{-# LANGUAGE CPP #-}

-- |
-- Module      : Data.Vector.Unboxed.Mutable
-- Copyright   : (c) Roman Leshchinskiy 2009-2010
--                   Alexey Kuleshevich 2020-2022
--                   Aleksey Khudyakov 2020-2022
--                   Andrew Lelechenko 2020-2022
-- License     : BSD-style
--
-- Maintainer  : Haskell Libraries Team <libraries@haskell.org>
-- Stability   : experimental
-- Portability : non-portable
--
-- Mutable adaptive unboxed vectors.

module Data.Vector.Unboxed.Mutable (
  -- * Mutable vectors of primitive types
  MVector(..), IOVector, STVector, Unbox,

  -- * Accessors

  -- ** Length information
  length, null,

  -- ** Extracting subvectors
  slice, init, tail, take, drop, splitAt,
  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,

  -- ** Overlapping
  overlaps,

  -- * Construction

  -- ** Initialisation
  new, unsafeNew, replicate, replicateM, generate, generateM, clone,

  -- ** Growing
  grow, unsafeGrow,

  -- ** Restricting memory usage
  clear,

  -- * Zipping and unzipping
  zip, zip3, zip4, zip5, zip6,
  unzip, unzip3, unzip4, unzip5, unzip6,

  -- * Accessing individual elements
  read, readMaybe, write, modify, modifyM, swap, exchange,
  unsafeRead, unsafeWrite, unsafeModify, unsafeModifyM, unsafeSwap, unsafeExchange,

  -- * Folds
  mapM_, imapM_, forM_, iforM_,
  foldl, foldl', foldM, foldM',
  foldr, foldr', foldrM, foldrM',
  ifoldl, ifoldl', ifoldM, ifoldM',
  ifoldr, ifoldr', ifoldrM, ifoldrM',

  -- * Modifying vectors
  nextPermutation,

  -- ** Filling and copying
  set, copy, move, unsafeCopy, unsafeMove,
  -- * Re-exports
  PrimMonad, PrimState, RealWorld
) where

import Data.Vector.Unboxed.Base
import qualified Data.Vector.Generic.Mutable as G
import Data.Vector.Fusion.Util ( delayed_min )
import Control.Monad.Primitive

import Prelude ( Ord, Bool, Int, Maybe )

-- don't import an unused Data.Vector.Internal.Check
#define NOT_VECTOR_MODULE
#include "vector.h"

-- Length information
-- ------------------

-- | Length of the mutable vector.
length :: Unbox a => MVector s a -> Int
{-# INLINE length #-}
length :: forall a s. Unbox a => MVector s a -> Int
length = forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
G.length

-- | Check whether the vector is empty.
null :: Unbox a => MVector s a -> Bool
{-# INLINE null #-}
null :: forall a s. Unbox a => MVector s a -> Bool
null = forall (v :: * -> * -> *) a s. MVector v a => v s a -> Bool
G.null

-- Extracting subvectors
-- ---------------------

-- | Yield a part of the mutable vector without copying it. The vector must
-- contain at least @i+n@ elements.
slice :: Unbox a
      => Int  -- ^ @i@ starting index
      -> Int  -- ^ @n@ length
      -> MVector s a
      -> MVector s a
{-# INLINE slice #-}
slice :: forall a s. Unbox a => Int -> Int -> MVector s a -> MVector s a
slice = forall (v :: * -> * -> *) a s.
(HasCallStack, MVector v a) =>
Int -> Int -> v s a -> v s a
G.slice

-- | Take the @n@ first elements of the mutable vector without making a
-- copy. For negative @n@, the empty vector is returned. If @n@ is larger
-- than the vector's length, the vector is returned unchanged.
take :: Unbox a => Int -> MVector s a -> MVector s a
{-# INLINE take #-}
take :: forall a s. Unbox a => Int -> MVector s a -> MVector s a
take = forall (v :: * -> * -> *) a s. MVector v a => Int -> v s a -> v s a
G.take

-- | Drop the @n@ first element of the mutable vector without making a
-- copy. For negative @n@, the vector is returned unchanged. If @n@ is
-- larger than the vector's length, the empty vector is returned.
drop :: Unbox a => Int -> MVector s a -> MVector s a
{-# INLINE drop #-}
drop :: forall a s. Unbox a => Int -> MVector s a -> MVector s a
drop = forall (v :: * -> * -> *) a s. MVector v a => Int -> v s a -> v s a
G.drop

-- | /O(1)/ Split the mutable vector into the first @n@ elements
-- and the remainder, without copying.
--
-- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@,
-- but slightly more efficient.
splitAt :: Unbox a => Int -> MVector s a -> (MVector s a, MVector s a)
{-# INLINE splitAt #-}
splitAt :: forall a s.
Unbox a =>
Int -> MVector s a -> (MVector s a, MVector s a)
splitAt = forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> v s a -> (v s a, v s a)
G.splitAt

-- | Drop the last element of the mutable vector without making a copy.
-- If the vector is empty, an exception is thrown.
init :: Unbox a => MVector s a -> MVector s a
{-# INLINE init #-}
init :: forall a s. Unbox a => MVector s a -> MVector s a
init = forall (v :: * -> * -> *) a s. MVector v a => v s a -> v s a
G.init

-- | Drop the first element of the mutable vector without making a copy.
-- If the vector is empty, an exception is thrown.
tail :: Unbox a => MVector s a -> MVector s a
{-# INLINE tail #-}
tail :: forall a s. Unbox a => MVector s a -> MVector s a
tail = forall (v :: * -> * -> *) a s. MVector v a => v s a -> v s a
G.tail

-- | Yield a part of the mutable vector without copying it. No bounds checks
-- are performed.
unsafeSlice :: Unbox a
            => Int  -- ^ starting index
            -> Int  -- ^ length of the slice
            -> MVector s a
            -> MVector s a
{-# INLINE unsafeSlice #-}
unsafeSlice :: forall a s. Unbox a => Int -> Int -> MVector s a -> MVector s a
unsafeSlice = forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> Int -> v s a -> v s a
G.unsafeSlice

-- | Unsafe variant of 'take'. If @n@ is out of range, it will
-- simply create an invalid slice that likely violate memory safety.
unsafeTake :: Unbox a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeTake #-}
unsafeTake :: forall a s. Unbox a => Int -> MVector s a -> MVector s a
unsafeTake = forall (v :: * -> * -> *) a s. MVector v a => Int -> v s a -> v s a
G.unsafeTake

-- | Unsafe variant of 'drop'. If @n@ is out of range, it will
-- simply create an invalid slice that likely violate memory safety.
unsafeDrop :: Unbox a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeDrop #-}
unsafeDrop :: forall a s. Unbox a => Int -> MVector s a -> MVector s a
unsafeDrop = forall (v :: * -> * -> *) a s. MVector v a => Int -> v s a -> v s a
G.unsafeDrop

-- | Same as 'init', but doesn't do range checks.
unsafeInit :: Unbox a => MVector s a -> MVector s a
{-# INLINE unsafeInit #-}
unsafeInit :: forall a s. Unbox a => MVector s a -> MVector s a
unsafeInit = forall (v :: * -> * -> *) a s. MVector v a => v s a -> v s a
G.unsafeInit

-- | Same as 'tail', but doesn't do range checks.
unsafeTail :: Unbox a => MVector s a -> MVector s a
{-# INLINE unsafeTail #-}
unsafeTail :: forall a s. Unbox a => MVector s a -> MVector s a
unsafeTail = forall (v :: * -> * -> *) a s. MVector v a => v s a -> v s a
G.unsafeTail

-- Overlapping
-- -----------

-- | Check whether two vectors overlap.
overlaps :: Unbox a => MVector s a -> MVector s a -> Bool
{-# INLINE overlaps #-}
overlaps :: forall a s. Unbox a => MVector s a -> MVector s a -> Bool
overlaps = forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> Bool
G.overlaps

-- Initialisation
-- --------------

-- | Create a mutable vector of the given length.
new :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)
{-# INLINE new #-}
new :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> m (MVector (PrimState m) a)
new = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
G.new

-- | Create a mutable vector of the given length. The vector content
-- is uninitialized, which means it is filled with whatever the
-- underlying memory buffer happens to contain.
--
-- @since 0.5
unsafeNew :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeNew #-}
unsafeNew :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> m (MVector (PrimState m) a)
unsafeNew = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
G.unsafeNew

-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with an initial value.
replicate :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a)
{-# INLINE replicate #-}
replicate :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> a -> m (MVector (PrimState m) a)
replicate = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> a -> m (v (PrimState m) a)
G.replicate

-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with values produced by repeatedly executing the monadic action.
replicateM :: (PrimMonad m, Unbox a) => Int -> m a -> m (MVector (PrimState m) a)
{-# INLINE replicateM #-}
replicateM :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> m a -> m (MVector (PrimState m) a)
replicateM = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m a -> m (v (PrimState m) a)
G.replicateM

-- | /O(n)/ Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with the results of applying the function to each index.
-- Iteration starts at index 0.
--
-- @since 0.12.3.0
generate :: (PrimMonad m, Unbox a) => Int -> (Int -> a) -> m (MVector (PrimState m) a)
{-# INLINE generate #-}
generate :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> (Int -> a) -> m (MVector (PrimState m) a)
generate = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> (Int -> a) -> m (v (PrimState m) a)
G.generate

-- | /O(n)/ Create a mutable vector of the given length (0 if the length is
-- negative) and fill it with the results of applying the monadic function to each
-- index. Iteration starts at index 0.
--
-- @since 0.12.3.0
generateM :: (PrimMonad m, Unbox a) => Int -> (Int -> m a) -> m (MVector (PrimState m) a)
{-# INLINE generateM #-}
generateM :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> (Int -> m a) -> m (MVector (PrimState m) a)
generateM = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> (Int -> m a) -> m (v (PrimState m) a)
G.generateM

-- | Create a copy of a mutable vector.
clone :: (PrimMonad m, Unbox a)
      => MVector (PrimState m) a -> m (MVector (PrimState m) a)
{-# INLINE clone #-}
clone :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> m (MVector (PrimState m) a)
clone = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> m (v (PrimState m) a)
G.clone

-- Growing
-- -------

-- | Grow an unboxed vector by the given number of elements. The number must be
-- non-negative. It has the same semantics as 'G.grow' for generic vectors.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Unboxed as VU
-- >>> import qualified Data.Vector.Unboxed.Mutable as MVU
-- >>> mv <- VU.thaw $ VU.fromList ([('a', 10), ('b', 20), ('c', 30)] :: [(Char, Int)])
-- >>> mv' <- MVU.grow mv 2
--
-- Extra memory at the end of the newly allocated vector is initialized to 0
-- bytes, which for 'Unbox' instance will usually correspond to some default
-- value for a particular type, e.g. @0@ for @Int@, @False@ for @Bool@,
-- etc. However, if 'unsafeGrow' was used instead, this would not have been
-- guaranteed and some garbage would be there instead.
--
-- >>> VU.freeze mv'
-- [('a',10),('b',20),('c',30),('\NUL',0),('\NUL',0)]
--
-- Having the extra space we can write new values in there:
--
-- >>> MVU.write mv' 3 ('d', 999)
-- >>> VU.freeze mv'
-- [('a',10),('b',20),('c',30),('d',999),('\NUL',0)]
--
-- It is important to note that the source mutable vector is not affected when
-- the newly allocated one is mutated.
--
-- >>> MVU.write mv' 2 ('X', 888)
-- >>> VU.freeze mv'
-- [('a',10),('b',20),('X',888),('d',999),('\NUL',0)]
-- >>> VU.freeze mv
-- [('a',10),('b',20),('c',30)]
--
-- @since 0.5
grow :: (PrimMonad m, Unbox a)
     => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE grow #-}
grow :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
grow = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m (v (PrimState m) a)
G.grow

-- | Grow a vector by the given number of elements. The number must be non-negative, but
-- this is not checked. This has the same semantics as 'G.unsafeGrow' for generic vectors.
--
-- @since 0.5
unsafeGrow :: (PrimMonad m, Unbox a)
           => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeGrow #-}
unsafeGrow :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
unsafeGrow = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m (v (PrimState m) a)
G.unsafeGrow

-- Restricting memory usage
-- ------------------------

-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects. This is usually a noop for unboxed vectors.
clear :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m ()
{-# INLINE clear #-}
clear :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> m ()
clear = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> m ()
G.clear

-- Accessing individual elements
-- -----------------------------

-- | Yield the element at the given position. Will throw an exception if
-- the index is out of range.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Unboxed.Mutable as MVU
-- >>> v <- MVU.generate 10 (\x -> x*x)
-- >>> MVU.read v 3
-- 9
read :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE read #-}
read :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
read = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
G.read

-- | Yield the element at the given position. Returns 'Nothing' if
-- the index is out of range.
--
-- @since 0.13
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Unboxed.Mutable as MVU
-- >>> v <- MVU.generate 10 (\x -> x*x)
-- >>> MVU.readMaybe v 3
-- Just 9
-- >>> MVU.readMaybe v 13
-- Nothing
readMaybe :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (Maybe a)
{-# INLINE readMaybe #-}
readMaybe :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m (Maybe a)
readMaybe = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m (Maybe a)
G.readMaybe

-- | Replace the element at the given position.
write :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE write #-}
write :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> a -> m ()
write = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
G.write

-- | Modify the element at the given position.
modify :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE modify #-}
modify :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> (a -> a) -> Int -> m ()
modify = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> a) -> Int -> m ()
G.modify

-- | Modify the element at the given position using a monadic function.
--
-- @since 0.12.3.0
modifyM :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> m a) -> Int -> m ()
{-# INLINE modifyM #-}
modifyM :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> (a -> m a) -> Int -> m ()
modifyM = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> m a) -> Int -> m ()
G.modifyM

-- | Swap the elements at the given positions.
swap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE swap #-}
swap :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> Int -> m ()
swap = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> Int -> m ()
G.swap

-- | Replace the element at the given position and return the old element.
exchange :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m a
{-# INLINE exchange #-}
exchange :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> a -> m a
exchange = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m a
G.exchange

-- | Yield the element at the given position. No bounds checks are performed.
unsafeRead :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE unsafeRead #-}
unsafeRead :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
unsafeRead = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
G.unsafeRead

-- | Replace the element at the given position. No bounds checks are performed.
unsafeWrite :: (PrimMonad m, Unbox a) =>  MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE unsafeWrite #-}
unsafeWrite :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> a -> m ()
unsafeWrite = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
G.unsafeWrite

-- | Modify the element at the given position. No bounds checks are performed.
unsafeModify :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE unsafeModify #-}
unsafeModify :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> (a -> a) -> Int -> m ()
unsafeModify = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> a) -> Int -> m ()
G.unsafeModify

-- | Modify the element at the given position using a monadic
-- function. No bounds checks are performed.
--
-- @since 0.12.3.0
unsafeModifyM :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> m a) -> Int -> m ()
{-# INLINE unsafeModifyM #-}
unsafeModifyM :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> (a -> m a) -> Int -> m ()
unsafeModifyM = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> m a) -> Int -> m ()
G.unsafeModifyM

-- | Swap the elements at the given positions. No bounds checks are performed.
unsafeSwap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE unsafeSwap #-}
unsafeSwap :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> Int -> m ()
unsafeSwap = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> Int -> m ()
G.unsafeSwap

-- | Replace the element at the given position and return the old element. No
-- bounds checks are performed.
unsafeExchange :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m a
{-# INLINE unsafeExchange #-}
unsafeExchange :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> a -> m a
unsafeExchange = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m a
G.unsafeExchange

-- Filling and copying
-- -------------------

-- | Set all elements of the vector to the given value.
set :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> a -> m ()
{-# INLINE set #-}
set :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> a -> m ()
set = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> a -> m ()
G.set

-- | Copy a vector. The two vectors must have the same length and may not
-- overlap.
copy :: (PrimMonad m, Unbox a)
     => MVector (PrimState m) a   -- ^ target
     -> MVector (PrimState m) a   -- ^ source
     -> m ()
{-# INLINE copy #-}
copy :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
copy = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> v (PrimState m) a -> m ()
G.copy

-- | Copy a vector. The two vectors must have the same length and may not
-- overlap, but this is not checked.
unsafeCopy :: (PrimMonad m, Unbox a)
           => MVector (PrimState m) a   -- ^ target
           -> MVector (PrimState m) a   -- ^ source
           -> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
unsafeCopy = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> v (PrimState m) a -> m ()
G.unsafeCopy

-- | Move the contents of a vector. The two vectors must have the same
-- length.
--
-- If the vectors do not overlap, then this is equivalent to 'copy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
move :: (PrimMonad m, Unbox a)
     => MVector (PrimState m) a   -- ^ target
     -> MVector (PrimState m) a   -- ^ source
     -> m ()
{-# INLINE move #-}
move :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
move = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> v (PrimState m) a -> m ()
G.move

-- | Move the contents of a vector. The two vectors must have the same
-- length, but this is not checked.
--
-- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
unsafeMove :: (PrimMonad m, Unbox a)
                          => MVector (PrimState m) a   -- ^ target
                          -> MVector (PrimState m) a   -- ^ source
                          -> m ()
{-# INLINE unsafeMove #-}
unsafeMove :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
unsafeMove = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> v (PrimState m) a -> m ()
G.unsafeMove

-- Modifying vectors
-- -----------------

-- | Compute the (lexicographically) next permutation of the given vector in-place.
-- Returns False when the input is the last permutation.
nextPermutation :: (PrimMonad m,Ord e,Unbox e) => MVector (PrimState m) e -> m Bool
{-# INLINE nextPermutation #-}
nextPermutation :: forall (m :: * -> *) e.
(PrimMonad m, Ord e, Unbox e) =>
MVector (PrimState m) e -> m Bool
nextPermutation = forall (m :: * -> *) e (v :: * -> * -> *).
(PrimMonad m, Ord e, MVector v e) =>
v (PrimState m) e -> m Bool
G.nextPermutation

-- Folds
-- -----

-- | /O(n)/ Apply the monadic action to every element of the vector, discarding the results.
--
-- @since 0.12.3.0
mapM_ :: (PrimMonad m, Unbox a) => (a -> m b) -> MVector (PrimState m) a -> m ()
{-# INLINE mapM_ #-}
mapM_ :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(a -> m b) -> MVector (PrimState m) a -> m ()
mapM_ = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> m b) -> v (PrimState m) a -> m ()
G.mapM_

-- | /O(n)/ Apply the monadic action to every element of the vector and its index,
-- discarding the results.
--
-- @since 0.12.3.0
imapM_ :: (PrimMonad m, Unbox a) => (Int -> a -> m b) -> MVector (PrimState m) a -> m ()
{-# INLINE imapM_ #-}
imapM_ :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(Int -> a -> m b) -> MVector (PrimState m) a -> m ()
imapM_ = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> m b) -> v (PrimState m) a -> m ()
G.imapM_

-- | /O(n)/ Apply the monadic action to every element of the vector,
-- discarding the results. It's the same as @flip mapM_@.
--
-- @since 0.12.3.0
forM_ :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> (a -> m b) -> m ()
forM_ = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> m b) -> m ()
G.forM_

-- | /O(n)/ Apply the monadic action to every element of the vector
-- and its index, discarding the results. It's the same as @flip imapM_@.
--
-- @since 0.12.3.0
iforM_ :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (Int -> a -> m b) -> m ()
{-# INLINE iforM_ #-}
iforM_ :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> (Int -> a -> m b) -> m ()
iforM_ = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (Int -> a -> m b) -> m ()
G.iforM_

-- | /O(n)/ Pure left fold.
--
-- @since 0.12.3.0
foldl :: (PrimMonad m, Unbox a) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldl #-}
foldl :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(b -> a -> b) -> b -> MVector (PrimState m) a -> m b
foldl = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> a -> b) -> b -> v (PrimState m) a -> m b
G.foldl

-- | /O(n)/ Pure left fold with strict accumulator.
--
-- @since 0.12.3.0
foldl' :: (PrimMonad m, Unbox a) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldl' #-}
foldl' :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(b -> a -> b) -> b -> MVector (PrimState m) a -> m b
foldl' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> a -> b) -> b -> v (PrimState m) a -> m b
G.foldl'

-- | /O(n)/ Pure left fold using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldl :: (PrimMonad m, Unbox a) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldl #-}
ifoldl :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b
ifoldl = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> Int -> a -> b) -> b -> v (PrimState m) a -> m b
G.ifoldl

-- | /O(n)/ Pure left fold with strict accumulator using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldl' :: (PrimMonad m, Unbox a) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldl' #-}
ifoldl' :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b
ifoldl' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> Int -> a -> b) -> b -> v (PrimState m) a -> m b
G.ifoldl'

-- | /O(n)/ Pure right fold.
--
-- @since 0.12.3.0
foldr :: (PrimMonad m, Unbox a) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldr #-}
foldr :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(a -> b -> b) -> b -> MVector (PrimState m) a -> m b
foldr = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> b -> b) -> b -> v (PrimState m) a -> m b
G.foldr

-- | /O(n)/ Pure right fold with strict accumulator.
--
-- @since 0.12.3.0
foldr' :: (PrimMonad m, Unbox a) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldr' #-}
foldr' :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(a -> b -> b) -> b -> MVector (PrimState m) a -> m b
foldr' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> b -> b) -> b -> v (PrimState m) a -> m b
G.foldr'

-- | /O(n)/ Pure right fold using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldr :: (PrimMonad m, Unbox a) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldr #-}
ifoldr :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b
ifoldr = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> b -> b) -> b -> v (PrimState m) a -> m b
G.ifoldr

-- | /O(n)/ Pure right fold with strict accumulator using a function applied
-- to each element and its index.
--
-- @since 0.12.3.0
ifoldr' :: (PrimMonad m, Unbox a) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldr' #-}
ifoldr' :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b
ifoldr' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> b -> b) -> b -> v (PrimState m) a -> m b
G.ifoldr'

-- | /O(n)/ Monadic fold.
--
-- @since 0.12.3.0
foldM :: (PrimMonad m, Unbox a) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldM #-}
foldM :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(b -> a -> m b) -> b -> MVector (PrimState m) a -> m b
foldM = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> a -> m b) -> b -> v (PrimState m) a -> m b
G.foldM

-- | /O(n)/ Monadic fold with strict accumulator.
--
-- @since 0.12.3.0
foldM' :: (PrimMonad m, Unbox a) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldM' #-}
foldM' :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(b -> a -> m b) -> b -> MVector (PrimState m) a -> m b
foldM' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> a -> m b) -> b -> v (PrimState m) a -> m b
G.foldM'

-- | /O(n)/ Monadic fold using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldM :: (PrimMonad m, Unbox a) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldM #-}
ifoldM :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b
ifoldM = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> Int -> a -> m b) -> b -> v (PrimState m) a -> m b
G.ifoldM

-- | /O(n)/ Monadic fold with strict accumulator using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldM' :: (PrimMonad m, Unbox a) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldM' #-}
ifoldM' :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b
ifoldM' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> Int -> a -> m b) -> b -> v (PrimState m) a -> m b
G.ifoldM'

-- | /O(n)/ Monadic right fold.
--
-- @since 0.12.3.0
foldrM :: (PrimMonad m, Unbox a) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldrM #-}
foldrM :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
foldrM = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> b -> m b) -> b -> v (PrimState m) a -> m b
G.foldrM

-- | /O(n)/ Monadic right fold with strict accumulator.
--
-- @since 0.12.3.0
foldrM' :: (PrimMonad m, Unbox a) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldrM' #-}
foldrM' :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
foldrM' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> b -> m b) -> b -> v (PrimState m) a -> m b
G.foldrM'

-- | /O(n)/ Monadic right fold using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldrM :: (PrimMonad m, Unbox a) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldrM #-}
ifoldrM :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
ifoldrM = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> b -> m b) -> b -> v (PrimState m) a -> m b
G.ifoldrM

-- | /O(n)/ Monadic right fold with strict accumulator using a function applied
-- to each element and its index.
--
-- @since 0.12.3.0
ifoldrM' :: (PrimMonad m, Unbox a) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldrM' #-}
ifoldrM' :: forall (m :: * -> *) a b.
(PrimMonad m, Unbox a) =>
(Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
ifoldrM' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> b -> m b) -> b -> v (PrimState m) a -> m b
G.ifoldrM'


#define DEFINE_MUTABLE
#include "unbox-tuple-instances"

-- $setup
-- >>> import Prelude (Char, (*), ($))