{-# language CPP #-}
module Vulkan.Core10.Enums.LogicOp (LogicOp( LOGIC_OP_CLEAR
, LOGIC_OP_AND
, LOGIC_OP_AND_REVERSE
, LOGIC_OP_COPY
, LOGIC_OP_AND_INVERTED
, LOGIC_OP_NO_OP
, LOGIC_OP_XOR
, LOGIC_OP_OR
, LOGIC_OP_NOR
, LOGIC_OP_EQUIVALENT
, LOGIC_OP_INVERT
, LOGIC_OP_OR_REVERSE
, LOGIC_OP_COPY_INVERTED
, LOGIC_OP_OR_INVERTED
, LOGIC_OP_NAND
, LOGIC_OP_SET
, ..
)) where
import GHC.Read (choose)
import GHC.Read (expectP)
import GHC.Read (parens)
import GHC.Show (showParen)
import GHC.Show (showString)
import GHC.Show (showsPrec)
import Text.ParserCombinators.ReadPrec ((+++))
import Text.ParserCombinators.ReadPrec (prec)
import Text.ParserCombinators.ReadPrec (step)
import Foreign.Storable (Storable)
import Data.Int (Int32)
import GHC.Read (Read(readPrec))
import Text.Read.Lex (Lexeme(Ident))
import Vulkan.Zero (Zero)
newtype LogicOp = LogicOp Int32
deriving newtype (LogicOp -> LogicOp -> Bool
(LogicOp -> LogicOp -> Bool)
-> (LogicOp -> LogicOp -> Bool) -> Eq LogicOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: LogicOp -> LogicOp -> Bool
$c/= :: LogicOp -> LogicOp -> Bool
== :: LogicOp -> LogicOp -> Bool
$c== :: LogicOp -> LogicOp -> Bool
Eq, Eq LogicOp
Eq LogicOp =>
(LogicOp -> LogicOp -> Ordering)
-> (LogicOp -> LogicOp -> Bool)
-> (LogicOp -> LogicOp -> Bool)
-> (LogicOp -> LogicOp -> Bool)
-> (LogicOp -> LogicOp -> Bool)
-> (LogicOp -> LogicOp -> LogicOp)
-> (LogicOp -> LogicOp -> LogicOp)
-> Ord LogicOp
LogicOp -> LogicOp -> Bool
LogicOp -> LogicOp -> Ordering
LogicOp -> LogicOp -> LogicOp
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: LogicOp -> LogicOp -> LogicOp
$cmin :: LogicOp -> LogicOp -> LogicOp
max :: LogicOp -> LogicOp -> LogicOp
$cmax :: LogicOp -> LogicOp -> LogicOp
>= :: LogicOp -> LogicOp -> Bool
$c>= :: LogicOp -> LogicOp -> Bool
> :: LogicOp -> LogicOp -> Bool
$c> :: LogicOp -> LogicOp -> Bool
<= :: LogicOp -> LogicOp -> Bool
$c<= :: LogicOp -> LogicOp -> Bool
< :: LogicOp -> LogicOp -> Bool
$c< :: LogicOp -> LogicOp -> Bool
compare :: LogicOp -> LogicOp -> Ordering
$ccompare :: LogicOp -> LogicOp -> Ordering
$cp1Ord :: Eq LogicOp
Ord, Ptr b -> Int -> IO LogicOp
Ptr b -> Int -> LogicOp -> IO ()
Ptr LogicOp -> IO LogicOp
Ptr LogicOp -> Int -> IO LogicOp
Ptr LogicOp -> Int -> LogicOp -> IO ()
Ptr LogicOp -> LogicOp -> IO ()
LogicOp -> Int
(LogicOp -> Int)
-> (LogicOp -> Int)
-> (Ptr LogicOp -> Int -> IO LogicOp)
-> (Ptr LogicOp -> Int -> LogicOp -> IO ())
-> (forall b. Ptr b -> Int -> IO LogicOp)
-> (forall b. Ptr b -> Int -> LogicOp -> IO ())
-> (Ptr LogicOp -> IO LogicOp)
-> (Ptr LogicOp -> LogicOp -> IO ())
-> Storable LogicOp
forall b. Ptr b -> Int -> IO LogicOp
forall b. Ptr b -> Int -> LogicOp -> IO ()
forall a.
(a -> Int)
-> (a -> Int)
-> (Ptr a -> Int -> IO a)
-> (Ptr a -> Int -> a -> IO ())
-> (forall b. Ptr b -> Int -> IO a)
-> (forall b. Ptr b -> Int -> a -> IO ())
-> (Ptr a -> IO a)
-> (Ptr a -> a -> IO ())
-> Storable a
poke :: Ptr LogicOp -> LogicOp -> IO ()
$cpoke :: Ptr LogicOp -> LogicOp -> IO ()
peek :: Ptr LogicOp -> IO LogicOp
$cpeek :: Ptr LogicOp -> IO LogicOp
pokeByteOff :: Ptr b -> Int -> LogicOp -> IO ()
$cpokeByteOff :: forall b. Ptr b -> Int -> LogicOp -> IO ()
peekByteOff :: Ptr b -> Int -> IO LogicOp
$cpeekByteOff :: forall b. Ptr b -> Int -> IO LogicOp
pokeElemOff :: Ptr LogicOp -> Int -> LogicOp -> IO ()
$cpokeElemOff :: Ptr LogicOp -> Int -> LogicOp -> IO ()
peekElemOff :: Ptr LogicOp -> Int -> IO LogicOp
$cpeekElemOff :: Ptr LogicOp -> Int -> IO LogicOp
alignment :: LogicOp -> Int
$calignment :: LogicOp -> Int
sizeOf :: LogicOp -> Int
$csizeOf :: LogicOp -> Int
Storable, LogicOp
LogicOp -> Zero LogicOp
forall a. a -> Zero a
zero :: LogicOp
$czero :: LogicOp
Zero)
pattern $bLOGIC_OP_CLEAR :: LogicOp
$mLOGIC_OP_CLEAR :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_CLEAR = LogicOp 0
pattern $bLOGIC_OP_AND :: LogicOp
$mLOGIC_OP_AND :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_AND = LogicOp 1
pattern $bLOGIC_OP_AND_REVERSE :: LogicOp
$mLOGIC_OP_AND_REVERSE :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_AND_REVERSE = LogicOp 2
pattern $bLOGIC_OP_COPY :: LogicOp
$mLOGIC_OP_COPY :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_COPY = LogicOp 3
pattern $bLOGIC_OP_AND_INVERTED :: LogicOp
$mLOGIC_OP_AND_INVERTED :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_AND_INVERTED = LogicOp 4
pattern $bLOGIC_OP_NO_OP :: LogicOp
$mLOGIC_OP_NO_OP :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_NO_OP = LogicOp 5
pattern $bLOGIC_OP_XOR :: LogicOp
$mLOGIC_OP_XOR :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_XOR = LogicOp 6
pattern $bLOGIC_OP_OR :: LogicOp
$mLOGIC_OP_OR :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_OR = LogicOp 7
pattern $bLOGIC_OP_NOR :: LogicOp
$mLOGIC_OP_NOR :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_NOR = LogicOp 8
pattern $bLOGIC_OP_EQUIVALENT :: LogicOp
$mLOGIC_OP_EQUIVALENT :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_EQUIVALENT = LogicOp 9
pattern $bLOGIC_OP_INVERT :: LogicOp
$mLOGIC_OP_INVERT :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_INVERT = LogicOp 10
pattern $bLOGIC_OP_OR_REVERSE :: LogicOp
$mLOGIC_OP_OR_REVERSE :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_OR_REVERSE = LogicOp 11
pattern $bLOGIC_OP_COPY_INVERTED :: LogicOp
$mLOGIC_OP_COPY_INVERTED :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_COPY_INVERTED = LogicOp 12
pattern $bLOGIC_OP_OR_INVERTED :: LogicOp
$mLOGIC_OP_OR_INVERTED :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_OR_INVERTED = LogicOp 13
pattern $bLOGIC_OP_NAND :: LogicOp
$mLOGIC_OP_NAND :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_NAND = LogicOp 14
pattern $bLOGIC_OP_SET :: LogicOp
$mLOGIC_OP_SET :: forall r. LogicOp -> (Void# -> r) -> (Void# -> r) -> r
LOGIC_OP_SET = LogicOp 15
{-# complete LOGIC_OP_CLEAR,
LOGIC_OP_AND,
LOGIC_OP_AND_REVERSE,
LOGIC_OP_COPY,
LOGIC_OP_AND_INVERTED,
LOGIC_OP_NO_OP,
LOGIC_OP_XOR,
LOGIC_OP_OR,
LOGIC_OP_NOR,
LOGIC_OP_EQUIVALENT,
LOGIC_OP_INVERT,
LOGIC_OP_OR_REVERSE,
LOGIC_OP_COPY_INVERTED,
LOGIC_OP_OR_INVERTED,
LOGIC_OP_NAND,
LOGIC_OP_SET :: LogicOp #-}
instance Show LogicOp where
showsPrec :: Int -> LogicOp -> ShowS
showsPrec p :: Int
p = \case
LOGIC_OP_CLEAR -> String -> ShowS
showString "LOGIC_OP_CLEAR"
LOGIC_OP_AND -> String -> ShowS
showString "LOGIC_OP_AND"
LOGIC_OP_AND_REVERSE -> String -> ShowS
showString "LOGIC_OP_AND_REVERSE"
LOGIC_OP_COPY -> String -> ShowS
showString "LOGIC_OP_COPY"
LOGIC_OP_AND_INVERTED -> String -> ShowS
showString "LOGIC_OP_AND_INVERTED"
LOGIC_OP_NO_OP -> String -> ShowS
showString "LOGIC_OP_NO_OP"
LOGIC_OP_XOR -> String -> ShowS
showString "LOGIC_OP_XOR"
LOGIC_OP_OR -> String -> ShowS
showString "LOGIC_OP_OR"
LOGIC_OP_NOR -> String -> ShowS
showString "LOGIC_OP_NOR"
LOGIC_OP_EQUIVALENT -> String -> ShowS
showString "LOGIC_OP_EQUIVALENT"
LOGIC_OP_INVERT -> String -> ShowS
showString "LOGIC_OP_INVERT"
LOGIC_OP_OR_REVERSE -> String -> ShowS
showString "LOGIC_OP_OR_REVERSE"
LOGIC_OP_COPY_INVERTED -> String -> ShowS
showString "LOGIC_OP_COPY_INVERTED"
LOGIC_OP_OR_INVERTED -> String -> ShowS
showString "LOGIC_OP_OR_INVERTED"
LOGIC_OP_NAND -> String -> ShowS
showString "LOGIC_OP_NAND"
LOGIC_OP_SET -> String -> ShowS
showString "LOGIC_OP_SET"
LogicOp x :: Int32
x -> Bool -> ShowS -> ShowS
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= 11) (String -> ShowS
showString "LogicOp " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Int32 -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec 11 Int32
x)
instance Read LogicOp where
readPrec :: ReadPrec LogicOp
readPrec = ReadPrec LogicOp -> ReadPrec LogicOp
forall a. ReadPrec a -> ReadPrec a
parens ([(String, ReadPrec LogicOp)] -> ReadPrec LogicOp
forall a. [(String, ReadPrec a)] -> ReadPrec a
choose [("LOGIC_OP_CLEAR", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_CLEAR)
, ("LOGIC_OP_AND", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_AND)
, ("LOGIC_OP_AND_REVERSE", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_AND_REVERSE)
, ("LOGIC_OP_COPY", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_COPY)
, ("LOGIC_OP_AND_INVERTED", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_AND_INVERTED)
, ("LOGIC_OP_NO_OP", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_NO_OP)
, ("LOGIC_OP_XOR", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_XOR)
, ("LOGIC_OP_OR", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_OR)
, ("LOGIC_OP_NOR", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_NOR)
, ("LOGIC_OP_EQUIVALENT", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_EQUIVALENT)
, ("LOGIC_OP_INVERT", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_INVERT)
, ("LOGIC_OP_OR_REVERSE", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_OR_REVERSE)
, ("LOGIC_OP_COPY_INVERTED", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_COPY_INVERTED)
, ("LOGIC_OP_OR_INVERTED", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_OR_INVERTED)
, ("LOGIC_OP_NAND", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_NAND)
, ("LOGIC_OP_SET", LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure LogicOp
LOGIC_OP_SET)]
ReadPrec LogicOp -> ReadPrec LogicOp -> ReadPrec LogicOp
forall a. ReadPrec a -> ReadPrec a -> ReadPrec a
+++
Int -> ReadPrec LogicOp -> ReadPrec LogicOp
forall a. Int -> ReadPrec a -> ReadPrec a
prec 10 (do
Lexeme -> ReadPrec ()
expectP (String -> Lexeme
Ident "LogicOp")
Int32
v <- ReadPrec Int32 -> ReadPrec Int32
forall a. ReadPrec a -> ReadPrec a
step ReadPrec Int32
forall a. Read a => ReadPrec a
readPrec
LogicOp -> ReadPrec LogicOp
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int32 -> LogicOp
LogicOp Int32
v)))