vector-0.9.1: Efficient Arrays

Portabilitynon-portable
Stabilityexperimental
MaintainerRoman Leshchinskiy <rl@cse.unsw.edu.au>
Safe HaskellTrustworthy

Data.Vector.Unboxed.Mutable.Safe

Contents

Description

Safe interface to Data.Vector.Unboxed.Mutable

Synopsis

Mutable vectors of primitive types

data family MVector s a Source

class (Vector Vector a, MVector MVector a) => Unbox a Source

Instances

Unbox Bool 
Unbox Char 
Unbox Double 
Unbox Float 
Unbox Int 
Unbox Int8 
Unbox Int16 
Unbox Int32 
Unbox Int64 
Unbox Word 
Unbox Word8 
Unbox Word16 
Unbox Word32 
Unbox Word64 
Unbox () 
(RealFloat a, Unbox a) => Unbox (Complex a) 
(Unbox a, Unbox b) => Unbox (a, b) 
(Unbox a, Unbox b, Unbox c) => Unbox (a, b, c) 
(Unbox a, Unbox b, Unbox c, Unbox d) => Unbox (a, b, c, d) 
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => Unbox (a, b, c, d, e) 
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => Unbox (a, b, c, d, e, f) 

Accessors

Length information

length :: Unbox a => MVector s a -> IntSource

Length of the mutable vector.

null :: Unbox a => MVector s a -> BoolSource

Check whether the vector is empty

Extracting subvectors

slice :: Unbox a => Int -> Int -> MVector s a -> MVector s aSource

Yield a part of the mutable vector without copying it.

init :: Unbox a => MVector s a -> MVector s aSource

tail :: Unbox a => MVector s a -> MVector s aSource

take :: Unbox a => Int -> MVector s a -> MVector s aSource

drop :: Unbox a => Int -> MVector s a -> MVector s aSource

splitAt :: Unbox a => Int -> MVector s a -> (MVector s a, MVector s a)Source

Overlapping

overlaps :: Unbox a => MVector s a -> MVector s a -> BoolSource

Construction

Initialisation

new :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)Source

Create a mutable vector of the given length.

replicate :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a)Source

Create a mutable vector of the given length (0 if the length is negative) and fill it with an initial value.

replicateM :: (PrimMonad m, Unbox a) => Int -> m a -> m (MVector (PrimState m) a)Source

Create a mutable vector of the given length (0 if the length is negative) and fill it with values produced by repeatedly executing the monadic action.

clone :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m (MVector (PrimState m) a)Source

Create a copy of a mutable vector.

Growing

grow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)Source

Grow a vector by the given number of elements. The number must be positive.

Restricting memory usage

clear :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m ()Source

Reset all elements of the vector to some undefined value, clearing all references to external objects. This is usually a noop for unboxed vectors.

Zipping and unzipping

zip :: (Unbox a, Unbox b) => MVector s a -> MVector s b -> MVector s (a, b)Source

O(1) Zip 2 vectors

zip3 :: (Unbox a, Unbox b, Unbox c) => MVector s a -> MVector s b -> MVector s c -> MVector s (a, b, c)Source

O(1) Zip 3 vectors

zip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s (a, b, c, d)Source

O(1) Zip 4 vectors

zip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s (a, b, c, d, e)Source

O(1) Zip 5 vectors

zip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s f -> MVector s (a, b, c, d, e, f)Source

O(1) Zip 6 vectors

unzip :: (Unbox a, Unbox b) => MVector s (a, b) -> (MVector s a, MVector s b)Source

O(1) Unzip 2 vectors

unzip3 :: (Unbox a, Unbox b, Unbox c) => MVector s (a, b, c) -> (MVector s a, MVector s b, MVector s c)Source

O(1) Unzip 3 vectors

unzip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s (a, b, c, d) -> (MVector s a, MVector s b, MVector s c, MVector s d)Source

O(1) Unzip 4 vectors

unzip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s (a, b, c, d, e) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e)Source

O(1) Unzip 5 vectors

unzip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s (a, b, c, d, e, f) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e, MVector s f)Source

O(1) Unzip 6 vectors

Accessing individual elements

read :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m aSource

Yield the element at the given position.

write :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()Source

Replace the element at the given position.

swap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()Source

Swap the elements at the given positions.

Modifying vectors

Filling and copying

set :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> a -> m ()Source

Set all elements of the vector to the given value.

copy :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()Source

Copy a vector. The two vectors must have the same length and may not overlap.

move :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()Source

Move the contents of a vector. The two vectors must have the same length.

If the vectors do not overlap, then this is equivalent to copy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.