{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ViewPatterns #-}
module What4.Expr.Simplify
( simplify
, count_subterms
) where
import Control.Lens ((^.))
import Control.Monad.ST
import Control.Monad.State
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map
import Data.Maybe
import qualified Data.Parameterized.HashTable as PH
import Data.Parameterized.Nonce
import Data.Parameterized.TraversableFC
import Data.Word
import What4.Interface
import qualified What4.SemiRing as SR
import What4.Expr.Builder
import qualified What4.Expr.WeightedSum as WSum
data NormCache t st fs
= NormCache { NormCache t st fs -> ExprBuilder t st fs
ncBuilder :: !(ExprBuilder t st fs)
, NormCache t st fs -> HashTable RealWorld (Expr t) (Expr t)
ncTable :: !(PH.HashTable RealWorld (Expr t) (Expr t))
}
norm :: NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm :: NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
c Expr t tp
e = do
Maybe (Expr t tp)
mr <- ST RealWorld (Maybe (Expr t tp)) -> IO (Maybe (Expr t tp))
forall a. ST RealWorld a -> IO a
stToIO (ST RealWorld (Maybe (Expr t tp)) -> IO (Maybe (Expr t tp)))
-> ST RealWorld (Maybe (Expr t tp)) -> IO (Maybe (Expr t tp))
forall a b. (a -> b) -> a -> b
$ HashTable RealWorld (Expr t) (Expr t)
-> Expr t tp -> ST RealWorld (Maybe (Expr t tp))
forall k (key :: k -> Type) s (val :: k -> Type) (tp :: k).
(HashableF key, TestEquality key) =>
HashTable s key val -> key tp -> ST s (Maybe (val tp))
PH.lookup (NormCache t st fs -> HashTable RealWorld (Expr t) (Expr t)
forall t (st :: Type -> Type) fs.
NormCache t st fs -> HashTable RealWorld (Expr t) (Expr t)
ncTable NormCache t st fs
c) Expr t tp
e
case Maybe (Expr t tp)
mr of
Just Expr t tp
r -> Expr t tp -> IO (Expr t tp)
forall (m :: Type -> Type) a. Monad m => a -> m a
return Expr t tp
r
Maybe (Expr t tp)
Nothing -> do
Expr t tp
r <- NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
HashableF (Expr t) =>
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm' NormCache t st fs
c Expr t tp
e
ST RealWorld () -> IO ()
forall a. ST RealWorld a -> IO a
stToIO (ST RealWorld () -> IO ()) -> ST RealWorld () -> IO ()
forall a b. (a -> b) -> a -> b
$ HashTable RealWorld (Expr t) (Expr t)
-> Expr t tp -> Expr t tp -> ST RealWorld ()
forall k (key :: k -> Type) s (val :: k -> Type) (tp :: k).
(HashableF key, TestEquality key) =>
HashTable s key val -> key tp -> val tp -> ST s ()
PH.insert (NormCache t st fs -> HashTable RealWorld (Expr t) (Expr t)
forall t (st :: Type -> Type) fs.
NormCache t st fs -> HashTable RealWorld (Expr t) (Expr t)
ncTable NormCache t st fs
c) Expr t tp
e Expr t tp
r
Expr t tp -> IO (Expr t tp)
forall (m :: Type -> Type) a. Monad m => a -> m a
return Expr t tp
r
bvIteDist :: (BoolExpr t -> r -> r -> IO r)
-> Expr t i
-> (Expr t i -> IO r)
-> IO r
bvIteDist :: (BoolExpr t -> r -> r -> IO r)
-> Expr t i -> (Expr t i -> IO r) -> IO r
bvIteDist BoolExpr t -> r -> r -> IO r
muxFn (Expr t i -> Maybe (App (Expr t) i)
forall t (tp :: BaseType). Expr t tp -> Maybe (App (Expr t) tp)
asApp -> Just (BaseIte BaseTypeRepr i
_ Integer
_ BoolExpr t
c Expr t i
t Expr t i
f)) Expr t i -> IO r
atomFn = do
r
t' <- (BoolExpr t -> r -> r -> IO r)
-> Expr t i -> (Expr t i -> IO r) -> IO r
forall t r (i :: BaseType).
(BoolExpr t -> r -> r -> IO r)
-> Expr t i -> (Expr t i -> IO r) -> IO r
bvIteDist BoolExpr t -> r -> r -> IO r
muxFn Expr t i
t Expr t i -> IO r
atomFn
r
f' <- (BoolExpr t -> r -> r -> IO r)
-> Expr t i -> (Expr t i -> IO r) -> IO r
forall t r (i :: BaseType).
(BoolExpr t -> r -> r -> IO r)
-> Expr t i -> (Expr t i -> IO r) -> IO r
bvIteDist BoolExpr t -> r -> r -> IO r
muxFn Expr t i
f Expr t i -> IO r
atomFn
BoolExpr t -> r -> r -> IO r
muxFn BoolExpr t
c r
t' r
f'
bvIteDist BoolExpr t -> r -> r -> IO r
_ Expr t i
u Expr t i -> IO r
atomFn = Expr t i -> IO r
atomFn Expr t i
u
newtype Or x = Or {Or x -> Bool
unOr :: Bool}
instance Functor Or where
fmap :: (a -> b) -> Or a -> Or b
fmap a -> b
_f (Or Bool
b) = (Bool -> Or b
forall k (x :: k). Bool -> Or x
Or Bool
b)
instance Applicative Or where
pure :: a -> Or a
pure a
_ = Bool -> Or a
forall k (x :: k). Bool -> Or x
Or Bool
False
(Or Bool
a) <*> :: Or (a -> b) -> Or a -> Or b
<*> (Or Bool
b) = Bool -> Or b
forall k (x :: k). Bool -> Or x
Or (Bool
a Bool -> Bool -> Bool
|| Bool
b)
norm' :: forall t st fs tp . PH.HashableF (Expr t) => NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm' :: NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm' NormCache t st fs
nc (AppExpr AppExpr t tp
a0) = do
let sb :: ExprBuilder t st fs
sb = NormCache t st fs -> ExprBuilder t st fs
forall t (st :: Type -> Type) fs.
NormCache t st fs -> ExprBuilder t st fs
ncBuilder NormCache t st fs
nc
case AppExpr t tp -> App (Expr t) tp
forall t (tp :: BaseType). AppExpr t tp -> App (Expr t) tp
appExprApp AppExpr t tp
a0 of
SemiRingSum WeightedSum (Expr t) sr
s
| let sr :: SemiRingRepr sr
sr = WeightedSum (Expr t) sr -> SemiRingRepr sr
forall (f :: BaseType -> Type) (sr :: SemiRing).
WeightedSum f sr -> SemiRingRepr sr
WSum.sumRepr WeightedSum (Expr t) sr
s
, SR.SemiRingBVRepr BVFlavorRepr fv
SR.BVArithRepr NatRepr w
w <- SemiRingRepr sr
sr
, Or (WeightedSum (Expr t) sr) -> Bool
forall k (x :: k). Or x -> Bool
unOr ((Expr t (SemiRingBase sr) -> Or (Expr t (SemiRingBase sr)))
-> WeightedSum (Expr t) sr -> Or (WeightedSum (Expr t) sr)
forall (k :: BaseType -> Type) (j :: BaseType -> Type)
(m :: Type -> Type) (sr :: SemiRing).
(Applicative m, Tm k) =>
(j (SemiRingBase sr) -> m (k (SemiRingBase sr)))
-> WeightedSum j sr -> m (WeightedSum k sr)
WSum.traverseVars @(Expr t) (\Expr t (SemiRingBase sr)
x -> Bool -> Or (Expr t (BaseBVType w))
forall k (x :: k). Bool -> Or x
Or (Expr t (BaseBVType w) -> Integer
forall t (tp :: BaseType). Expr t tp -> Integer
iteSize Expr t (BaseBVType w)
Expr t (SemiRingBase sr)
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
1)) WeightedSum (Expr t) sr
s)
-> do let tms :: [(BV w, Expr t (BaseBVType w))]
tms = ([(BV w, Expr t (BaseBVType w))]
-> [(BV w, Expr t (BaseBVType w))]
-> [(BV w, Expr t (BaseBVType w))])
-> (Coefficient sr
-> Expr t (SemiRingBase sr) -> [(BV w, Expr t (BaseBVType w))])
-> (Coefficient sr -> [(BV w, Expr t (BaseBVType w))])
-> WeightedSum (Expr t) sr
-> [(BV w, Expr t (BaseBVType w))]
forall r (sr :: SemiRing) (f :: BaseType -> Type).
(r -> r -> r)
-> (Coefficient sr -> f (SemiRingBase sr) -> r)
-> (Coefficient sr -> r)
-> WeightedSum f sr
-> r
WSum.eval [(BV w, Expr t (BaseBVType w))]
-> [(BV w, Expr t (BaseBVType w))]
-> [(BV w, Expr t (BaseBVType w))]
forall a. [a] -> [a] -> [a]
(++) (\Coefficient sr
c Expr t (SemiRingBase sr)
x -> [(BV w
Coefficient sr
c,Expr t (BaseBVType w)
Expr t (SemiRingBase sr)
x)]) ([(BV w, Expr t (BaseBVType w))]
-> BV w -> [(BV w, Expr t (BaseBVType w))]
forall a b. a -> b -> a
const []) WeightedSum (Expr t) sr
s
let f :: [(BV w, Expr t (BaseBVType w))]
-> (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp)
f [] Expr t tp -> IO (Expr t tp)
k = ExprBuilder t st fs
-> NatRepr w -> BV w -> IO (SymBV (ExprBuilder t st fs) w)
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> NatRepr w -> BV w -> IO (SymBV sym w)
bvLit ExprBuilder t st fs
sb NatRepr w
w (WeightedSum (Expr t) sr
sWeightedSum (Expr t) sr
-> Getting (BV w) (WeightedSum (Expr t) sr) (BV w) -> BV w
forall s a. s -> Getting a s a -> a
^.Getting (BV w) (WeightedSum (Expr t) sr) (BV w)
forall (f :: BaseType -> Type) (sr :: SemiRing).
Lens' (WeightedSum f sr) (Coefficient sr)
WSum.sumOffset) IO (Expr t tp) -> (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= Expr t tp -> IO (Expr t tp)
k
f ((BV w
c,Expr t (BaseBVType w)
x):[(BV w, Expr t (BaseBVType w))]
xs) Expr t tp -> IO (Expr t tp)
k =
(BoolExpr t -> Expr t tp -> Expr t tp -> IO (Expr t tp))
-> Expr t (BaseBVType w)
-> (Expr t (BaseBVType w) -> IO (Expr t tp))
-> IO (Expr t tp)
forall t r (i :: BaseType).
(BoolExpr t -> r -> r -> IO r)
-> Expr t i -> (Expr t i -> IO r) -> IO r
bvIteDist (ExprBuilder t st fs
-> Pred (ExprBuilder t st fs)
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (SymBV (ExprBuilder t st fs) w)
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> Pred sym -> SymBV sym w -> SymBV sym w -> IO (SymBV sym w)
bvIte ExprBuilder t st fs
sb) Expr t (BaseBVType w)
x ((Expr t (BaseBVType w) -> IO (Expr t tp)) -> IO (Expr t tp))
-> (Expr t (BaseBVType w) -> IO (Expr t tp)) -> IO (Expr t tp)
forall a b. (a -> b) -> a -> b
$ \Expr t (BaseBVType w)
x' ->
ExprBuilder t st fs
-> SemiRingRepr sr
-> Coefficient sr
-> Expr t (SemiRingBase sr)
-> IO (Expr t (SemiRingBase sr))
forall t (st :: Type -> Type) fs (sr :: SemiRing).
ExprBuilder t st fs
-> SemiRingRepr sr
-> Coefficient sr
-> Expr t (SemiRingBase sr)
-> IO (Expr t (SemiRingBase sr))
scalarMul ExprBuilder t st fs
sb SemiRingRepr sr
sr BV w
Coefficient sr
c Expr t (BaseBVType w)
Expr t (SemiRingBase sr)
x' IO (Expr t (BaseBVType w))
-> (Expr t (BaseBVType w) -> IO (Expr t tp)) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Expr t (BaseBVType w)
cx' ->
[(BV w, Expr t (BaseBVType w))]
-> (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp)
f [(BV w, Expr t (BaseBVType w))]
xs ((Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp))
-> (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp)
forall a b. (a -> b) -> a -> b
$ \Expr t tp
xs' ->
ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (SymBV (ExprBuilder t st fs) w)
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (SymBV sym w)
bvAdd ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
cx' SymBV (ExprBuilder t st fs) w
Expr t tp
xs' IO (Expr t tp) -> (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= Expr t tp -> IO (Expr t tp)
k
[(BV w, Expr t (BaseBVType w))]
-> (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp)
f [(BV w, Expr t (BaseBVType w))]
tms (NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc)
BaseEq (BaseBVRepr NatRepr w
_w) (Expr t tp -> Maybe (App (Expr t) tp)
forall t (tp :: BaseType). Expr t tp -> Maybe (App (Expr t) tp)
asApp -> Just (BaseIte BaseTypeRepr tp
_ Integer
_ BoolExpr t
x_c Expr t tp
x_t Expr t tp
x_f)) Expr t tp
y -> do
BoolExpr t
z_t <- ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (Pred (ExprBuilder t st fs))
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (Pred sym)
bvEq ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t tp
x_t SymBV (ExprBuilder t st fs) w
Expr t tp
y
BoolExpr t
z_f <- ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (Pred (ExprBuilder t st fs))
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (Pred sym)
bvEq ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t tp
x_f SymBV (ExprBuilder t st fs) w
Expr t tp
y
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprBuilder t st fs
-> Pred (ExprBuilder t st fs)
-> Pred (ExprBuilder t st fs)
-> Pred (ExprBuilder t st fs)
-> IO (Pred (ExprBuilder t st fs))
forall sym.
IsExprBuilder sym =>
sym -> Pred sym -> Pred sym -> Pred sym -> IO (Pred sym)
itePred ExprBuilder t st fs
sb Pred (ExprBuilder t st fs)
BoolExpr t
x_c Pred (ExprBuilder t st fs)
BoolExpr t
z_t Pred (ExprBuilder t st fs)
BoolExpr t
z_f
BaseEq (BaseBVRepr NatRepr w
_w) Expr t tp
x (Expr t tp -> Maybe (App (Expr t) tp)
forall t (tp :: BaseType). Expr t tp -> Maybe (App (Expr t) tp)
asApp -> Just (BaseIte BaseTypeRepr tp
_ Integer
_ BoolExpr t
y_c Expr t tp
y_t Expr t tp
y_f)) -> do
BoolExpr t
z_t <- ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (Pred (ExprBuilder t st fs))
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (Pred sym)
bvEq ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t tp
x SymBV (ExprBuilder t st fs) w
Expr t tp
y_t
BoolExpr t
z_f <- ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (Pred (ExprBuilder t st fs))
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (Pred sym)
bvEq ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t tp
x SymBV (ExprBuilder t st fs) w
Expr t tp
y_f
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprBuilder t st fs
-> Pred (ExprBuilder t st fs)
-> Pred (ExprBuilder t st fs)
-> Pred (ExprBuilder t st fs)
-> IO (Pred (ExprBuilder t st fs))
forall sym.
IsExprBuilder sym =>
sym -> Pred sym -> Pred sym -> Pred sym -> IO (Pred sym)
itePred ExprBuilder t st fs
sb Pred (ExprBuilder t st fs)
BoolExpr t
y_c Pred (ExprBuilder t st fs)
BoolExpr t
z_t Pred (ExprBuilder t st fs)
BoolExpr t
z_f
BVSlt (Expr t (BaseBVType w) -> Maybe (App (Expr t) (BaseBVType w))
forall t (tp :: BaseType). Expr t tp -> Maybe (App (Expr t) tp)
asApp -> Just (BaseIte BaseTypeRepr (BaseBVType w)
_ Integer
_ BoolExpr t
x_c Expr t (BaseBVType w)
x_t Expr t (BaseBVType w)
x_f)) Expr t (BaseBVType w)
y -> do
BoolExpr t
z_t <- ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (Pred (ExprBuilder t st fs))
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (Pred sym)
bvSlt ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
x_t SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
y
BoolExpr t
z_f <- ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (Pred (ExprBuilder t st fs))
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (Pred sym)
bvSlt ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
x_f SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
y
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprBuilder t st fs
-> Pred (ExprBuilder t st fs)
-> Pred (ExprBuilder t st fs)
-> Pred (ExprBuilder t st fs)
-> IO (Pred (ExprBuilder t st fs))
forall sym.
IsExprBuilder sym =>
sym -> Pred sym -> Pred sym -> Pred sym -> IO (Pred sym)
itePred ExprBuilder t st fs
sb Pred (ExprBuilder t st fs)
BoolExpr t
x_c Pred (ExprBuilder t st fs)
BoolExpr t
z_t Pred (ExprBuilder t st fs)
BoolExpr t
z_f
BVSlt Expr t (BaseBVType w)
x (Expr t (BaseBVType w) -> Maybe (App (Expr t) (BaseBVType w))
forall t (tp :: BaseType). Expr t tp -> Maybe (App (Expr t) tp)
asApp -> Just (BaseIte BaseTypeRepr (BaseBVType w)
_ Integer
_ BoolExpr t
y_c Expr t (BaseBVType w)
y_t Expr t (BaseBVType w)
y_f)) -> do
BoolExpr t
z_t <- ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (Pred (ExprBuilder t st fs))
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (Pred sym)
bvSlt ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
x SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
y_t
BoolExpr t
z_f <- ExprBuilder t st fs
-> SymBV (ExprBuilder t st fs) w
-> SymBV (ExprBuilder t st fs) w
-> IO (Pred (ExprBuilder t st fs))
forall sym (w :: Nat).
(IsExprBuilder sym, 1 <= w) =>
sym -> SymBV sym w -> SymBV sym w -> IO (Pred sym)
bvSlt ExprBuilder t st fs
sb SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
x SymBV (ExprBuilder t st fs) w
Expr t (BaseBVType w)
y_f
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprBuilder t st fs
-> Pred (ExprBuilder t st fs)
-> Pred (ExprBuilder t st fs)
-> Pred (ExprBuilder t st fs)
-> IO (Pred (ExprBuilder t st fs))
forall sym.
IsExprBuilder sym =>
sym -> Pred sym -> Pred sym -> Pred sym -> IO (Pred sym)
itePred ExprBuilder t st fs
sb Pred (ExprBuilder t st fs)
BoolExpr t
y_c Pred (ExprBuilder t st fs)
BoolExpr t
z_t Pred (ExprBuilder t st fs)
BoolExpr t
z_f
App (Expr t) tp
app -> do
App (Expr t) tp
app' <- (forall (tp :: BaseType). Expr t tp -> IO (Expr t tp))
-> App (Expr t) tp -> IO (App (Expr t) tp)
forall (m :: Type -> Type) (f :: BaseType -> Type)
(e :: BaseType -> Type) (utp :: BaseType).
(Applicative m, OrdF f, Eq (f BaseBoolType), HashableF f,
HasAbsValue f) =>
(forall (tp :: BaseType). e tp -> m (f tp))
-> App e utp -> m (App f utp)
traverseApp (NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc) App (Expr t) tp
app
if App (Expr t) tp
app' App (Expr t) tp -> App (Expr t) tp -> Bool
forall a. Eq a => a -> a -> Bool
== App (Expr t) tp
app then
Expr t tp -> IO (Expr t tp)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (AppExpr t tp -> Expr t tp
forall t (tp :: BaseType). AppExpr t tp -> Expr t tp
AppExpr AppExpr t tp
a0)
else
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprBuilder t st fs -> App (Expr t) tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
ExprBuilder t st fs -> App (Expr t) tp -> IO (Expr t tp)
sbMakeExpr ExprBuilder t st fs
sb App (Expr t) tp
app'
norm' NormCache t st fs
nc (NonceAppExpr NonceAppExpr t tp
p0) = do
let predApp :: NonceApp t (Expr t) tp
predApp = NonceAppExpr t tp -> NonceApp t (Expr t) tp
forall t (tp :: BaseType).
NonceAppExpr t tp -> NonceApp t (Expr t) tp
nonceExprApp NonceAppExpr t tp
p0
NonceApp t (Expr t) tp
p <- (forall (tp :: BaseType). Expr t tp -> IO (Expr t tp))
-> NonceApp t (Expr t) tp -> IO (NonceApp t (Expr t) tp)
forall k l (t :: (k -> Type) -> l -> Type) (f :: k -> Type)
(g :: k -> Type) (m :: Type -> Type).
(TraversableFC t, Applicative m) =>
(forall (x :: k). f x -> m (g x))
-> forall (x :: l). t f x -> m (t g x)
traverseFC (NormCache t st fs -> Expr t x -> IO (Expr t x)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc) NonceApp t (Expr t) tp
predApp
if NonceApp t (Expr t) tp
p NonceApp t (Expr t) tp -> NonceApp t (Expr t) tp -> Bool
forall a. Eq a => a -> a -> Bool
== NonceApp t (Expr t) tp
predApp then
Expr t tp -> IO (Expr t tp)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Expr t tp -> IO (Expr t tp)) -> Expr t tp -> IO (Expr t tp)
forall a b. (a -> b) -> a -> b
$! NonceAppExpr t tp -> Expr t tp
forall t (tp :: BaseType). NonceAppExpr t tp -> Expr t tp
NonceAppExpr NonceAppExpr t tp
p0
else
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc (Expr t tp -> IO (Expr t tp)) -> IO (Expr t tp) -> IO (Expr t tp)
forall (m :: Type -> Type) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExprBuilder t st fs -> NonceApp t (Expr t) tp -> IO (Expr t tp)
forall t (st :: Type -> Type) fs (tp :: BaseType).
ExprBuilder t st fs -> NonceApp t (Expr t) tp -> IO (Expr t tp)
sbNonceExpr (NormCache t st fs -> ExprBuilder t st fs
forall t (st :: Type -> Type) fs.
NormCache t st fs -> ExprBuilder t st fs
ncBuilder NormCache t st fs
nc) NonceApp t (Expr t) tp
p
norm' NormCache t st fs
_ Expr t tp
e = Expr t tp -> IO (Expr t tp)
forall (m :: Type -> Type) a. Monad m => a -> m a
return Expr t tp
e
simplify :: ExprBuilder t st fs -> BoolExpr t -> IO (BoolExpr t)
simplify :: ExprBuilder t st fs -> BoolExpr t -> IO (BoolExpr t)
simplify ExprBuilder t st fs
sb BoolExpr t
p = do
HashTable RealWorld (Expr t) (Expr t)
tbl <- ST RealWorld (HashTable RealWorld (Expr t) (Expr t))
-> IO (HashTable RealWorld (Expr t) (Expr t))
forall a. ST RealWorld a -> IO a
stToIO (ST RealWorld (HashTable RealWorld (Expr t) (Expr t))
-> IO (HashTable RealWorld (Expr t) (Expr t)))
-> ST RealWorld (HashTable RealWorld (Expr t) (Expr t))
-> IO (HashTable RealWorld (Expr t) (Expr t))
forall a b. (a -> b) -> a -> b
$ ST RealWorld (HashTable RealWorld (Expr t) (Expr t))
forall k s (key :: k -> Type) (val :: k -> Type).
ST s (HashTable s key val)
PH.new
let nc :: NormCache t st fs
nc = NormCache :: forall t (st :: Type -> Type) fs.
ExprBuilder t st fs
-> HashTable RealWorld (Expr t) (Expr t) -> NormCache t st fs
NormCache { ncBuilder :: ExprBuilder t st fs
ncBuilder = ExprBuilder t st fs
sb
, ncTable :: HashTable RealWorld (Expr t) (Expr t)
ncTable = HashTable RealWorld (Expr t) (Expr t)
tbl
}
NormCache t st fs -> BoolExpr t -> IO (BoolExpr t)
forall t (st :: Type -> Type) fs (tp :: BaseType).
NormCache t st fs -> Expr t tp -> IO (Expr t tp)
norm NormCache t st fs
nc BoolExpr t
p
type Counter = State (Map Word64 Int)
recordExpr :: Nonce t (tp::k) -> Counter Bool
recordExpr :: Nonce t tp -> Counter Bool
recordExpr Nonce t tp
n = do
Map Word64 Int
m <- StateT (Map Word64 Int) Identity (Map Word64 Int)
forall s (m :: Type -> Type). MonadState s m => m s
get
let (Maybe Int
mr, Map Word64 Int
m') = (Word64 -> Int -> Int -> Int)
-> Word64 -> Int -> Map Word64 Int -> (Maybe Int, Map Word64 Int)
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a)
Map.insertLookupWithKey (\Word64
_ -> Int -> Int -> Int
forall a. Num a => a -> a -> a
(+)) (Nonce t tp -> Word64
forall s k (tp :: k). Nonce s tp -> Word64
indexValue Nonce t tp
n) Int
1 Map Word64 Int
m
Map Word64 Int -> StateT (Map Word64 Int) Identity ()
forall s (m :: Type -> Type). MonadState s m => s -> m ()
put (Map Word64 Int -> StateT (Map Word64 Int) Identity ())
-> Map Word64 Int -> StateT (Map Word64 Int) Identity ()
forall a b. (a -> b) -> a -> b
$ Map Word64 Int
m'
Bool -> Counter Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Bool -> Counter Bool) -> Bool -> Counter Bool
forall a b. (a -> b) -> a -> b
$! Maybe Int -> Bool
forall a. Maybe a -> Bool
isNothing Maybe Int
mr
count_subterms' :: Expr t tp -> Counter ()
count_subterms' :: Expr t tp -> StateT (Map Word64 Int) Identity ()
count_subterms' Expr t tp
e0 =
case Expr t tp
e0 of
BoolExpr{} -> () -> StateT (Map Word64 Int) Identity ()
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ()
SemiRingLiteral{} -> () -> StateT (Map Word64 Int) Identity ()
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ()
StringExpr{} -> () -> StateT (Map Word64 Int) Identity ()
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ()
FloatExpr{} -> () -> StateT (Map Word64 Int) Identity ()
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ()
AppExpr AppExpr t tp
ae -> do
Bool
is_new <- Nonce t tp -> Counter Bool
forall t k (tp :: k). Nonce t tp -> Counter Bool
recordExpr (AppExpr t tp -> Nonce t tp
forall t (tp :: BaseType). AppExpr t tp -> Nonce t tp
appExprId AppExpr t tp
ae)
Bool
-> StateT (Map Word64 Int) Identity ()
-> StateT (Map Word64 Int) Identity ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
when Bool
is_new (StateT (Map Word64 Int) Identity ()
-> StateT (Map Word64 Int) Identity ())
-> StateT (Map Word64 Int) Identity ()
-> StateT (Map Word64 Int) Identity ()
forall a b. (a -> b) -> a -> b
$ do
(forall (x :: BaseType).
Expr t x -> StateT (Map Word64 Int) Identity ())
-> App (Expr t) tp -> StateT (Map Word64 Int) Identity ()
forall k l (t :: (k -> Type) -> l -> Type) (m :: Type -> Type)
(f :: k -> Type) a.
(FoldableFC t, Applicative m) =>
(forall (x :: k). f x -> m a) -> forall (x :: l). t f x -> m ()
traverseFC_ forall t (tp :: BaseType).
Expr t tp -> StateT (Map Word64 Int) Identity ()
forall (x :: BaseType).
Expr t x -> StateT (Map Word64 Int) Identity ()
count_subterms' (AppExpr t tp -> App (Expr t) tp
forall t (tp :: BaseType). AppExpr t tp -> App (Expr t) tp
appExprApp AppExpr t tp
ae)
NonceAppExpr NonceAppExpr t tp
nae -> do
Bool
is_new <- Nonce t tp -> Counter Bool
forall t k (tp :: k). Nonce t tp -> Counter Bool
recordExpr (NonceAppExpr t tp -> Nonce t tp
forall t (tp :: BaseType). NonceAppExpr t tp -> Nonce t tp
nonceExprId NonceAppExpr t tp
nae)
Bool
-> StateT (Map Word64 Int) Identity ()
-> StateT (Map Word64 Int) Identity ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
when Bool
is_new (StateT (Map Word64 Int) Identity ()
-> StateT (Map Word64 Int) Identity ())
-> StateT (Map Word64 Int) Identity ()
-> StateT (Map Word64 Int) Identity ()
forall a b. (a -> b) -> a -> b
$ do
(forall (x :: BaseType).
Expr t x -> StateT (Map Word64 Int) Identity ())
-> NonceApp t (Expr t) tp -> StateT (Map Word64 Int) Identity ()
forall k l (t :: (k -> Type) -> l -> Type) (m :: Type -> Type)
(f :: k -> Type) a.
(FoldableFC t, Applicative m) =>
(forall (x :: k). f x -> m a) -> forall (x :: l). t f x -> m ()
traverseFC_ forall t (tp :: BaseType).
Expr t tp -> StateT (Map Word64 Int) Identity ()
forall (x :: BaseType).
Expr t x -> StateT (Map Word64 Int) Identity ()
count_subterms' (NonceAppExpr t tp -> NonceApp t (Expr t) tp
forall t (tp :: BaseType).
NonceAppExpr t tp -> NonceApp t (Expr t) tp
nonceExprApp NonceAppExpr t tp
nae)
BoundVarExpr ExprBoundVar t tp
v -> do
Counter Bool -> StateT (Map Word64 Int) Identity ()
forall (f :: Type -> Type) a. Functor f => f a -> f ()
void (Counter Bool -> StateT (Map Word64 Int) Identity ())
-> Counter Bool -> StateT (Map Word64 Int) Identity ()
forall a b. (a -> b) -> a -> b
$ Nonce t tp -> Counter Bool
forall t k (tp :: k). Nonce t tp -> Counter Bool
recordExpr (ExprBoundVar t tp -> Nonce t tp
forall t (tp :: BaseType). ExprBoundVar t tp -> Nonce t tp
bvarId ExprBoundVar t tp
v)
count_subterms :: Expr t tp -> Map Word64 Int
count_subterms :: Expr t tp -> Map Word64 Int
count_subterms Expr t tp
e = StateT (Map Word64 Int) Identity ()
-> Map Word64 Int -> Map Word64 Int
forall s a. State s a -> s -> s
execState (Expr t tp -> StateT (Map Word64 Int) Identity ()
forall t (tp :: BaseType).
Expr t tp -> StateT (Map Word64 Int) Identity ()
count_subterms' Expr t tp
e) Map Word64 Int
forall k a. Map k a
Map.empty