{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Vinyl.Core where
import Data.Monoid (Monoid)
import Data.Semigroup
import Foreign.Ptr (castPtr, plusPtr)
import Foreign.Storable (Storable(..))
import Data.Vinyl.Functor
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative hiding (Const(..))
#endif
import Data.Typeable (Proxy(..))
import Data.List (intercalate)
import Data.Vinyl.TypeLevel
import Data.Type.Equality (TestEquality (..), (:~:) (..))
import Data.Type.Coercion (TestCoercion (..), Coercion (..))
data Rec :: (u -> *) -> [u] -> * where
RNil :: Rec f '[]
(:&) :: !(f r) -> !(Rec f rs) -> Rec f (r ': rs)
infixr 7 :&
infixr 5 <+>
infixl 8 <<$>>
infixl 8 <<*>>
instance TestEquality f => TestEquality (Rec f) where
testEquality RNil RNil = Just Refl
testEquality (x :& xs) (y :& ys) = do
Refl <- testEquality x y
Refl <- testEquality xs ys
Just Refl
testEquality _ _ = Nothing
instance TestCoercion f => TestCoercion (Rec f) where
testCoercion RNil RNil = Just Coercion
testCoercion (x :& xs) (y :& ys) = do
Coercion <- testCoercion x y
Coercion <- testCoercion xs ys
Just Coercion
testCoercion _ _ = Nothing
rappend
:: Rec f as
-> Rec f bs
-> Rec f (as ++ bs)
rappend RNil ys = ys
rappend (x :& xs) ys = x :& (xs `rappend` ys)
(<+>)
:: Rec f as
-> Rec f bs
-> Rec f (as ++ bs)
(<+>) = rappend
rmap
:: (forall x. f x -> g x)
-> Rec f rs
-> Rec g rs
rmap _ RNil = RNil
rmap η (x :& xs) = η x :& (η `rmap` xs)
{-# INLINE rmap #-}
(<<$>>)
:: (forall x. f x -> g x)
-> Rec f rs
-> Rec g rs
(<<$>>) = rmap
{-# INLINE (<<$>>) #-}
(<<&>>)
:: Rec f rs
-> (forall x. f x -> g x)
-> Rec g rs
xs <<&>> f = rmap f xs
{-# INLINE (<<&>>) #-}
rapply
:: Rec (Lift (->) f g) rs
-> Rec f rs
-> Rec g rs
rapply RNil RNil = RNil
rapply (f :& fs) (x :& xs) = getLift f x :& (fs `rapply` xs)
{-# INLINE rapply #-}
(<<*>>)
:: Rec (Lift (->) f g) rs
-> Rec f rs
-> Rec g rs
(<<*>>) = rapply
{-# INLINE (<<*>>) #-}
class RecApplicative rs where
rpure
:: (forall x. f x)
-> Rec f rs
instance RecApplicative '[] where
rpure _ = RNil
{-# INLINE rpure #-}
instance RecApplicative rs => RecApplicative (r ': rs) where
rpure s = s :& rpure s
{-# INLINE rpure #-}
rtraverse
:: Applicative h
=> (forall x. f x -> h (g x))
-> Rec f rs
-> h (Rec g rs)
rtraverse _ RNil = pure RNil
rtraverse f (x :& xs) = (:&) <$> f x <*> rtraverse f xs
{-# INLINABLE rtraverse #-}
rzipWith
:: (forall x . f x -> g x -> h x)
-> (forall xs . Rec f xs -> Rec g xs -> Rec h xs)
rzipWith m = \r -> case r of
RNil -> \RNil -> RNil
(fa :& fas) -> \(ga :& gas) -> m fa ga :& rzipWith m fas gas
rfoldMap :: forall f m rs.
Monoid m
=> (forall x. f x -> m)
-> Rec f rs
-> m
rfoldMap f = go mempty
where
go :: forall ss. m -> Rec f ss -> m
go !m record = case record of
RNil -> m
r :& rs -> go (mappend m (f r)) rs
{-# INLINABLE go #-}
{-# INLINE rfoldMap #-}
recordToList
:: Rec (Const a) rs
-> [a]
recordToList RNil = []
recordToList (x :& xs) = getConst x : recordToList xs
data Dict c a where
Dict
:: c a
=> a
-> Dict c a
reifyConstraint
:: RecAll f rs c
=> proxy c
-> Rec f rs
-> Rec (Dict c :. f) rs
reifyConstraint prx rec =
case rec of
RNil -> RNil
(x :& xs) -> Compose (Dict x) :& reifyConstraint prx xs
rpureConstrained :: forall c (f :: u -> *) proxy ts.
(AllConstrained c ts, RecApplicative ts)
=> proxy c -> (forall a. c a => f a) -> Rec f ts
rpureConstrained _ f = go (rpure Proxy)
where go :: AllConstrained c ts' => Rec Proxy ts' -> Rec f ts'
go RNil = RNil
go (_ :& xs) = f :& go xs
rpureConstraints :: forall cs (f :: * -> *) proxy ts. (AllAllSat cs ts, RecApplicative ts)
=> proxy cs -> (forall a. AllSatisfied cs a => f a) -> Rec f ts
rpureConstraints _ f = go (rpure Nothing)
where go :: AllAllSat cs ts' => Rec Maybe ts' -> Rec f ts'
go RNil = RNil
go (_ :& xs) = f :& go xs
instance RecAll f rs Show => Show (Rec f rs) where
show xs =
(\str -> "{" <> str <> "}")
. intercalate ", "
. recordToList
. rmap (\(Compose (Dict x)) -> Const $ show x)
$ reifyConstraint (Proxy :: Proxy Show) xs
instance Semigroup (Rec f '[]) where
instance (Monoid (f r), Monoid (Rec f rs))
=> Semigroup (Rec f (r ': rs)) where
instance Monoid (Rec f '[]) where
mempty = RNil
RNil `mappend` RNil = RNil
instance (Monoid (f r), Monoid (Rec f rs)) => Monoid (Rec f (r ': rs)) where
mempty = mempty :& mempty
(x :& xs) `mappend` (y :& ys) = (mappend x y) :& (mappend xs ys)
instance Eq (Rec f '[]) where
_ == _ = True
instance (Eq (f r), Eq (Rec f rs)) => Eq (Rec f (r ': rs)) where
(x :& xs) == (y :& ys) = (x == y) && (xs == ys)
instance Ord (Rec f '[]) where
compare _ _ = EQ
instance (Ord (f r), Ord (Rec f rs)) => Ord (Rec f (r ': rs)) where
compare (x :& xs) (y :& ys) = mappend (compare x y) (compare xs ys)
instance Storable (Rec f '[]) where
sizeOf _ = 0
alignment _ = 0
peek _ = return RNil
poke _ RNil = return ()
instance (Storable (f r), Storable (Rec f rs)) => Storable (Rec f (r ': rs)) where
sizeOf _ = sizeOf (undefined :: f r) + sizeOf (undefined :: Rec f rs)
{-# INLINE sizeOf #-}
alignment _ = alignment (undefined :: f r)
{-# INLINE alignment #-}
peek ptr = do !x <- peek (castPtr ptr)
!xs <- peek (ptr `plusPtr` sizeOf (undefined :: f r))
return $ x :& xs
{-# INLINE peek #-}
poke ptr (!x :& xs) = poke (castPtr ptr) x >> poke (ptr `plusPtr` sizeOf (undefined :: f r)) xs
{-# INLINE poke #-}