{-# LANGUAGE CPP #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_HADDOCK hide #-}
-- | The input layer used to be a single function that correctly
-- accounted for the non-threaded runtime by emulating the terminal
-- VMIN adn VTIME handling. This has been removed and replace with a
-- more straightforward parser. The non-threaded runtime is no longer
-- supported.
--
-- This is an example of an algorithm where code coverage could be high,
-- even 100%, but the behavior is still under tested. I should collect
-- more of these examples...
--
-- reference: http://www.unixwiz.net/techtips/termios-vmin-vtime.html
module Graphics.Vty.Input.Loop
  ( Input(..)
  , eventChannel

  , initInput
  )
where

import Graphics.Vty.Config
import Graphics.Vty.Input.Classify
import Graphics.Vty.Input.Events

import Control.Applicative
import Control.Concurrent
import Control.Concurrent.STM
import Control.Exception (mask, try, SomeException)
import Lens.Micro hiding ((<>~))
import Lens.Micro.Mtl
import Lens.Micro.TH
import Control.Monad (when, mzero, forM_)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.State (StateT(..), evalStateT)
import Control.Monad.State.Class (MonadState, modify)
import Control.Monad.Trans.Reader (ReaderT(..))

import qualified Data.ByteString.Char8 as BS8
import qualified Data.ByteString as BS
import Data.ByteString.Char8 (ByteString)
import Data.IORef
import Data.Word (Word8)

import Foreign (allocaArray)
import Foreign.C.Types (CInt(..))
import Foreign.Ptr (Ptr, castPtr)

import System.IO
import System.Posix.IO (fdReadBuf, setFdOption, FdOption(..))
import System.Posix.Types (Fd(..))

import Text.Printf (hPrintf)

data Input = Input
    { -- | Channel of events direct from input processing. Unlike
      -- 'nextEvent' this will not refresh the display if the next event
      -- is an 'EvResize'.
      Input -> TChan InternalEvent
_eventChannel  :: TChan InternalEvent
      -- | Shuts down the input processing. As part of shutting down the
      -- input, this should also restore the input state.
    , Input -> IO ()
shutdownInput :: IO ()
      -- | Restore the terminal's input state to what it was prior
      -- to configuring input for Vty. This should be done as part of
      -- 'shutdownInput' but is exposed in case you need to access it
      -- directly.
    , Input -> IO ()
restoreInputState :: IO ()
      -- | Changes to this value are reflected after the next event.
    , Input -> IORef Config
_configRef :: IORef Config
      -- | input debug log
    , Input -> Maybe Handle
_inputDebug :: Maybe Handle
    }

makeLenses ''Input

data InputBuffer = InputBuffer
    { InputBuffer -> Ptr Word8
_ptr :: Ptr Word8
    , InputBuffer -> Int
_size :: Int
    }

makeLenses ''InputBuffer

data InputState = InputState
    { InputState -> ByteString
_unprocessedBytes :: ByteString
    , InputState -> ClassifierState
_classifierState :: ClassifierState
    , InputState -> Config
_appliedConfig :: Config
    , InputState -> InputBuffer
_inputBuffer :: InputBuffer
    , InputState -> ClassifierState -> ByteString -> KClass
_classifier :: ClassifierState -> ByteString -> KClass
    }

makeLenses ''InputState

type InputM a = StateT InputState (ReaderT Input IO) a

logMsg :: String -> InputM ()
logMsg :: String -> InputM ()
logMsg String
msg = do
    Maybe Handle
d <- forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Lens' Input (Maybe Handle)
inputDebug
    case Maybe Handle
d of
        Maybe Handle
Nothing -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
        Just Handle
h -> forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ Handle -> String -> IO ()
hPutStrLn Handle
h String
msg forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Handle -> IO ()
hFlush Handle
h

-- this must be run on an OS thread dedicated to this input handling.
-- otherwise the terminal timing read behavior will block the execution
-- of the lightweight threads.
loopInputProcessor :: InputM ()
loopInputProcessor :: InputM ()
loopInputProcessor = do
    InputM ByteString
readFromDevice forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= ByteString -> InputM ()
addBytesToProcess
    [Event]
validEvents <- forall (f :: * -> *) a. Alternative f => f a -> f [a]
many InputM Event
parseEvent
    forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [Event]
validEvents Event -> InputM ()
emit
    InputM ()
dropInvalid
    InputM ()
loopInputProcessor

addBytesToProcess :: ByteString -> InputM ()
addBytesToProcess :: ByteString -> InputM ()
addBytesToProcess ByteString
block = Lens' InputState ByteString
unprocessedBytes forall s (m :: * -> *) a.
(MonadState s m, Monoid a) =>
ASetter' s a -> a -> m ()
<>= ByteString
block

emit :: Event -> InputM ()
emit :: Event -> InputM ()
emit Event
event = do
    String -> InputM ()
logMsg forall a b. (a -> b) -> a -> b
$ String
"parsed event: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> String
show Event
event
    forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Lens' Input (TChan InternalEvent)
eventChannel forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. STM a -> IO a
atomically forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. TChan a -> a -> STM ()
writeTChan (Event -> InternalEvent
InputEvent Event
event)

-- The timing requirements are assured by the VMIN and VTIME set for the
-- device.
--
-- Precondition: Under the threaded runtime. Only current use is from a
-- forkOS thread. That case satisfies precondition.
readFromDevice :: InputM ByteString
readFromDevice :: InputM ByteString
readFromDevice = do
    Config
newConfig <- forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Lens' Input (IORef Config)
configRef forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. IORef a -> IO a
readIORef
    Config
oldConfig <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use Lens' InputState Config
appliedConfig
    let Just Fd
fd = Config -> Maybe Fd
inputFd Config
newConfig
    forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Config
newConfig forall a. Eq a => a -> a -> Bool
/= Config
oldConfig) forall a b. (a -> b) -> a -> b
$ do
        String -> InputM ()
logMsg forall a b. (a -> b) -> a -> b
$ String
"new config: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> String
show Config
newConfig
        forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ Fd -> Config -> IO ()
applyConfig Fd
fd Config
newConfig
        Lens' InputState Config
appliedConfig forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.= Config
newConfig
    Ptr Word8
bufferPtr <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use forall a b. (a -> b) -> a -> b
$ Lens' InputState InputBuffer
inputBufferforall b c a. (b -> c) -> (a -> b) -> a -> c
.Lens' InputBuffer (Ptr Word8)
ptr
    Int
maxBytes  <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use forall a b. (a -> b) -> a -> b
$ Lens' InputState InputBuffer
inputBufferforall b c a. (b -> c) -> (a -> b) -> a -> c
.Lens' InputBuffer Int
size
    ByteString
stringRep <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ do
        -- The killThread used in shutdownInput will not interrupt the
        -- foreign call fdReadBuf uses this provides a location to be
        -- interrupted prior to the foreign call. If there is input on
        -- the FD then the fdReadBuf will return in a finite amount of
        -- time due to the vtime terminal setting.
        Fd -> IO ()
threadWaitRead Fd
fd
        ByteCount
bytesRead <- Fd -> Ptr Word8 -> ByteCount -> IO ByteCount
fdReadBuf Fd
fd Ptr Word8
bufferPtr (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
maxBytes)
        if ByteCount
bytesRead forall a. Ord a => a -> a -> Bool
> ByteCount
0
        then CStringLen -> IO ByteString
BS.packCStringLen (forall a b. Ptr a -> Ptr b
castPtr Ptr Word8
bufferPtr, forall a b. (Integral a, Num b) => a -> b
fromIntegral ByteCount
bytesRead)
        else forall (m :: * -> *) a. Monad m => a -> m a
return ByteString
BS.empty
    forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ ByteString -> Bool
BS.null ByteString
stringRep) forall a b. (a -> b) -> a -> b
$
        String -> InputM ()
logMsg forall a b. (a -> b) -> a -> b
$ String
"input bytes: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> String
show (ByteString -> String
BS8.unpack ByteString
stringRep)
    forall (m :: * -> *) a. Monad m => a -> m a
return ByteString
stringRep

applyConfig :: Fd -> Config -> IO ()
applyConfig :: Fd -> Config -> IO ()
applyConfig Fd
fd (Config{ vmin :: Config -> Maybe Int
vmin = Just Int
theVmin, vtime :: Config -> Maybe Int
vtime = Just Int
theVtime })
    = Fd -> Int -> Int -> IO ()
setTermTiming Fd
fd Int
theVmin (Int
theVtime forall a. Integral a => a -> a -> a
`div` Int
100)
applyConfig Fd
_ Config
_ = forall (m :: * -> *) a. MonadFail m => String -> m a
fail String
"(vty) applyConfig was not provided a complete configuration"

parseEvent :: InputM Event
parseEvent :: InputM Event
parseEvent = do
    ClassifierState -> ByteString -> KClass
c <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use Lens' InputState (ClassifierState -> ByteString -> KClass)
classifier
    ClassifierState
s <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use Lens' InputState ClassifierState
classifierState
    ByteString
b <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use Lens' InputState ByteString
unprocessedBytes
    case ClassifierState -> ByteString -> KClass
c ClassifierState
s ByteString
b of
        Valid Event
e ByteString
remaining -> do
            String -> InputM ()
logMsg forall a b. (a -> b) -> a -> b
$ String
"valid parse: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> String
show Event
e
            String -> InputM ()
logMsg forall a b. (a -> b) -> a -> b
$ String
"remaining: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> String
show ByteString
remaining
            Lens' InputState ClassifierState
classifierState forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.= ClassifierState
ClassifierStart
            Lens' InputState ByteString
unprocessedBytes forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.= ByteString
remaining
            forall (m :: * -> *) a. Monad m => a -> m a
return Event
e
        KClass
_ -> forall (m :: * -> *) a. MonadPlus m => m a
mzero

dropInvalid :: InputM ()
dropInvalid :: InputM ()
dropInvalid = do
    ClassifierState -> ByteString -> KClass
c <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use Lens' InputState (ClassifierState -> ByteString -> KClass)
classifier
    ClassifierState
s <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use Lens' InputState ClassifierState
classifierState
    ByteString
b <- forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
use Lens' InputState ByteString
unprocessedBytes
    case ClassifierState -> ByteString -> KClass
c ClassifierState
s ByteString
b of
        KClass
Chunk -> do
            Lens' InputState ClassifierState
classifierState forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.=
                case ClassifierState
s of
                  ClassifierState
ClassifierStart -> ByteString -> [ByteString] -> ClassifierState
ClassifierInChunk ByteString
b []
                  ClassifierInChunk ByteString
p [ByteString]
bs -> ByteString -> [ByteString] -> ClassifierState
ClassifierInChunk ByteString
p (ByteString
bforall a. a -> [a] -> [a]
:[ByteString]
bs)
            Lens' InputState ByteString
unprocessedBytes forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.= ByteString
BS8.empty
        KClass
Invalid -> do
            String -> InputM ()
logMsg String
"dropping input bytes"
            Lens' InputState ClassifierState
classifierState forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.= ClassifierState
ClassifierStart
            Lens' InputState ByteString
unprocessedBytes forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.= ByteString
BS8.empty
        KClass
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

runInputProcessorLoop :: ClassifyMap -> Input -> IO ()
runInputProcessorLoop :: ClassifyMap -> Input -> IO ()
runInputProcessorLoop ClassifyMap
classifyTable Input
input = do
    let bufferSize :: a
bufferSize = a
1024
    forall a b. Storable a => Int -> (Ptr a -> IO b) -> IO b
allocaArray forall {a}. Num a => a
bufferSize forall a b. (a -> b) -> a -> b
$ \(Ptr Word8
bufferPtr :: Ptr Word8) -> do
        InputState
s0 <- ByteString
-> ClassifierState
-> Config
-> InputBuffer
-> (ClassifierState -> ByteString -> KClass)
-> InputState
InputState ByteString
BS8.empty ClassifierState
ClassifierStart
                forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. IORef a -> IO a
readIORef (Input -> IORef Config
_configRef Input
input)
                forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure (Ptr Word8 -> Int -> InputBuffer
InputBuffer Ptr Word8
bufferPtr forall {a}. Num a => a
bufferSize)
                forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure (ClassifyMap -> ClassifierState -> ByteString -> KClass
classify ClassifyMap
classifyTable)
        forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT (forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
evalStateT InputM ()
loopInputProcessor InputState
s0) Input
input

logInitialInputState :: Input -> ClassifyMap -> IO()
logInitialInputState :: Input -> ClassifyMap -> IO ()
logInitialInputState Input
input ClassifyMap
classifyTable = case Input -> Maybe Handle
_inputDebug Input
input of
    Maybe Handle
Nothing -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
    Just Handle
h  -> do
        Config{ vmin :: Config -> Maybe Int
vmin = Just Int
theVmin
              , vtime :: Config -> Maybe Int
vtime = Just Int
theVtime
              , termName :: Config -> Maybe String
termName = Just String
theTerm } <- forall a. IORef a -> IO a
readIORef forall a b. (a -> b) -> a -> b
$ Input -> IORef Config
_configRef Input
input
        ()
_ <- forall r. HPrintfType r => Handle -> String -> r
hPrintf Handle
h String
"initial (vmin,vtime): %s\n" (forall a. Show a => a -> String
show (Int
theVmin, Int
theVtime))
        forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ClassifyMap
classifyTable forall a b. (a -> b) -> a -> b
$ \(String, Event)
i -> case (String, Event)
i of
            (String
inBytes, EvKey Key
k [Modifier]
mods) -> forall r. HPrintfType r => Handle -> String -> r
hPrintf Handle
h String
"map %s %s %s %s\n" (forall a. Show a => a -> String
show String
theTerm)
                                                                     (forall a. Show a => a -> String
show String
inBytes)
                                                                     (forall a. Show a => a -> String
show Key
k)
                                                                     (forall a. Show a => a -> String
show [Modifier]
mods)
            (String, Event)
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

initInput :: Config -> ClassifyMap -> IO Input
initInput :: Config -> ClassifyMap -> IO Input
initInput Config
config ClassifyMap
classifyTable = do
    let Just Fd
fd = Config -> Maybe Fd
inputFd Config
config
    Fd -> FdOption -> Bool -> IO ()
setFdOption Fd
fd FdOption
NonBlockingRead Bool
False
    Fd -> Config -> IO ()
applyConfig Fd
fd Config
config
    MVar ()
stopSync <- forall a. IO (MVar a)
newEmptyMVar
    Input
input <- TChan InternalEvent
-> IO () -> IO () -> IORef Config -> Maybe Handle -> Input
Input forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. STM a -> IO a
atomically forall a. STM (TChan a)
newTChan
                   forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall (m :: * -> *) a. Monad m => a -> m a
return ())
                   forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall (m :: * -> *) a. Monad m => a -> m a
return ())
                   forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. a -> IO (IORef a)
newIORef Config
config
                   forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall b a. b -> (a -> b) -> Maybe a -> b
maybe (forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing)
                             (\String
f -> forall a. a -> Maybe a
Just forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> String -> IOMode -> IO Handle
openFile String
f IOMode
AppendMode)
                             (Config -> Maybe String
debugLog Config
config)
    Input -> ClassifyMap -> IO ()
logInitialInputState Input
input ClassifyMap
classifyTable
    ThreadId
inputThread <- forall a. IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
forkOSFinally (ClassifyMap -> Input -> IO ()
runInputProcessorLoop ClassifyMap
classifyTable Input
input)
                                 (\Either SomeException ()
_ -> forall a. MVar a -> a -> IO ()
putMVar MVar ()
stopSync ())
    let killAndWait :: IO ()
killAndWait = do
          ThreadId -> IO ()
killThread ThreadId
inputThread
          forall a. MVar a -> IO a
takeMVar MVar ()
stopSync
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Input
input { shutdownInput :: IO ()
shutdownInput = IO ()
killAndWait }

foreign import ccall "vty_set_term_timing" setTermTiming :: Fd -> Int -> Int -> IO ()

forkOSFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
forkOSFinally :: forall a. IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
forkOSFinally IO a
action Either SomeException a -> IO ()
and_then =
  forall b. ((forall a. IO a -> IO a) -> IO b) -> IO b
mask forall a b. (a -> b) -> a -> b
$ \forall a. IO a -> IO a
restore -> IO () -> IO ThreadId
forkOS forall a b. (a -> b) -> a -> b
$ forall e a. Exception e => IO a -> IO (Either e a)
try (forall a. IO a -> IO a
restore IO a
action) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Either SomeException a -> IO ()
and_then

(<>=) :: (MonadState s m, Monoid a) => ASetter' s a -> a -> m ()
ASetter' s a
l <>= :: forall s (m :: * -> *) a.
(MonadState s m, Monoid a) =>
ASetter' s a -> a -> m ()
<>= a
a = forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify (ASetter' s a
l forall a s t. Monoid a => ASetter s t a a -> a -> s -> t
<>~ a
a)

(<>~) :: Monoid a => ASetter s t a a -> a -> s -> t
ASetter s t a a
l <>~ :: forall a s t. Monoid a => ASetter s t a a -> a -> s -> t
<>~ a
n = forall s t a b. ASetter s t a b -> (a -> b) -> s -> t
over ASetter s t a a
l (forall a. Monoid a => a -> a -> a
`mappend` a
n)