{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE TypeFamilies #-}
-- |
-- Module      : Data.Vector.Mutable
-- Copyright   : (c) Roman Leshchinskiy 2008-2010
--                   Alexey Kuleshevich 2020-2022
--                   Aleksey Khudyakov 2020-2022
--                   Andrew Lelechenko 2020-2022
-- License     : BSD-style
--
-- Maintainer  : Haskell Libraries Team <libraries@haskell.org>
-- Stability   : experimental
-- Portability : non-portable
--
-- Mutable boxed vectors.

module Data.Vector.Mutable (
  -- * Mutable boxed vectors
  MVector(MVector), IOVector, STVector,

  -- * Accessors

  -- ** Length information
  length, null,

  -- ** Extracting subvectors
  slice, init, tail, take, drop, splitAt,
  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,

  -- ** Overlapping
  overlaps,

  -- * Construction

  -- ** Initialisation
  new, unsafeNew, replicate, replicateM, generate, generateM, clone,

  -- ** Growing
  grow, unsafeGrow,

  -- ** Restricting memory usage
  clear,

  -- * Accessing individual elements
  read, readMaybe, write, modify, modifyM, swap, exchange,
  unsafeRead, unsafeWrite, unsafeModify, unsafeModifyM, unsafeSwap, unsafeExchange,

  -- * Folds
  mapM_, imapM_, forM_, iforM_,
  foldl, foldl', foldM, foldM',
  foldr, foldr', foldrM, foldrM',
  ifoldl, ifoldl', ifoldM, ifoldM',
  ifoldr, ifoldr', ifoldrM, ifoldrM',

  -- * Modifying vectors
  nextPermutation,

  -- ** Filling and copying
  set, copy, move, unsafeCopy, unsafeMove,

  -- ** Arrays
  fromMutableArray, toMutableArray,

  -- * Re-exports
  PrimMonad, PrimState, RealWorld
) where

import           Control.Monad (when, liftM)
import qualified Data.Vector.Generic.Mutable as G
import           Data.Vector.Internal.Check
import           Data.Primitive.Array
import           Control.Monad.Primitive

import Prelude
  ( Ord, Monad, Bool, Ordering(..), Int, Maybe
  , compare, return, otherwise, error
  , (>>=), (+), (-), (*), (<), (>), (>=), (&&), (||), ($), (>>) )

import Data.Typeable ( Typeable )

#include "vector.h"

type role MVector nominal representational

-- | Mutable boxed vectors keyed on the monad they live in ('IO' or @'ST' s@).
data MVector s a = MVector { forall s a. MVector s a -> Int
_offset :: {-# UNPACK #-} !Int
                           -- ^ Offset in underlying array
                           , forall s a. MVector s a -> Int
_size   :: {-# UNPACK #-} !Int
                           -- ^ Size of slice
                           , forall s a. MVector s a -> MutableArray s a
_array  :: {-# UNPACK #-} !(MutableArray s a)
                           -- ^ Underlying array
                           }
        deriving ( Typeable )

type IOVector = MVector RealWorld
type STVector s = MVector s

-- NOTE: This seems unsafe, see http://trac.haskell.org/vector/ticket/54
{-
instance NFData a => NFData (MVector s a) where
    rnf (MVector i n arr) = unsafeInlineST $ force i
        where
          force !ix | ix < n    = do x <- readArray arr ix
                                     rnf x `seq` force (ix+1)
                    | otherwise = return ()
-}

instance G.MVector MVector a where
  {-# INLINE basicLength #-}
  basicLength :: forall s. MVector s a -> Int
basicLength (MVector Int
_ Int
n MutableArray s a
_) = Int
n

  {-# INLINE basicUnsafeSlice #-}
  basicUnsafeSlice :: forall s. Int -> Int -> MVector s a -> MVector s a
basicUnsafeSlice Int
j Int
m (MVector Int
i Int
_ MutableArray s a
arr) = forall s a. Int -> Int -> MutableArray s a -> MVector s a
MVector (Int
iforall a. Num a => a -> a -> a
+Int
j) Int
m MutableArray s a
arr

  {-# INLINE basicOverlaps #-}
  basicOverlaps :: forall s. MVector s a -> MVector s a -> Bool
basicOverlaps (MVector Int
i Int
m MutableArray s a
arr1) (MVector Int
j Int
n MutableArray s a
arr2)
    = forall s a. MutableArray s a -> MutableArray s a -> Bool
sameMutableArray MutableArray s a
arr1 MutableArray s a
arr2
      Bool -> Bool -> Bool
&& (forall {a}. Ord a => a -> a -> a -> Bool
between Int
i Int
j (Int
jforall a. Num a => a -> a -> a
+Int
n) Bool -> Bool -> Bool
|| forall {a}. Ord a => a -> a -> a -> Bool
between Int
j Int
i (Int
iforall a. Num a => a -> a -> a
+Int
m))
    where
      between :: a -> a -> a -> Bool
between a
x a
y a
z = a
x forall a. Ord a => a -> a -> Bool
>= a
y Bool -> Bool -> Bool
&& a
x forall a. Ord a => a -> a -> Bool
< a
z

  {-# INLINE basicUnsafeNew #-}
  basicUnsafeNew :: forall s. Int -> ST s (MVector s a)
basicUnsafeNew Int
n
    = do
        MutableArray s a
arr <- forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (MutableArray (PrimState m) a)
newArray Int
n forall a. a
uninitialised
        forall (m :: * -> *) a. Monad m => a -> m a
return (forall s a. Int -> Int -> MutableArray s a -> MVector s a
MVector Int
0 Int
n MutableArray s a
arr)

  {-# INLINE basicInitialize #-}
  -- initialization is unnecessary for boxed vectors
  basicInitialize :: forall s. MVector s a -> ST s ()
basicInitialize MVector s a
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()

  {-# INLINE basicUnsafeReplicate #-}
  basicUnsafeReplicate :: forall s. Int -> a -> ST s (MVector s a)
basicUnsafeReplicate Int
n a
x
    = do
        MutableArray s a
arr <- forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (MutableArray (PrimState m) a)
newArray Int
n a
x
        forall (m :: * -> *) a. Monad m => a -> m a
return (forall s a. Int -> Int -> MutableArray s a -> MVector s a
MVector Int
0 Int
n MutableArray s a
arr)

  {-# INLINE basicUnsafeRead #-}
  basicUnsafeRead :: forall s. MVector s a -> Int -> ST s a
basicUnsafeRead (MVector Int
i Int
_ MutableArray s a
arr) Int
j = forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray s a
arr (Int
iforall a. Num a => a -> a -> a
+Int
j)

  {-# INLINE basicUnsafeWrite #-}
  basicUnsafeWrite :: forall s. MVector s a -> Int -> a -> ST s ()
basicUnsafeWrite (MVector Int
i Int
_ MutableArray s a
arr) Int
j a
x = forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray s a
arr (Int
iforall a. Num a => a -> a -> a
+Int
j) a
x

  {-# INLINE basicUnsafeCopy #-}
  basicUnsafeCopy :: forall s. MVector s a -> MVector s a -> ST s ()
basicUnsafeCopy (MVector Int
i Int
n MutableArray s a
dst) (MVector Int
j Int
_ MutableArray s a
src)
    = forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a
-> Int -> MutableArray (PrimState m) a -> Int -> Int -> m ()
copyMutableArray MutableArray s a
dst Int
i MutableArray s a
src Int
j Int
n

  basicUnsafeMove :: forall s. MVector s a -> MVector s a -> ST s ()
basicUnsafeMove dst :: MVector s a
dst@(MVector Int
iDst Int
n MutableArray s a
arrDst) src :: MVector s a
src@(MVector Int
iSrc Int
_ MutableArray s a
arrSrc)
    = case Int
n of
        Int
0 -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
        Int
1 -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray s a
arrSrc Int
iSrc forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray s a
arrDst Int
iDst
        Int
2 -> do
               a
x <- forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray s a
arrSrc Int
iSrc
               a
y <- forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray s a
arrSrc (Int
iSrc forall a. Num a => a -> a -> a
+ Int
1)
               forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray s a
arrDst Int
iDst a
x
               forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray s a
arrDst (Int
iDst forall a. Num a => a -> a -> a
+ Int
1) a
y
        Int
_
          | forall s a. MVector s a -> MVector s a -> Bool
overlaps MVector s a
dst MVector s a
src
             -> case forall a. Ord a => a -> a -> Ordering
compare Int
iDst Int
iSrc of
                  Ordering
LT -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveBackwards MutableArray s a
arrDst Int
iDst Int
iSrc Int
n
                  Ordering
EQ -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
                  Ordering
GT | (Int
iDst forall a. Num a => a -> a -> a
- Int
iSrc) forall a. Num a => a -> a -> a
* Int
2 forall a. Ord a => a -> a -> Bool
< Int
n
                        -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveForwardsLargeOverlap MutableArray s a
arrDst Int
iDst Int
iSrc Int
n
                     | Bool
otherwise
                        -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveForwardsSmallOverlap MutableArray s a
arrDst Int
iDst Int
iSrc Int
n
          | Bool
otherwise -> forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
G.basicUnsafeCopy MVector s a
dst MVector s a
src

  {-# INLINE basicClear #-}
  basicClear :: forall s. MVector s a -> ST s ()
basicClear MVector s a
v = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> a -> m ()
G.set MVector s a
v forall a. a
uninitialised

{-# INLINE moveBackwards #-}
moveBackwards :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveBackwards :: forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveBackwards !MutableArray (PrimState m) a
arr !Int
dstOff !Int
srcOff !Int
len =
  forall a. HasCallStack => Checks -> String -> Bool -> a -> a
check Checks
Internal String
"not a backwards move" (Int
dstOff forall a. Ord a => a -> a -> Bool
< Int
srcOff)
  forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. Monad m => Int -> (Int -> m a) -> m ()
loopM Int
len forall a b. (a -> b) -> a -> b
$ \ Int
i -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray (PrimState m) a
arr (Int
srcOff forall a. Num a => a -> a -> a
+ Int
i) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray (PrimState m) a
arr (Int
dstOff forall a. Num a => a -> a -> a
+ Int
i)

{-# INLINE moveForwardsSmallOverlap #-}
-- Performs a move when dstOff > srcOff, optimized for when the overlap of the intervals is small.
moveForwardsSmallOverlap :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveForwardsSmallOverlap :: forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveForwardsSmallOverlap !MutableArray (PrimState m) a
arr !Int
dstOff !Int
srcOff !Int
len =
  forall a. HasCallStack => Checks -> String -> Bool -> a -> a
check Checks
Internal String
"not a forward move" (Int
dstOff forall a. Ord a => a -> a -> Bool
> Int
srcOff)
  forall a b. (a -> b) -> a -> b
$ do
      MutableArray (PrimState m) a
tmp <- forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (MutableArray (PrimState m) a)
newArray Int
overlap forall a. a
uninitialised
      forall (m :: * -> *) a. Monad m => Int -> (Int -> m a) -> m ()
loopM Int
overlap forall a b. (a -> b) -> a -> b
$ \ Int
i -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray (PrimState m) a
arr (Int
dstOff forall a. Num a => a -> a -> a
+ Int
i) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray (PrimState m) a
tmp Int
i
      forall (m :: * -> *) a. Monad m => Int -> (Int -> m a) -> m ()
loopM Int
nonOverlap forall a b. (a -> b) -> a -> b
$ \ Int
i -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray (PrimState m) a
arr (Int
srcOff forall a. Num a => a -> a -> a
+ Int
i) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray (PrimState m) a
arr (Int
dstOff forall a. Num a => a -> a -> a
+ Int
i)
      forall (m :: * -> *) a. Monad m => Int -> (Int -> m a) -> m ()
loopM Int
overlap forall a b. (a -> b) -> a -> b
$ \ Int
i -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray (PrimState m) a
tmp Int
i forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray (PrimState m) a
arr (Int
dstOff forall a. Num a => a -> a -> a
+ Int
nonOverlap forall a. Num a => a -> a -> a
+ Int
i)
  where nonOverlap :: Int
nonOverlap = Int
dstOff forall a. Num a => a -> a -> a
- Int
srcOff; overlap :: Int
overlap = Int
len forall a. Num a => a -> a -> a
- Int
nonOverlap

-- Performs a move when dstOff > srcOff, optimized for when the overlap of the intervals is large.
moveForwardsLargeOverlap :: PrimMonad m => MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveForwardsLargeOverlap :: forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> Int -> Int -> m ()
moveForwardsLargeOverlap !MutableArray (PrimState m) a
arr !Int
dstOff !Int
srcOff !Int
len =
  forall a. HasCallStack => Checks -> String -> Bool -> a -> a
check Checks
Internal String
"not a forward move" (Int
dstOff forall a. Ord a => a -> a -> Bool
> Int
srcOff)
  forall a b. (a -> b) -> a -> b
$ do
      MutableArray (PrimState m) a
queue <- forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (MutableArray (PrimState m) a)
newArray Int
nonOverlap forall a. a
uninitialised
      forall (m :: * -> *) a. Monad m => Int -> (Int -> m a) -> m ()
loopM Int
nonOverlap forall a b. (a -> b) -> a -> b
$ \ Int
i -> forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray (PrimState m) a
arr (Int
srcOff forall a. Num a => a -> a -> a
+ Int
i) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray (PrimState m) a
queue Int
i
      let mov :: Int -> Int -> m ()
mov !Int
i !Int
qTop = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
dstOff forall a. Num a => a -> a -> a
+ Int
len) forall a b. (a -> b) -> a -> b
$ do
            a
x <- forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray (PrimState m) a
arr Int
i
            a
y <- forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> m a
readArray MutableArray (PrimState m) a
queue Int
qTop
            forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray (PrimState m) a
arr Int
i a
y
            forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> Int -> a -> m ()
writeArray MutableArray (PrimState m) a
queue Int
qTop a
x
            Int -> Int -> m ()
mov (Int
iforall a. Num a => a -> a -> a
+Int
1) (if Int
qTop forall a. Num a => a -> a -> a
+ Int
1 forall a. Ord a => a -> a -> Bool
>= Int
nonOverlap then Int
0 else Int
qTop forall a. Num a => a -> a -> a
+ Int
1)
      Int -> Int -> m ()
mov Int
dstOff Int
0
  where nonOverlap :: Int
nonOverlap = Int
dstOff forall a. Num a => a -> a -> a
- Int
srcOff

{-# INLINE loopM #-}
loopM :: Monad m => Int -> (Int -> m a) -> m ()
loopM :: forall (m :: * -> *) a. Monad m => Int -> (Int -> m a) -> m ()
loopM !Int
n Int -> m a
k = let
  go :: Int -> m ()
go Int
i = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
n) (Int -> m a
k Int
i forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Int -> m ()
go (Int
iforall a. Num a => a -> a -> a
+Int
1))
  in Int -> m ()
go Int
0

uninitialised :: a
uninitialised :: forall a. a
uninitialised = forall a. HasCallStack => String -> a
error String
"Data.Vector.Mutable: uninitialised element. If you are trying to compact a vector, use the 'Data.Vector.force' function to remove uninitialised elements from the underlying array."

-- Length information
-- ------------------

-- | Length of the mutable vector.
length :: MVector s a -> Int
{-# INLINE length #-}
length :: forall s a. MVector s a -> Int
length = forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
G.length

-- | Check whether the vector is empty.
null :: MVector s a -> Bool
{-# INLINE null #-}
null :: forall s a. MVector s a -> Bool
null = forall (v :: * -> * -> *) a s. MVector v a => v s a -> Bool
G.null

-- Extracting subvectors
-- ---------------------

-- | Yield a part of the mutable vector without copying it. The vector must
-- contain at least @i+n@ elements.
slice :: Int  -- ^ @i@ starting index
      -> Int  -- ^ @n@ length
      -> MVector s a
      -> MVector s a
{-# INLINE slice #-}
slice :: forall s a. Int -> Int -> MVector s a -> MVector s a
slice = forall (v :: * -> * -> *) a s.
(HasCallStack, MVector v a) =>
Int -> Int -> v s a -> v s a
G.slice

-- | Take the @n@ first elements of the mutable vector without making a
-- copy. For negative @n@, the empty vector is returned. If @n@ is larger
-- than the vector's length, the vector is returned unchanged.
take :: Int -> MVector s a -> MVector s a
{-# INLINE take #-}
take :: forall s a. Int -> MVector s a -> MVector s a
take = forall (v :: * -> * -> *) a s. MVector v a => Int -> v s a -> v s a
G.take

-- | Drop the @n@ first element of the mutable vector without making a
-- copy. For negative @n@, the vector is returned unchanged. If @n@ is
-- larger than the vector's length, the empty vector is returned.
drop :: Int -> MVector s a -> MVector s a
{-# INLINE drop #-}
drop :: forall s a. Int -> MVector s a -> MVector s a
drop = forall (v :: * -> * -> *) a s. MVector v a => Int -> v s a -> v s a
G.drop

-- | /O(1)/ Split the mutable vector into the first @n@ elements
-- and the remainder, without copying.
--
-- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@,
-- but slightly more efficient.
splitAt :: Int -> MVector s a -> (MVector s a, MVector s a)
{-# INLINE splitAt #-}
splitAt :: forall s a. Int -> MVector s a -> (MVector s a, MVector s a)
splitAt = forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> v s a -> (v s a, v s a)
G.splitAt

-- | Drop the last element of the mutable vector without making a copy.
-- If the vector is empty, an exception is thrown.
init :: MVector s a -> MVector s a
{-# INLINE init #-}
init :: forall s a. MVector s a -> MVector s a
init = forall (v :: * -> * -> *) a s. MVector v a => v s a -> v s a
G.init

-- | Drop the first element of the mutable vector without making a copy.
-- If the vector is empty, an exception is thrown.
tail :: MVector s a -> MVector s a
{-# INLINE tail #-}
tail :: forall s a. MVector s a -> MVector s a
tail = forall (v :: * -> * -> *) a s. MVector v a => v s a -> v s a
G.tail

-- | Yield a part of the mutable vector without copying it. No bounds checks
-- are performed.
unsafeSlice :: Int  -- ^ starting index
            -> Int  -- ^ length of the slice
            -> MVector s a
            -> MVector s a
{-# INLINE unsafeSlice #-}
unsafeSlice :: forall s a. Int -> Int -> MVector s a -> MVector s a
unsafeSlice = forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> Int -> v s a -> v s a
G.unsafeSlice

-- | Unsafe variant of 'take'. If @n@ is out of range, it will
-- simply create an invalid slice that likely violate memory safety.
unsafeTake :: Int -> MVector s a -> MVector s a
{-# INLINE unsafeTake #-}
unsafeTake :: forall s a. Int -> MVector s a -> MVector s a
unsafeTake = forall (v :: * -> * -> *) a s. MVector v a => Int -> v s a -> v s a
G.unsafeTake

-- | Unsafe variant of 'drop'. If @n@ is out of range, it will
-- simply create an invalid slice that likely violate memory safety.
unsafeDrop :: Int -> MVector s a -> MVector s a
{-# INLINE unsafeDrop #-}
unsafeDrop :: forall s a. Int -> MVector s a -> MVector s a
unsafeDrop = forall (v :: * -> * -> *) a s. MVector v a => Int -> v s a -> v s a
G.unsafeDrop

-- | Same as 'init', but doesn't do range checks.
unsafeInit :: MVector s a -> MVector s a
{-# INLINE unsafeInit #-}
unsafeInit :: forall s a. MVector s a -> MVector s a
unsafeInit = forall (v :: * -> * -> *) a s. MVector v a => v s a -> v s a
G.unsafeInit

-- | Same as 'tail', but doesn't do range checks.
unsafeTail :: MVector s a -> MVector s a
{-# INLINE unsafeTail #-}
unsafeTail :: forall s a. MVector s a -> MVector s a
unsafeTail = forall (v :: * -> * -> *) a s. MVector v a => v s a -> v s a
G.unsafeTail

-- Overlapping
-- -----------

-- | Check whether two vectors overlap.
overlaps :: MVector s a -> MVector s a -> Bool
{-# INLINE overlaps #-}
overlaps :: forall s a. MVector s a -> MVector s a -> Bool
overlaps = forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> Bool
G.overlaps

-- Initialisation
-- --------------

-- | Create a mutable vector of the given length.
new :: PrimMonad m => Int -> m (MVector (PrimState m) a)
{-# INLINE new #-}
new :: forall (m :: * -> *) a.
PrimMonad m =>
Int -> m (MVector (PrimState m) a)
new = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
G.new

-- | Create a mutable vector of the given length. The vector elements
-- are set to bottom, so accessing them will cause an exception.
--
-- @since 0.5
unsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeNew #-}
unsafeNew :: forall (m :: * -> *) a.
PrimMonad m =>
Int -> m (MVector (PrimState m) a)
unsafeNew = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
G.unsafeNew

-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with an initial value.
replicate :: PrimMonad m => Int -> a -> m (MVector (PrimState m) a)
{-# INLINE replicate #-}
replicate :: forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (MVector (PrimState m) a)
replicate = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> a -> m (v (PrimState m) a)
G.replicate

-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with values produced by repeatedly executing the monadic action.
replicateM :: PrimMonad m => Int -> m a -> m (MVector (PrimState m) a)
{-# INLINE replicateM #-}
replicateM :: forall (m :: * -> *) a.
PrimMonad m =>
Int -> m a -> m (MVector (PrimState m) a)
replicateM = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m a -> m (v (PrimState m) a)
G.replicateM

-- | /O(n)/ Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with the results of applying the function to each index.
-- Iteration starts at index 0.
--
-- @since 0.12.3.0
generate :: (PrimMonad m) => Int -> (Int -> a) -> m (MVector (PrimState m) a)
{-# INLINE generate #-}
generate :: forall (m :: * -> *) a.
PrimMonad m =>
Int -> (Int -> a) -> m (MVector (PrimState m) a)
generate = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> (Int -> a) -> m (v (PrimState m) a)
G.generate

-- | /O(n)/ Create a mutable vector of the given length (0 if the length is
-- negative) and fill it with the results of applying the monadic function to each
-- index. Iteration starts at index 0.
--
-- @since 0.12.3.0
generateM :: (PrimMonad m) => Int -> (Int -> m a) -> m (MVector (PrimState m) a)
{-# INLINE generateM #-}
generateM :: forall (m :: * -> *) a.
PrimMonad m =>
Int -> (Int -> m a) -> m (MVector (PrimState m) a)
generateM = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> (Int -> m a) -> m (v (PrimState m) a)
G.generateM

-- | Create a copy of a mutable vector.
clone :: PrimMonad m => MVector (PrimState m) a -> m (MVector (PrimState m) a)
{-# INLINE clone #-}
clone :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> m (MVector (PrimState m) a)
clone = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> m (v (PrimState m) a)
G.clone

-- Growing
-- -------

-- | Grow a boxed vector by the given number of elements. The number must be
-- non-negative. This has the same semantics as 'G.grow' for generic vectors. It differs
-- from @grow@ functions for unpacked vectors, however, in that only pointers to
-- values are copied over, therefore the values themselves will be shared between the
-- two vectors. This is an important distinction to know about during memory
-- usage analysis and in case the values themselves are of a mutable type, e.g.
-- 'Data.IORef.IORef' or another mutable vector.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector as V
-- >>> import qualified Data.Vector.Mutable as MV
-- >>> mv <- V.thaw $ V.fromList ([10, 20, 30] :: [Integer])
-- >>> mv' <- MV.grow mv 2
--
-- The two extra elements at the end of the newly allocated vector will be
-- uninitialized and will result in an error if evaluated, so me must overwrite
-- them with new values first:
--
-- >>> MV.write mv' 3 999
-- >>> MV.write mv' 4 777
-- >>> V.freeze mv'
-- [10,20,30,999,777]
--
-- It is important to note that the source mutable vector is not affected when
-- the newly allocated one is mutated.
--
-- >>> MV.write mv' 2 888
-- >>> V.freeze mv'
-- [10,20,888,999,777]
-- >>> V.freeze mv
-- [10,20,30]
--
-- @since 0.5
grow :: PrimMonad m
     => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE grow #-}
grow :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
grow = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m (v (PrimState m) a)
G.grow

-- | Grow a vector by the given number of elements. The number must be non-negative, but
-- this is not checked. This has the same semantics as 'G.unsafeGrow' for generic vectors.
--
-- @since 0.5
unsafeGrow :: PrimMonad m
           => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeGrow #-}
unsafeGrow :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
unsafeGrow = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m (v (PrimState m) a)
G.unsafeGrow

-- Restricting memory usage
-- ------------------------

-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects.
clear :: PrimMonad m => MVector (PrimState m) a -> m ()
{-# INLINE clear #-}
clear :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> m ()
clear = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> m ()
G.clear

-- Accessing individual elements
-- -----------------------------

-- | Yield the element at the given position. Will throw an exception if
-- the index is out of range.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Mutable as MV
-- >>> v <- MV.generate 10 (\x -> x*x)
-- >>> MV.read v 3
-- 9
read :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
{-# INLINE read #-}
read :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> m a
read = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
G.read

-- | Yield the element at the given position. Returns 'Nothing' if
-- the index is out of range.
--
-- @since 0.13
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Mutable as MV
-- >>> v <- MV.generate 10 (\x -> x*x)
-- >>> MV.readMaybe v 3
-- Just 9
-- >>> MV.readMaybe v 13
-- Nothing
readMaybe :: (PrimMonad m) => MVector (PrimState m) a -> Int -> m (Maybe a)
{-# INLINE readMaybe #-}
readMaybe :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> m (Maybe a)
readMaybe = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m (Maybe a)
G.readMaybe

-- | Replace the element at the given position.
write :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE write #-}
write :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> a -> m ()
write = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
G.write

-- | Modify the element at the given position.
modify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE modify #-}
modify :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> (a -> a) -> Int -> m ()
modify = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> a) -> Int -> m ()
G.modify

-- | Modify the element at the given position using a monadic function.
--
-- @since 0.12.3.0
modifyM :: (PrimMonad m) => MVector (PrimState m) a -> (a -> m a) -> Int -> m ()
{-# INLINE modifyM #-}
modifyM :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> (a -> m a) -> Int -> m ()
modifyM = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> m a) -> Int -> m ()
G.modifyM

-- | Swap the elements at the given positions.
swap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE swap #-}
swap :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> Int -> m ()
swap = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> Int -> m ()
G.swap

-- | Replace the element at the given position and return the old element.
exchange :: (PrimMonad m) => MVector (PrimState m) a -> Int -> a -> m a
{-# INLINE exchange #-}
exchange :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> a -> m a
exchange = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m a
G.exchange

-- | Yield the element at the given position. No bounds checks are performed.
unsafeRead :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
{-# INLINE unsafeRead #-}
unsafeRead :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> m a
unsafeRead = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
G.unsafeRead

-- | Replace the element at the given position. No bounds checks are performed.
unsafeWrite :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE unsafeWrite #-}
unsafeWrite :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> a -> m ()
unsafeWrite = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
G.unsafeWrite

-- | Modify the element at the given position. No bounds checks are performed.
unsafeModify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE unsafeModify #-}
unsafeModify :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> (a -> a) -> Int -> m ()
unsafeModify = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> a) -> Int -> m ()
G.unsafeModify

-- | Modify the element at the given position using a monadic
-- function. No bounds checks are performed.
--
-- @since 0.12.3.0
unsafeModifyM :: (PrimMonad m) => MVector (PrimState m) a -> (a -> m a) -> Int -> m ()
{-# INLINE unsafeModifyM #-}
unsafeModifyM :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> (a -> m a) -> Int -> m ()
unsafeModifyM = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> m a) -> Int -> m ()
G.unsafeModifyM

-- | Swap the elements at the given positions. No bounds checks are performed.
unsafeSwap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE unsafeSwap #-}
unsafeSwap :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> Int -> m ()
unsafeSwap = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> Int -> m ()
G.unsafeSwap

-- | Replace the element at the given position and return the old element. No
-- bounds checks are performed.
unsafeExchange :: (PrimMonad m) => MVector (PrimState m) a -> Int -> a -> m a
{-# INLINE unsafeExchange #-}
unsafeExchange :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> Int -> a -> m a
unsafeExchange = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m a
G.unsafeExchange

-- Filling and copying
-- -------------------

-- | Set all elements of the vector to the given value.
set :: PrimMonad m => MVector (PrimState m) a -> a -> m ()
{-# INLINE set #-}
set :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> a -> m ()
set = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> a -> m ()
G.set

-- | Copy a vector. The two vectors must have the same length and may not
-- overlap.
copy :: PrimMonad m => MVector (PrimState m) a   -- ^ target
                    -> MVector (PrimState m) a   -- ^ source
                    -> m ()
{-# INLINE copy #-}
copy :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
copy = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> v (PrimState m) a -> m ()
G.copy

-- | Copy a vector. The two vectors must have the same length and may not
-- overlap, but this is not checked.
unsafeCopy :: PrimMonad m => MVector (PrimState m) a   -- ^ target
                          -> MVector (PrimState m) a   -- ^ source
                          -> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
unsafeCopy = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> v (PrimState m) a -> m ()
G.unsafeCopy

-- | Move the contents of a vector. The two vectors must have the same
-- length.
--
-- If the vectors do not overlap, then this is equivalent to 'copy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
move :: PrimMonad m => MVector (PrimState m) a   -- ^ target
                    -> MVector (PrimState m) a   -- ^ source
                    -> m ()
{-# INLINE move #-}
move :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
move = forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> v (PrimState m) a -> m ()
G.move

-- | Move the contents of a vector. The two vectors must have the same
-- length, but this is not checked.
--
-- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
unsafeMove :: PrimMonad m => MVector (PrimState m) a   -- ^ target
                          -> MVector (PrimState m) a   -- ^ source
                          -> m ()
{-# INLINE unsafeMove #-}
unsafeMove :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
unsafeMove = forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> v (PrimState m) a -> m ()
G.unsafeMove

-- Modifying vectors
-- -----------------

-- | Compute the (lexicographically) next permutation of the given vector in-place.
-- Returns False when the input is the last permutation.
nextPermutation :: (PrimMonad m, Ord e) => MVector (PrimState m) e -> m Bool
{-# INLINE nextPermutation #-}
nextPermutation :: forall (m :: * -> *) e.
(PrimMonad m, Ord e) =>
MVector (PrimState m) e -> m Bool
nextPermutation = forall (m :: * -> *) e (v :: * -> * -> *).
(PrimMonad m, Ord e, MVector v e) =>
v (PrimState m) e -> m Bool
G.nextPermutation

-- Folds
-- -----

-- | /O(n)/ Apply the monadic action to every element of the vector, discarding the results.
--
-- @since 0.12.3.0
mapM_ :: (PrimMonad m) => (a -> m b) -> MVector (PrimState m) a -> m ()
{-# INLINE mapM_ #-}
mapM_ :: forall (m :: * -> *) a b.
PrimMonad m =>
(a -> m b) -> MVector (PrimState m) a -> m ()
mapM_ = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> m b) -> v (PrimState m) a -> m ()
G.mapM_

-- | /O(n)/ Apply the monadic action to every element of the vector and its index, discarding the results.
--
-- @since 0.12.3.0
imapM_ :: (PrimMonad m) => (Int -> a -> m b) -> MVector (PrimState m) a -> m ()
{-# INLINE imapM_ #-}
imapM_ :: forall (m :: * -> *) a b.
PrimMonad m =>
(Int -> a -> m b) -> MVector (PrimState m) a -> m ()
imapM_ = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> m b) -> v (PrimState m) a -> m ()
G.imapM_

-- | /O(n)/ Apply the monadic action to every element of the vector,
-- discarding the results. It's the same as @flip mapM_@.
--
-- @since 0.12.3.0
forM_ :: (PrimMonad m) => MVector (PrimState m) a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ :: forall (m :: * -> *) a b.
PrimMonad m =>
MVector (PrimState m) a -> (a -> m b) -> m ()
forM_ = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> m b) -> m ()
G.forM_

-- | /O(n)/ Apply the monadic action to every element of the vector
-- and its index, discarding the results. It's the same as @flip imapM_@.
--
-- @since 0.12.3.0
iforM_ :: (PrimMonad m) => MVector (PrimState m) a -> (Int -> a -> m b) -> m ()
{-# INLINE iforM_ #-}
iforM_ :: forall (m :: * -> *) a b.
PrimMonad m =>
MVector (PrimState m) a -> (Int -> a -> m b) -> m ()
iforM_ = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (Int -> a -> m b) -> m ()
G.iforM_

-- | /O(n)/ Pure left fold.
--
-- @since 0.12.3.0
foldl :: (PrimMonad m) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldl #-}
foldl :: forall (m :: * -> *) b a.
PrimMonad m =>
(b -> a -> b) -> b -> MVector (PrimState m) a -> m b
foldl = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> a -> b) -> b -> v (PrimState m) a -> m b
G.foldl

-- | /O(n)/ Pure left fold with strict accumulator.
--
-- @since 0.12.3.0
foldl' :: (PrimMonad m) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldl' #-}
foldl' :: forall (m :: * -> *) b a.
PrimMonad m =>
(b -> a -> b) -> b -> MVector (PrimState m) a -> m b
foldl' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> a -> b) -> b -> v (PrimState m) a -> m b
G.foldl'

-- | /O(n)/ Pure left fold using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldl :: (PrimMonad m) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldl #-}
ifoldl :: forall (m :: * -> *) b a.
PrimMonad m =>
(b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b
ifoldl = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> Int -> a -> b) -> b -> v (PrimState m) a -> m b
G.ifoldl

-- | /O(n)/ Pure left fold with strict accumulator using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldl' :: (PrimMonad m) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldl' #-}
ifoldl' :: forall (m :: * -> *) b a.
PrimMonad m =>
(b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b
ifoldl' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> Int -> a -> b) -> b -> v (PrimState m) a -> m b
G.ifoldl'

-- | /O(n)/ Pure right fold.
--
-- @since 0.12.3.0
foldr :: (PrimMonad m) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldr #-}
foldr :: forall (m :: * -> *) a b.
PrimMonad m =>
(a -> b -> b) -> b -> MVector (PrimState m) a -> m b
foldr = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> b -> b) -> b -> v (PrimState m) a -> m b
G.foldr

-- | /O(n)/ Pure right fold with strict accumulator.
--
-- @since 0.12.3.0
foldr' :: (PrimMonad m) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldr' #-}
foldr' :: forall (m :: * -> *) a b.
PrimMonad m =>
(a -> b -> b) -> b -> MVector (PrimState m) a -> m b
foldr' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> b -> b) -> b -> v (PrimState m) a -> m b
G.foldr'

-- | /O(n)/ Pure right fold using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldr :: (PrimMonad m) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldr #-}
ifoldr :: forall (m :: * -> *) a b.
PrimMonad m =>
(Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b
ifoldr = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> b -> b) -> b -> v (PrimState m) a -> m b
G.ifoldr

-- | /O(n)/ Pure right fold with strict accumulator using a function applied
-- to each element and its index.
--
-- @since 0.12.3.0
ifoldr' :: (PrimMonad m) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldr' #-}
ifoldr' :: forall (m :: * -> *) a b.
PrimMonad m =>
(Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b
ifoldr' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> b -> b) -> b -> v (PrimState m) a -> m b
G.ifoldr'

-- | /O(n)/ Monadic fold.
--
-- @since 0.12.3.0
foldM :: (PrimMonad m) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldM #-}
foldM :: forall (m :: * -> *) b a.
PrimMonad m =>
(b -> a -> m b) -> b -> MVector (PrimState m) a -> m b
foldM = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> a -> m b) -> b -> v (PrimState m) a -> m b
G.foldM

-- | /O(n)/ Monadic fold with strict accumulator.
--
-- @since 0.12.3.0
foldM' :: (PrimMonad m) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldM' #-}
foldM' :: forall (m :: * -> *) b a.
PrimMonad m =>
(b -> a -> m b) -> b -> MVector (PrimState m) a -> m b
foldM' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> a -> m b) -> b -> v (PrimState m) a -> m b
G.foldM'

-- | /O(n)/ Monadic fold using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldM :: (PrimMonad m) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldM #-}
ifoldM :: forall (m :: * -> *) b a.
PrimMonad m =>
(b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b
ifoldM = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> Int -> a -> m b) -> b -> v (PrimState m) a -> m b
G.ifoldM

-- | /O(n)/ Monadic fold with strict accumulator using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldM' :: (PrimMonad m) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldM' #-}
ifoldM' :: forall (m :: * -> *) b a.
PrimMonad m =>
(b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b
ifoldM' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(b -> Int -> a -> m b) -> b -> v (PrimState m) a -> m b
G.ifoldM'

-- | /O(n)/ Monadic right fold.
--
-- @since 0.12.3.0
foldrM :: (PrimMonad m) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldrM #-}
foldrM :: forall (m :: * -> *) a b.
PrimMonad m =>
(a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
foldrM = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> b -> m b) -> b -> v (PrimState m) a -> m b
G.foldrM

-- | /O(n)/ Monadic right fold with strict accumulator.
--
-- @since 0.12.3.0
foldrM' :: (PrimMonad m) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE foldrM' #-}
foldrM' :: forall (m :: * -> *) a b.
PrimMonad m =>
(a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
foldrM' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(a -> b -> m b) -> b -> v (PrimState m) a -> m b
G.foldrM'

-- | /O(n)/ Monadic right fold using a function applied to each element and its index.
--
-- @since 0.12.3.0
ifoldrM :: (PrimMonad m) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldrM #-}
ifoldrM :: forall (m :: * -> *) a b.
PrimMonad m =>
(Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
ifoldrM = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> b -> m b) -> b -> v (PrimState m) a -> m b
G.ifoldrM

-- | /O(n)/ Monadic right fold with strict accumulator using a function applied
-- to each element and its index.
--
-- @since 0.12.3.0
ifoldrM' :: (PrimMonad m) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
{-# INLINE ifoldrM' #-}
ifoldrM' :: forall (m :: * -> *) a b.
PrimMonad m =>
(Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b
ifoldrM' = forall (m :: * -> *) (v :: * -> * -> *) a b.
(PrimMonad m, MVector v a) =>
(Int -> a -> b -> m b) -> b -> v (PrimState m) a -> m b
G.ifoldrM'

-- Conversions - Arrays
-- -----------------------------

-- | /O(n)/ Make a copy of a mutable array to a new mutable vector.
--
-- @since 0.12.2.0
fromMutableArray :: PrimMonad m => MutableArray (PrimState m) a -> m (MVector (PrimState m) a)
{-# INLINE fromMutableArray #-}
fromMutableArray :: forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a -> m (MVector (PrimState m) a)
fromMutableArray MutableArray (PrimState m) a
marr =
  let size :: Int
size = forall s a. MutableArray s a -> Int
sizeofMutableArray MutableArray (PrimState m) a
marr
  in forall s a. Int -> Int -> MutableArray s a -> MVector s a
MVector Int
0 Int
size forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
`liftM` forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a
-> Int -> Int -> m (MutableArray (PrimState m) a)
cloneMutableArray MutableArray (PrimState m) a
marr Int
0 Int
size

-- | /O(n)/ Make a copy of a mutable vector into a new mutable array.
--
-- @since 0.12.2.0
toMutableArray :: PrimMonad m => MVector (PrimState m) a -> m (MutableArray (PrimState m) a)
{-# INLINE toMutableArray #-}
toMutableArray :: forall (m :: * -> *) a.
PrimMonad m =>
MVector (PrimState m) a -> m (MutableArray (PrimState m) a)
toMutableArray (MVector Int
offset Int
size MutableArray (PrimState m) a
marr) = forall (m :: * -> *) a.
PrimMonad m =>
MutableArray (PrimState m) a
-> Int -> Int -> m (MutableArray (PrimState m) a)
cloneMutableArray MutableArray (PrimState m) a
marr Int
offset Int
size

-- $setup
-- >>> import Prelude (Integer)