xml-conduit-1.8.0: Pure-Haskell utilities for dealing with XML with the conduit package.

Safe HaskellNone
LanguageHaskell98

Text.XML.Stream.Parse

Contents

Description

This module provides both a native Haskell solution for parsing XML documents into a stream of events, and a set of parser combinators for dealing with a stream of events.

As a simple example, if you have the following XML file:

<?xml version="1.0" encoding="utf-8"?>
<people>
    <person age="25">Michael</person>
    <person age="2">Eliezer</person>
</people>

Then this code:

{-# LANGUAGE OverloadedStrings #-}
import Control.Monad.Trans.Resource
import Data.Conduit (Consumer, Sink, ($$))
import Data.Text (Text, unpack)
import Text.XML.Stream.Parse
import Data.XML.Types (Event)

data Person = Person Int Text
    deriving Show

parsePerson :: MonadThrow m => ConduitT Event o m (Maybe Person)
parsePerson = tag' "person" (requireAttr "age") $ \age -> do
    name <- content
    return $ Person (read $ unpack age) name

parsePeople :: MonadThrow m => Sink Event m (Maybe [Person])
parsePeople = tagNoAttr "people" $ many parsePerson

main = do
    people <- runResourceT $
            parseFile def "people.xml" $$ force "people required" parsePeople
    print people

will produce:

[Person 25 "Michael",Person 2 "Eliezer"]

This module also supports streaming results using yield. This allows parser results to be processed using conduits while a particular parser (e.g. many) is still running. Without using streaming results, you have to wait until the parser finished before you can process the result list. Large XML files might be easier to process by using streaming results. See http://stackoverflow.com/q/21367423/2597135 for a related discussion.

{-# LANGUAGE OverloadedStrings #-}
import Control.Monad (void)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Resource
import Data.Conduit
import qualified Data.Conduit.List as CL
import Data.Text (Text, unpack)
import Data.XML.Types (Event)
import Text.XML.Stream.Parse

data Person = Person Int Text deriving Show

parsePerson :: MonadThrow m => ConduitT Event o m (Maybe Person)
parsePerson = tag' "person" (requireAttr "age") $ \age -> do
    name <- content
    return $ Person (read $ unpack age) name

parsePeople :: MonadThrow m => Conduit Event m Person
parsePeople = void $ tagNoAttr "people" $ manyYield parsePerson

main = runResourceT $
    parseFile def "people.xml" $$ parsePeople .| CL.mapM_ (lift . print)

Previous versions of this module contained a number of more sophisticated functions written by Aristid Breitkreuz and Dmitry Olshansky. To keep this package simpler, those functions are being moved to a separate package. This note will be updated with the name of the package(s) when available.

Synopsis

Parsing XML files

parseBytes :: MonadThrow m => ParseSettings -> ConduitT ByteString Event m () Source #

Parses a byte stream into Events. This function is implemented fully in Haskell using attoparsec-text for parsing. The produced error messages do not give line/column information, so you may prefer to stick with the parser provided by libxml-enumerator. However, this has the advantage of not relying on any C libraries.

This relies on detectUtf to determine character encoding, and parseText' to do the actual parsing.

parseText' :: MonadThrow m => ParseSettings -> ConduitT Text Event m () Source #

Parses a character stream into Events. This function is implemented fully in Haskell using attoparsec-text for parsing. The produced error messages do not give line/column information, so you may prefer to stick with the parser provided by libxml-enumerator. However, this has the advantage of not relying on any C libraries.

Since 1.2.4

parseTextPos :: MonadThrow m => ParseSettings -> ConduitT Text EventPos m () Source #

Same as parseText', but includes the position of each event.

Since 1.2.4

detectUtf :: MonadThrow m => ConduitT ByteString Text m () Source #

Automatically determine which UTF variant is being used. This function first checks for BOMs, removing them as necessary, and then check for the equivalent of <?xml for each of UTF-8, UTF-16LEBE, and UTF-32LEBE. It defaults to assuming UTF-8.

parseFile :: MonadResource m => ParseSettings -> FilePath -> ConduitT i Event m () Source #

A helper function which reads a file from disk using enumFile, detects character encoding using detectUtf, parses the XML using parseBytes, and then hands off control to your supplied parser.

parseLBS :: MonadThrow m => ParseSettings -> ByteString -> ConduitT i Event m () Source #

Parse an event stream from a lazy ByteString.

Parser settings

def :: Default a => a #

The default value for this type.

psDecodeIllegalCharacters :: ParseSettings -> DecodeIllegalCharacters Source #

How to decode illegal character references (&#[0-9]+; or &#x[0-9a-fA-F]+;).

Character references within the legal ranges defined by the standard are automatically parsed. Others are passed to this function.

Default: const Nothing

Since 1.7.1

psRetainNamespaces :: ParseSettings -> Bool Source #

Whether the original xmlns attributes should be retained in the parsed values. For more information on motivation, see:

https://github.com/snoyberg/xml/issues/38

Default: False

Since 1.2.1

Entity decoding

decodeXmlEntities :: DecodeEntities Source #

Default implementation of DecodeEntities, which leaves the entity as-is. Numeric character references and the five standard entities (lt, gt, amp, quot, pos) are handled internally by the parser.

decodeHtmlEntities :: DecodeEntities Source #

HTML4-compliant entity decoder. Handles the additional 248 entities defined by HTML 4 and XHTML 1.

Note that HTML 5 introduces a drastically larger number of entities, and this code does not recognize most of them.

Event parsing

tag Source #

Arguments

:: MonadThrow m 
=> NameMatcher a

Check if this is a correct tag name and return a value that can be used to get an AttrParser. If this fails, the function will return Nothing

-> (a -> AttrParser b)

Given the value returned by the name checker, this function will be used to get an AttrParser appropriate for the specific tag. If the AttrParser fails, the function will also return Nothing

-> (b -> ConduitT Event o m c)

Handler function to handle the attributes and children of a tag, given the value return from the AttrParser

-> ConduitT Event o m (Maybe c) 

The most generic way to parse a tag. It takes a NameMatcher to check whether this is a correct tag name, an AttrParser to handle attributes, and then a parser to deal with content.

Events are consumed if and only if the tag name and its attributes match.

This function automatically absorbs its balancing closing tag, and will throw an exception if not all of the attributes or child elements are consumed. If you want to allow extra attributes, see ignoreAttrs.

This function automatically ignores comments, instructions and whitespace.

tag' :: MonadThrow m => NameMatcher a -> AttrParser b -> (b -> ConduitT Event o m c) -> ConduitT Event o m (Maybe c) Source #

A simplified version of tag where the NameMatcher result isn't forwarded to the attributes parser.

Since 1.5.0

tagNoAttr Source #

Arguments

:: MonadThrow m 
=> NameMatcher a

Check if this is a correct tag name

-> ConduitT Event o m b

Handler function to handle the children of the matched tag

-> ConduitT Event o m (Maybe b) 

A further simplified tag parser, which requires that no attributes exist.

tagIgnoreAttrs Source #

Arguments

:: MonadThrow m 
=> NameMatcher a

Check if this is a correct tag name

-> ConduitT Event o m b

Handler function to handle the children of the matched tag

-> ConduitT Event o m (Maybe b) 

A further simplified tag parser, which ignores all attributes, if any exist

content :: MonadThrow m => ConduitT Event o m Text Source #

Grabs the next piece of content. If none if available, returns empty. This is simply a wrapper around contentMaybe.

contentMaybe :: MonadThrow m => ConduitT Event o m (Maybe Text) Source #

Grabs the next piece of content if available. This function skips over any comments and instructions and concatenates all content until the next start or end tag.

Ignoring tags/trees

ignoreTag Source #

Arguments

:: MonadThrow m 
=> NameMatcher a

Check if this is a correct tag name

-> ConduitT Event o m (Maybe ()) 

Deprecated: Please use ignoreEmptyTag.

ignoreEmptyTag Source #

Arguments

:: MonadThrow m 
=> NameMatcher a

Check if this is a correct tag name

-> ConduitT Event o m (Maybe ()) 

Ignore an empty tag and all of its attributes. This does not ignore the tag recursively (i.e. it assumes there are no child elements). This function returns Just () if the tag matched.

Since 1.5.0

ignoreTree Source #

Arguments

:: MonadThrow m 
=> NameMatcher a

Check if this is a correct tag name

-> ConduitT Event o m (Maybe ()) 

Deprecated: Please use ignoreTreeContent.

ignoreTreeContent Source #

Arguments

:: MonadThrow m 
=> NameMatcher a

Check if this is a correct tag name

-> ConduitT Event o m (Maybe ()) 

Ignore a tag, its attributes and its children subtrees recursively. Both content and text events are ignored. This function returns Just () if the tag matched.

Since 1.5.0

ignoreAnyTreeContent :: MonadThrow m => ConduitT Event o m (Maybe ()) Source #

Like ignoreTreeContent, but matches any name and also ignores content events.

Streaming events

takeContent :: MonadThrow m => ConduitT Event Event m (Maybe ()) Source #

Stream a content Event. If next event isn't a content, nothing is consumed.

Returns Just () if a content Event was consumed, Nothing otherwise.

Since 1.5.0

takeTree :: MonadThrow m => NameMatcher a -> AttrParser b -> ConduitT Event Event m (Maybe ()) Source #

Stream Events corresponding to a single element that matches given NameMatcher and AttrParser, from the opening- to the closing-tag.

If next Event isn't an element, nothing is consumed.

If an opening-tag is consumed but no matching closing-tag is found, an XmlException is thrown.

This function automatically ignores comments, instructions and whitespace.

Returns Just () if an element was consumed, Nothing otherwise.

Since 1.5.0

takeTreeContent :: MonadThrow m => NameMatcher a -> AttrParser b -> ConduitT Event Event m (Maybe ()) Source #

Like takeTree, but can also stream a content Event.

Since 1.5.0

takeAnyTreeContent :: MonadThrow m => ConduitT Event Event m (Maybe ()) Source #

Like takeTreeContent, without checking for tag name or attributes.

>>> runResourceT $ parseLBS def "text<a></a>" $$ takeAnyTreeContent .| consume
Just [ EventContent (ContentText "text") ]
>>> runResourceT $ parseLBS def "</a><b></b>" $$ takeAnyTreeContent .| consume
Just [ ]
>>> runResourceT $ parseLBS def "<b><c></c></b></a>text" $$ takeAnyTreeContent .| consume
Just [ EventBeginElement "b" [], EventBeginElement "c" [], EventEndElement "c", EventEndElement "b" ]

Since 1.5.0

Tag name matching

newtype NameMatcher a Source #

A NameMatcher describes which names a tag parser is allowed to match.

Since 1.5.0

Constructors

NameMatcher 

Fields

Instances

Functor NameMatcher Source # 

Methods

fmap :: (a -> b) -> NameMatcher a -> NameMatcher b #

(<$) :: a -> NameMatcher b -> NameMatcher a #

Applicative NameMatcher Source # 

Methods

pure :: a -> NameMatcher a #

(<*>) :: NameMatcher (a -> b) -> NameMatcher a -> NameMatcher b #

liftA2 :: (a -> b -> c) -> NameMatcher a -> NameMatcher b -> NameMatcher c #

(*>) :: NameMatcher a -> NameMatcher b -> NameMatcher b #

(<*) :: NameMatcher a -> NameMatcher b -> NameMatcher a #

Alternative NameMatcher Source #

NameMatchers can be combined with <|>

(~) * a Name => IsString (NameMatcher a) Source #

Match a single Name in a concise way. Note that Name is namespace sensitive: when using the IsString instance, use "{http://a/b}c" to match the tag c in the XML namespace http://a/b

matching :: (Name -> Bool) -> NameMatcher Name Source #

matching f matches name iff f name is true. Returns the matched Name.

Since 1.5.0

anyOf :: [Name] -> NameMatcher Name Source #

Matches any Name from the given list. Returns the matched Name.

Since 1.5.0

anyName :: NameMatcher Name Source #

Matches any Name. Returns the matched Name.

Since 1.5.0

Attribute parsing

data AttrParser a Source #

A monad for parsing attributes. By default, it requires you to deal with all attributes present on an element, and will throw an exception if there are unhandled attributes. Use the requireAttr, attr et al functions for handling an attribute, and ignoreAttrs if you would like to skip the rest of the attributes on an element.

Alternative instance behaves like First monoid: it chooses first parser which doesn't fail.

attr :: Name -> AttrParser (Maybe Text) Source #

Return the value for an attribute if present.

requireAttr :: Name -> AttrParser Text Source #

Shortcut composition of force and attr.

optionalAttr :: Name -> AttrParser (Maybe Text) Source #

Deprecated: Please use attr.

ignoreAttrs :: AttrParser () Source #

Skip the remaining attributes on an element. Since this will clear the list of attributes, you must call this after any calls to requireAttr, optionalAttr, etc.

Combinators

orE Source #

Arguments

:: Monad m 
=> ConduitT Event o m (Maybe a)

The first (preferred) parser

-> ConduitT Event o m (Maybe a)

The second parser, only executed if the first parser fails

-> ConduitT Event o m (Maybe a) 

Get the value of the first parser which returns Just. If no parsers succeed (i.e., return Just), this function returns Nothing.

orE a b = choose [a, b]

choose Source #

Arguments

:: Monad m 
=> [ConduitT Event o m (Maybe a)]

List of parsers that will be tried in order.

-> ConduitT Event o m (Maybe a)

Result of the first parser to succeed, or Nothing if no parser succeeded

Get the value of the first parser which returns Just. If no parsers succeed (i.e., return Just), this function returns Nothing.

many :: Monad m => ConduitT Event o m (Maybe a) -> ConduitT Event o m [a] Source #

Keep parsing elements as long as the parser returns Just.

many_ :: MonadThrow m => ConduitT Event o m (Maybe a) -> ConduitT Event o m () Source #

Like many but discards the results without building an intermediate list.

Since 1.5.0

manyIgnore :: Monad m => ConduitT Event o m (Maybe a) -> ConduitT Event o m (Maybe b) -> ConduitT Event o m [a] Source #

Keep parsing elements as long as the parser returns Just or the ignore parser returns Just.

many' :: MonadThrow m => ConduitT Event o m (Maybe a) -> ConduitT Event o m [a] Source #

Like many, but any tags and content the consumer doesn't match on are silently ignored.

force Source #

Arguments

:: MonadThrow m 
=> String

Error message

-> m (Maybe a)

Optional parser to be forced

-> m a 

Force an optional parser into a required parser. All of the tag functions, attr, choose and many deal with Maybe parsers. Use this when you want to finally force something to happen.

Streaming combinators

manyYield :: Monad m => ConduitT a b m (Maybe b) -> ConduitT a b m () Source #

Like many, but uses yield so the result list can be streamed to downstream conduits without waiting for manyYield to finish

manyYield' :: MonadThrow m => ConduitT Event b m (Maybe b) -> ConduitT Event b m () Source #

Like many', but uses yield so the result list can be streamed to downstream conduits without waiting for manyYield' to finish

manyIgnoreYield Source #

Arguments

:: MonadThrow m 
=> ConduitT Event b m (Maybe b)

Consuming parser that generates the result stream

-> ConduitT Event b m (Maybe ())

Ignore parser that consumes elements to be ignored

-> ConduitT Event b m () 

Like manyIgnore, but uses yield so the result list can be streamed to downstream conduits without waiting for manyIgnoreYield to finish

Exceptions

Other types