a. Eq a => a -> a -> Bool
== TcTyVar
tv2
= forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo (TcTyVar -> Type
mkTyVarTy TcTyVar
tv1))
| Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars Bool
False TcTyVar
tv1 TcTyVar
tv2
= do { TcTyVar
tv1 <- TcTyVar -> TcM TcTyVar
zonkTyCoVarKind TcTyVar
tv1
; CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k (SwapFlag -> SwapFlag
flipSwap SwapFlag
swapped)
TcTyVar
tv2 (TcTyVar -> Type
mkTyVarTy TcTyVar
tv1) }
| Bool
otherwise
= CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 Type
ty2
uUnfilledVar2 :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar
-> TcTauType
-> TcM Coercion
uUnfilledVar2 :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 Type
ty2
= do { TcLevel
cur_lvl <- TcM TcLevel
getTcLevel
; TcLevel -> TcM Coercion
go TcLevel
cur_lvl }
where
go :: TcLevel -> TcM Coercion
go TcLevel
cur_lvl
| TcLevel -> TcTyVar -> Bool
isTouchableMetaTyVar TcLevel
cur_lvl TcTyVar
tv1
, CheckTyEqResult -> Bool
cterHasNoProblem (TcTyVar -> Type -> CheckTyEqResult
checkTyVarEq TcTyVar
tv1 Type
ty2)
= do { Maybe Type
mb_continue_solving <- MetaInfo -> Type -> TcM (Maybe Type)
startSolvingByUnification (TcTyVar -> MetaInfo
metaTyVarInfo TcTyVar
tv1) Type
ty2
; case Maybe Type
mb_continue_solving of
{ Maybe Type
Nothing -> TcM Coercion
not_ok_so_defer
; Just Type
ty2 ->
do { Coercion
co_k <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
kind_origin (HasDebugCallStack => Type -> Type
tcTypeKind Type
ty2) (TcTyVar -> Type
tyVarKind TcTyVar
tv1)
; String -> SDoc -> TcM ()
traceTc String
"uUnfilledVar2 ok" forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (TcTyVar -> Type
tyVarKind TcTyVar
tv1)
, forall a. Outputable a => a -> SDoc
ppr Type
ty2 SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (HasDebugCallStack => Type -> Type
tcTypeKind Type
ty2)
, forall a. Outputable a => a -> SDoc
ppr (Coercion -> Bool
isTcReflCo Coercion
co_k), forall a. Outputable a => a -> SDoc
ppr Coercion
co_k ]
; if Coercion -> Bool
isTcReflCo Coercion
co_k
then do { HasDebugCallStack => TcTyVar -> Type -> TcM ()
writeMetaTyVar TcTyVar
tv1 Type
ty2
; forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkTcNomReflCo Type
ty2) }
else TcM Coercion
defer }}}
| Bool
otherwise
= TcM Coercion
not_ok_so_defer
ty1 :: Type
ty1 = TcTyVar -> Type
mkTyVarTy TcTyVar
tv1
kind_origin :: CtOrigin
kind_origin = Type -> Type -> CtOrigin -> Maybe TypeOrKind -> CtOrigin
KindEqOrigin Type
ty1 Type
ty2 CtOrigin
origin (forall a. a -> Maybe a
Just TypeOrKind
t_or_k)
defer :: TcM Coercion
defer = forall a b. SwapFlag -> (a -> a -> b) -> a -> a -> b
unSwap SwapFlag
swapped (TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin) Type
ty1 Type
ty2
not_ok_so_defer :: TcM Coercion
not_ok_so_defer =
do { String -> SDoc -> TcM ()
traceTc String
"uUnfilledVar2 not ok" (forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr Type
ty2)
; TcM Coercion
defer }
startSolvingByUnification :: MetaInfo -> TcType
-> TcM (Maybe TcType)
startSolvingByUnification :: MetaInfo -> Type -> TcM (Maybe Type)
startSolvingByUnification MetaInfo
_ Type
xi
| Type -> Bool
hasCoercionHoleTy Type
xi
= forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
startSolvingByUnification MetaInfo
info Type
xi
= case MetaInfo
info of
MetaInfo
CycleBreakerTv -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
ConcreteTv ConcreteTvOrigin
conc_orig ->
do { (Type
xi, [NotConcreteReason]
not_conc_reasons) <- ConcreteTvOrigin -> Type -> TcM (Type, [NotConcreteReason])
makeTypeConcrete ConcreteTvOrigin
conc_orig Type
xi
; case [NotConcreteReason]
not_conc_reasons of
[] -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just Type
xi
[NotConcreteReason]
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing }
MetaInfo
TyVarTv ->
case Type -> Maybe TcTyVar
tcGetTyVar_maybe Type
xi of
Maybe TcTyVar
Nothing -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
Just TcTyVar
tv ->
case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv of
SkolemTv {} -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just Type
xi
TcTyVarDetails
RuntimeUnk -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just Type
xi
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info } ->
case MetaInfo
info of
MetaInfo
TyVarTv -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just Type
xi
MetaInfo
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
MetaInfo
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just Type
xi
swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars Bool
is_given TcTyVar
tv1 TcTyVar
tv2
| Bool -> Bool
not Bool
is_given, Int
pri1 forall a. Eq a => a -> a -> Bool
== Int
0, Int
pri2 forall a. Ord a => a -> a -> Bool
> Int
0 = Bool
True
| Bool -> Bool
not Bool
is_given, Int
pri2 forall a. Eq a => a -> a -> Bool
== Int
0, Int
pri1 forall a. Ord a => a -> a -> Bool
> Int
0 = Bool
False
| TcLevel
lvl1 TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lvl2 = Bool
False
| TcLevel
lvl2 TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lvl1 = Bool
True
| Int
pri1 forall a. Ord a => a -> a -> Bool
> Int
pri2 = Bool
False
| Int
pri2 forall a. Ord a => a -> a -> Bool
> Int
pri1 = Bool
True
| Name -> Bool
isSystemName Name
tv2_name, Bool -> Bool
not (Name -> Bool
isSystemName Name
tv1_name) = Bool
True
| Bool
otherwise = Bool
False
where
lvl1 :: TcLevel
lvl1 = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv1
lvl2 :: TcLevel
lvl2 = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv2
pri1 :: Int
pri1 = TcTyVar -> Int
lhsPriority TcTyVar
tv1
pri2 :: Int
pri2 = TcTyVar -> Int
lhsPriority TcTyVar
tv2
tv1_name :: Name
tv1_name = TcTyVar -> Name
Var.varName TcTyVar
tv1
tv2_name :: Name
tv2_name = TcTyVar -> Name
Var.varName TcTyVar
tv2
lhsPriority :: TcTyVar -> Int
lhsPriority :: TcTyVar -> Int
lhsPriority TcTyVar
tv
= forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (TcTyVar -> Bool
isTyVar TcTyVar
tv) (forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv) forall a b. (a -> b) -> a -> b
$
case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv of
TcTyVarDetails
RuntimeUnk -> Int
0
SkolemTv {} -> Int
0
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info } -> case MetaInfo
info of
MetaInfo
CycleBreakerTv -> Int
0
MetaInfo
TyVarTv -> Int
1
ConcreteTv {} -> Int
2
MetaInfo
TauTv -> Int
3
MetaInfo
RuntimeUnkTv -> Int
4
matchExpectedFunKind
:: TypedThing
-> Arity
-> TcKind
-> TcM Coercion
matchExpectedFunKind :: TypedThing -> Int -> Type -> TcM Coercion
matchExpectedFunKind TypedThing
hs_ty Int
n Type
k = Int -> Type -> TcM Coercion
go Int
n Type
k
where
go :: Int -> Type -> TcM Coercion
go Int
0 Type
k = forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
k)
go Int
n Type
k | Just Type
k' <- Type -> Maybe Type
tcView Type
k = Int -> Type -> TcM Coercion
go Int
n Type
k'
go Int
n k :: Type
k@(TyVarTy TcTyVar
kvar)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
kvar
= do { MetaDetails
maybe_kind <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
kvar
; case MetaDetails
maybe_kind of
Indirect Type
fun_kind -> Int -> Type -> TcM Coercion
go Int
n Type
fun_kind
MetaDetails
Flexi -> Int -> Type -> TcM Coercion
defer Int
n Type
k }
go Int
n (FunTy { ft_mult :: Type -> Type
ft_mult = Type
w, ft_arg :: Type -> Type
ft_arg = Type
arg, ft_res :: Type -> Type
ft_res = Type
res })
= do { Coercion
co <- Int -> Type -> TcM Coercion
go (Int
nforall a. Num a => a -> a -> a
-Int
1) Type
res
; forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Coercion -> Coercion -> Coercion -> Coercion
mkTcFunCo Role
Nominal (Type -> Coercion
mkTcNomReflCo Type
w) (Type -> Coercion
mkTcNomReflCo Type
arg) Coercion
co) }
go Int
n Type
other
= Int -> Type -> TcM Coercion
defer Int
n Type
other
defer :: Int -> Type -> TcM Coercion
defer Int
n Type
k
= do { ThetaType
arg_kinds <- Int -> TcM ThetaType
newMetaKindVars Int
n
; Type
res_kind <- TcM Type
newMetaKindVar
; let new_fun :: Type
new_fun = ThetaType -> Type -> Type
mkVisFunTysMany ThetaType
arg_kinds Type
res_kind
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
k
, uo_expected :: Type
uo_expected = Type
new_fun
, uo_thing :: Maybe TypedThing
uo_thing = forall a. a -> Maybe a
Just TypedThing
hs_ty
, uo_visible :: Bool
uo_visible = Bool
True
}
; TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
origin Type
k Type
new_fun }
{-# NOINLINE checkTyVarEq #-}
checkTyVarEq :: TcTyVar -> TcType -> CheckTyEqResult
checkTyVarEq :: TcTyVar -> Type -> CheckTyEqResult
checkTyVarEq TcTyVar
tv Type
ty
= forall a. a -> a
inline CanEqLHS -> Type -> CheckTyEqResult
checkTypeEq (TcTyVar -> CanEqLHS
TyVarLHS TcTyVar
tv) Type
ty
{-# NOINLINE checkTyFamEq #-}
checkTyFamEq :: TyCon
-> [TcType]
-> TcType
-> CheckTyEqResult
checkTyFamEq :: TyCon -> ThetaType -> Type -> CheckTyEqResult
checkTyFamEq TyCon
fun_tc ThetaType
fun_args Type
ty
= forall a. a -> a
inline CanEqLHS -> Type -> CheckTyEqResult
checkTypeEq (TyCon -> ThetaType -> CanEqLHS
TyFamLHS TyCon
fun_tc ThetaType
fun_args) Type
ty
CheckTyEqResult -> CheckTyEqProblem -> CheckTyEqResult
`cterRemoveProblem` CheckTyEqProblem
cteTypeFamily
checkTypeEq :: CanEqLHS -> TcType -> CheckTyEqResult
checkTypeEq :: CanEqLHS -> Type -> CheckTyEqResult
checkTypeEq CanEqLHS
lhs Type
ty
= Type -> CheckTyEqResult
go Type
ty
where
impredicative :: CheckTyEqResult
impredicative = CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteImpredicative
type_family :: CheckTyEqResult
type_family = CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteTypeFamily
insoluble_occurs :: CheckTyEqResult
insoluble_occurs = CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteInsolubleOccurs
soluble_occurs :: CheckTyEqResult
soluble_occurs = CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteSolubleOccurs
ghci_tv :: Bool
ghci_tv
| TyVarLHS TcTyVar
tv <- CanEqLHS
lhs
, MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
RuntimeUnkTv } <- TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv
= Bool
True
| Bool
otherwise
= Bool
False
go :: TcType -> CheckTyEqResult
go :: Type -> CheckTyEqResult
go (TyVarTy TcTyVar
tv') = TcTyVar -> CheckTyEqResult
go_tv TcTyVar
tv'
go (TyConApp TyCon
tc ThetaType
tys) = TyCon -> ThetaType -> CheckTyEqResult
go_tc TyCon
tc ThetaType
tys
go (LitTy {}) = CheckTyEqResult
cteOK
go (FunTy {ft_af :: Type -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_mult :: Type -> Type
ft_mult = Type
w, ft_arg :: Type -> Type
ft_arg = Type
a, ft_res :: Type -> Type
ft_res = Type
r})
= Type -> CheckTyEqResult
go Type
w forall a. Semigroup a => a -> a -> a
S.<> Type -> CheckTyEqResult
go Type
a forall a. Semigroup a => a -> a -> a
S.<> Type -> CheckTyEqResult
go Type
r forall a. Semigroup a => a -> a -> a
S.<>
if Bool -> Bool
not Bool
ghci_tv Bool -> Bool -> Bool
&& AnonArgFlag
af forall a. Eq a => a -> a -> Bool
== AnonArgFlag
InvisArg
then CheckTyEqResult
impredicative
else CheckTyEqResult
cteOK
go (AppTy Type
fun Type
arg) = Type -> CheckTyEqResult
go Type
fun forall a. Semigroup a => a -> a -> a
S.<> Type -> CheckTyEqResult
go Type
arg
go (CastTy Type
ty Coercion
co) = Type -> CheckTyEqResult
go Type
ty forall a. Semigroup a => a -> a -> a
S.<> Coercion -> CheckTyEqResult
go_co Coercion
co
go (CoercionTy Coercion
co) = Coercion -> CheckTyEqResult
go_co Coercion
co
go (ForAllTy (Bndr TcTyVar
tv' ArgFlag
_) Type
ty) = (case CanEqLHS
lhs of
TyVarLHS TcTyVar
tv | TcTyVar
tv forall a. Eq a => a -> a -> Bool
== TcTyVar
tv' -> Type -> CheckTyEqResult
go_occ (TcTyVar -> Type
tyVarKind TcTyVar
tv') forall a. Semigroup a => a -> a -> a
S.<> CheckTyEqResult -> CheckTyEqResult
cterClearOccursCheck (Type -> CheckTyEqResult
go Type
ty)
| Bool
otherwise -> Type -> CheckTyEqResult
go_occ (TcTyVar -> Type
tyVarKind TcTyVar
tv') forall a. Semigroup a => a -> a -> a
S.<> Type -> CheckTyEqResult
go Type
ty
CanEqLHS
_ -> Type -> CheckTyEqResult
go Type
ty)
forall a. Semigroup a => a -> a -> a
S.<>
if Bool
ghci_tv then CheckTyEqResult
cteOK else CheckTyEqResult
impredicative
go_tv :: TcTyVar -> CheckTyEqResult
go_tv :: TcTyVar -> CheckTyEqResult
go_tv = case CanEqLHS
lhs of
TyVarLHS TcTyVar
tv -> \ TcTyVar
tv' -> Type -> CheckTyEqResult
go_occ (TcTyVar -> Type
tyVarKind TcTyVar
tv') forall a. Semigroup a => a -> a -> a
S.<>
if TcTyVar
tv forall a. Eq a => a -> a -> Bool
== TcTyVar
tv' then CheckTyEqResult
insoluble_occurs else CheckTyEqResult
cteOK
TyFamLHS {} -> \ TcTyVar
_tv' -> CheckTyEqResult
cteOK
go_occ :: Type -> CheckTyEqResult
go_occ Type
k = CheckTyEqResult -> CheckTyEqResult
cterFromKind forall a b. (a -> b) -> a -> b
$ Type -> CheckTyEqResult
go Type
k
go_tc :: TyCon -> [TcType] -> CheckTyEqResult
go_tc :: TyCon -> ThetaType -> CheckTyEqResult
go_tc = case CanEqLHS
lhs of
TyVarLHS {} -> \ TyCon
tc ThetaType
tys -> TyCon -> CheckTyEqResult
check_tc TyCon
tc forall a. Semigroup a => a -> a -> a
S.<> TyCon -> ThetaType -> CheckTyEqResult
go_tc_args TyCon
tc ThetaType
tys
TyFamLHS TyCon
fam_tc ThetaType
fam_args -> \ TyCon
tc ThetaType
tys ->
if TyCon -> ThetaType -> TyCon -> ThetaType -> Bool
tcEqTyConApps TyCon
fam_tc ThetaType
fam_args TyCon
tc ThetaType
tys
then CheckTyEqResult
insoluble_occurs
else TyCon -> CheckTyEqResult
check_tc TyCon
tc forall a. Semigroup a => a -> a -> a
S.<> TyCon -> ThetaType -> CheckTyEqResult
go_tc_args TyCon
tc ThetaType
tys
go_tc_args :: TyCon -> [TcType] -> CheckTyEqResult
go_tc_args :: TyCon -> ThetaType -> CheckTyEqResult
go_tc_args TyCon
tc ThetaType
tys | TyCon -> Role -> Bool
isGenerativeTyCon TyCon
tc Role
Nominal = forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Type -> CheckTyEqResult
go ThetaType
tys
| Bool
otherwise
= let (ThetaType
tf_args, ThetaType
non_tf_args) = forall a. Int -> [a] -> ([a], [a])
splitAt (TyCon -> Int
tyConArity TyCon
tc) ThetaType
tys in
CheckTyEqResult -> CheckTyEqResult
cterSetOccursCheckSoluble (forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Type -> CheckTyEqResult
go ThetaType
tf_args) forall a. Semigroup a => a -> a -> a
S.<> forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Type -> CheckTyEqResult
go ThetaType
non_tf_args
go_co :: Coercion -> CheckTyEqResult
go_co Coercion
co | TyVarLHS TcTyVar
tv <- CanEqLHS
lhs
, TcTyVar
tv TcTyVar -> VarSet -> Bool
`elemVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
co
= CheckTyEqResult
soluble_occurs
| Bool
otherwise
= CheckTyEqResult
cteOK
check_tc :: TyCon -> CheckTyEqResult
check_tc :: TyCon -> CheckTyEqResult
check_tc
| Bool
ghci_tv = \ TyCon
_tc -> CheckTyEqResult
cteOK
| Bool
otherwise = \ TyCon
tc -> (if TyCon -> Bool
isTauTyCon TyCon
tc then CheckTyEqResult
cteOK else CheckTyEqResult
impredicative) forall a. Semigroup a => a -> a -> a
S.<>
(if TyCon -> Bool
isFamFreeTyCon TyCon
tc then CheckTyEqResult
cteOK else CheckTyEqResult
type_family)