vector-0.13.0.0: Efficient Arrays
Copyright(c) Roman Leshchinskiy 2009-2010
Alexey Kuleshevich 2020-2022
Aleksey Khudyakov 2020-2022
Andrew Lelechenko 2020-2022
LicenseBSD-style
MaintainerHaskell Libraries Team <libraries@haskell.org>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Vector.Unboxed.Mutable

Description

Mutable adaptive unboxed vectors.

Synopsis

Mutable vectors of primitive types

data family MVector s a Source #

Instances

Instances details
MVector MVector Bool Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Char Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Double Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Float Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int8 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int16 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int32 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int64 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word8 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word16 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word32 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word64 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector () Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s () -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s () -> MVector s () Source #

basicOverlaps :: MVector s () -> MVector s () -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s ()) Source #

basicInitialize :: MVector s () -> ST s () Source #

basicUnsafeReplicate :: Int -> () -> ST s (MVector s ()) Source #

basicUnsafeRead :: MVector s () -> Int -> ST s () Source #

basicUnsafeWrite :: MVector s () -> Int -> () -> ST s () Source #

basicClear :: MVector s () -> ST s () Source #

basicSet :: MVector s () -> () -> ST s () Source #

basicUnsafeCopy :: MVector s () -> MVector s () -> ST s () Source #

basicUnsafeMove :: MVector s () -> MVector s () -> ST s () Source #

basicUnsafeGrow :: MVector s () -> Int -> ST s (MVector s ()) Source #

MVector MVector All Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Any Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Complex a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Min a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Min a) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Min a) -> MVector s (Min a) Source #

basicOverlaps :: MVector s (Min a) -> MVector s (Min a) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Min a)) Source #

basicInitialize :: MVector s (Min a) -> ST s () Source #

basicUnsafeReplicate :: Int -> Min a -> ST s (MVector s (Min a)) Source #

basicUnsafeRead :: MVector s (Min a) -> Int -> ST s (Min a) Source #

basicUnsafeWrite :: MVector s (Min a) -> Int -> Min a -> ST s () Source #

basicClear :: MVector s (Min a) -> ST s () Source #

basicSet :: MVector s (Min a) -> Min a -> ST s () Source #

basicUnsafeCopy :: MVector s (Min a) -> MVector s (Min a) -> ST s () Source #

basicUnsafeMove :: MVector s (Min a) -> MVector s (Min a) -> ST s () Source #

basicUnsafeGrow :: MVector s (Min a) -> Int -> ST s (MVector s (Min a)) Source #

Unbox a => MVector MVector (Max a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Max a) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Max a) -> MVector s (Max a) Source #

basicOverlaps :: MVector s (Max a) -> MVector s (Max a) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Max a)) Source #

basicInitialize :: MVector s (Max a) -> ST s () Source #

basicUnsafeReplicate :: Int -> Max a -> ST s (MVector s (Max a)) Source #

basicUnsafeRead :: MVector s (Max a) -> Int -> ST s (Max a) Source #

basicUnsafeWrite :: MVector s (Max a) -> Int -> Max a -> ST s () Source #

basicClear :: MVector s (Max a) -> ST s () Source #

basicSet :: MVector s (Max a) -> Max a -> ST s () Source #

basicUnsafeCopy :: MVector s (Max a) -> MVector s (Max a) -> ST s () Source #

basicUnsafeMove :: MVector s (Max a) -> MVector s (Max a) -> ST s () Source #

basicUnsafeGrow :: MVector s (Max a) -> Int -> ST s (MVector s (Max a)) Source #

Unbox a => MVector MVector (First a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Last a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Last a) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Last a) -> MVector s (Last a) Source #

basicOverlaps :: MVector s (Last a) -> MVector s (Last a) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Last a)) Source #

basicInitialize :: MVector s (Last a) -> ST s () Source #

basicUnsafeReplicate :: Int -> Last a -> ST s (MVector s (Last a)) Source #

basicUnsafeRead :: MVector s (Last a) -> Int -> ST s (Last a) Source #

basicUnsafeWrite :: MVector s (Last a) -> Int -> Last a -> ST s () Source #

basicClear :: MVector s (Last a) -> ST s () Source #

basicSet :: MVector s (Last a) -> Last a -> ST s () Source #

basicUnsafeCopy :: MVector s (Last a) -> MVector s (Last a) -> ST s () Source #

basicUnsafeMove :: MVector s (Last a) -> MVector s (Last a) -> ST s () Source #

basicUnsafeGrow :: MVector s (Last a) -> Int -> ST s (MVector s (Last a)) Source #

Unbox a => MVector MVector (WrappedMonoid a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Identity a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Dual a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Dual a) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Dual a) -> MVector s (Dual a) Source #

basicOverlaps :: MVector s (Dual a) -> MVector s (Dual a) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Dual a)) Source #

basicInitialize :: MVector s (Dual a) -> ST s () Source #

basicUnsafeReplicate :: Int -> Dual a -> ST s (MVector s (Dual a)) Source #

basicUnsafeRead :: MVector s (Dual a) -> Int -> ST s (Dual a) Source #

basicUnsafeWrite :: MVector s (Dual a) -> Int -> Dual a -> ST s () Source #

basicClear :: MVector s (Dual a) -> ST s () Source #

basicSet :: MVector s (Dual a) -> Dual a -> ST s () Source #

basicUnsafeCopy :: MVector s (Dual a) -> MVector s (Dual a) -> ST s () Source #

basicUnsafeMove :: MVector s (Dual a) -> MVector s (Dual a) -> ST s () Source #

basicUnsafeGrow :: MVector s (Dual a) -> Int -> ST s (MVector s (Dual a)) Source #

Unbox a => MVector MVector (Sum a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Sum a) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Sum a) -> MVector s (Sum a) Source #

basicOverlaps :: MVector s (Sum a) -> MVector s (Sum a) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Sum a)) Source #

basicInitialize :: MVector s (Sum a) -> ST s () Source #

basicUnsafeReplicate :: Int -> Sum a -> ST s (MVector s (Sum a)) Source #

basicUnsafeRead :: MVector s (Sum a) -> Int -> ST s (Sum a) Source #

basicUnsafeWrite :: MVector s (Sum a) -> Int -> Sum a -> ST s () Source #

basicClear :: MVector s (Sum a) -> ST s () Source #

basicSet :: MVector s (Sum a) -> Sum a -> ST s () Source #

basicUnsafeCopy :: MVector s (Sum a) -> MVector s (Sum a) -> ST s () Source #

basicUnsafeMove :: MVector s (Sum a) -> MVector s (Sum a) -> ST s () Source #

basicUnsafeGrow :: MVector s (Sum a) -> Int -> ST s (MVector s (Sum a)) Source #

Unbox a => MVector MVector (Product a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Down a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Down a) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Down a) -> MVector s (Down a) Source #

basicOverlaps :: MVector s (Down a) -> MVector s (Down a) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Down a)) Source #

basicInitialize :: MVector s (Down a) -> ST s () Source #

basicUnsafeReplicate :: Int -> Down a -> ST s (MVector s (Down a)) Source #

basicUnsafeRead :: MVector s (Down a) -> Int -> ST s (Down a) Source #

basicUnsafeWrite :: MVector s (Down a) -> Int -> Down a -> ST s () Source #

basicClear :: MVector s (Down a) -> ST s () Source #

basicSet :: MVector s (Down a) -> Down a -> ST s () Source #

basicUnsafeCopy :: MVector s (Down a) -> MVector s (Down a) -> ST s () Source #

basicUnsafeMove :: MVector s (Down a) -> MVector s (Down a) -> ST s () Source #

basicUnsafeGrow :: MVector s (Down a) -> Int -> ST s (MVector s (Down a)) Source #

Prim a => MVector MVector (UnboxViaPrim a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

(Unbox a, Unbox b) => MVector MVector (a, b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (a, b) -> MVector s (a, b) Source #

basicOverlaps :: MVector s (a, b) -> MVector s (a, b) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (a, b)) Source #

basicInitialize :: MVector s (a, b) -> ST s () Source #

basicUnsafeReplicate :: Int -> (a, b) -> ST s (MVector s (a, b)) Source #

basicUnsafeRead :: MVector s (a, b) -> Int -> ST s (a, b) Source #

basicUnsafeWrite :: MVector s (a, b) -> Int -> (a, b) -> ST s () Source #

basicClear :: MVector s (a, b) -> ST s () Source #

basicSet :: MVector s (a, b) -> (a, b) -> ST s () Source #

basicUnsafeCopy :: MVector s (a, b) -> MVector s (a, b) -> ST s () Source #

basicUnsafeMove :: MVector s (a, b) -> MVector s (a, b) -> ST s () Source #

basicUnsafeGrow :: MVector s (a, b) -> Int -> ST s (MVector s (a, b)) Source #

(Unbox a, Unbox b) => MVector MVector (Arg a b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Arg a b) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Arg a b) -> MVector s (Arg a b) Source #

basicOverlaps :: MVector s (Arg a b) -> MVector s (Arg a b) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Arg a b)) Source #

basicInitialize :: MVector s (Arg a b) -> ST s () Source #

basicUnsafeReplicate :: Int -> Arg a b -> ST s (MVector s (Arg a b)) Source #

basicUnsafeRead :: MVector s (Arg a b) -> Int -> ST s (Arg a b) Source #

basicUnsafeWrite :: MVector s (Arg a b) -> Int -> Arg a b -> ST s () Source #

basicClear :: MVector s (Arg a b) -> ST s () Source #

basicSet :: MVector s (Arg a b) -> Arg a b -> ST s () Source #

basicUnsafeCopy :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s () Source #

basicUnsafeMove :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s () Source #

basicUnsafeGrow :: MVector s (Arg a b) -> Int -> ST s (MVector s (Arg a b)) Source #

(IsoUnbox a b, Unbox b) => MVector MVector (As a b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (As a b) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (As a b) -> MVector s (As a b) Source #

basicOverlaps :: MVector s (As a b) -> MVector s (As a b) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (As a b)) Source #

basicInitialize :: MVector s (As a b) -> ST s () Source #

basicUnsafeReplicate :: Int -> As a b -> ST s (MVector s (As a b)) Source #

basicUnsafeRead :: MVector s (As a b) -> Int -> ST s (As a b) Source #

basicUnsafeWrite :: MVector s (As a b) -> Int -> As a b -> ST s () Source #

basicClear :: MVector s (As a b) -> ST s () Source #

basicSet :: MVector s (As a b) -> As a b -> ST s () Source #

basicUnsafeCopy :: MVector s (As a b) -> MVector s (As a b) -> ST s () Source #

basicUnsafeMove :: MVector s (As a b) -> MVector s (As a b) -> ST s () Source #

basicUnsafeGrow :: MVector s (As a b) -> Int -> ST s (MVector s (As a b)) Source #

(Unbox a, Unbox b, Unbox c) => MVector MVector (a, b, c) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b, c) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c) -> MVector s (a, b, c) Source #

basicOverlaps :: MVector s (a, b, c) -> MVector s (a, b, c) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (a, b, c)) Source #

basicInitialize :: MVector s (a, b, c) -> ST s () Source #

basicUnsafeReplicate :: Int -> (a, b, c) -> ST s (MVector s (a, b, c)) Source #

basicUnsafeRead :: MVector s (a, b, c) -> Int -> ST s (a, b, c) Source #

basicUnsafeWrite :: MVector s (a, b, c) -> Int -> (a, b, c) -> ST s () Source #

basicClear :: MVector s (a, b, c) -> ST s () Source #

basicSet :: MVector s (a, b, c) -> (a, b, c) -> ST s () Source #

basicUnsafeCopy :: MVector s (a, b, c) -> MVector s (a, b, c) -> ST s () Source #

basicUnsafeMove :: MVector s (a, b, c) -> MVector s (a, b, c) -> ST s () Source #

basicUnsafeGrow :: MVector s (a, b, c) -> Int -> ST s (MVector s (a, b, c)) Source #

Unbox a => MVector MVector (Const a b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Const a b) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b) Source #

basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Const a b)) Source #

basicInitialize :: MVector s (Const a b) -> ST s () Source #

basicUnsafeReplicate :: Int -> Const a b -> ST s (MVector s (Const a b)) Source #

basicUnsafeRead :: MVector s (Const a b) -> Int -> ST s (Const a b) Source #

basicUnsafeWrite :: MVector s (Const a b) -> Int -> Const a b -> ST s () Source #

basicClear :: MVector s (Const a b) -> ST s () Source #

basicSet :: MVector s (Const a b) -> Const a b -> ST s () Source #

basicUnsafeCopy :: MVector s (Const a b) -> MVector s (Const a b) -> ST s () Source #

basicUnsafeMove :: MVector s (Const a b) -> MVector s (Const a b) -> ST s () Source #

basicUnsafeGrow :: MVector s (Const a b) -> Int -> ST s (MVector s (Const a b)) Source #

Unbox (f a) => MVector MVector (Alt f a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Alt f a) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Alt f a) -> MVector s (Alt f a) Source #

basicOverlaps :: MVector s (Alt f a) -> MVector s (Alt f a) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Alt f a)) Source #

basicInitialize :: MVector s (Alt f a) -> ST s () Source #

basicUnsafeReplicate :: Int -> Alt f a -> ST s (MVector s (Alt f a)) Source #

basicUnsafeRead :: MVector s (Alt f a) -> Int -> ST s (Alt f a) Source #

basicUnsafeWrite :: MVector s (Alt f a) -> Int -> Alt f a -> ST s () Source #

basicClear :: MVector s (Alt f a) -> ST s () Source #

basicSet :: MVector s (Alt f a) -> Alt f a -> ST s () Source #

basicUnsafeCopy :: MVector s (Alt f a) -> MVector s (Alt f a) -> ST s () Source #

basicUnsafeMove :: MVector s (Alt f a) -> MVector s (Alt f a) -> ST s () Source #

basicUnsafeGrow :: MVector s (Alt f a) -> Int -> ST s (MVector s (Alt f a)) Source #

(Unbox a, Unbox b, Unbox c, Unbox d) => MVector MVector (a, b, c, d) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b, c, d) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d) -> MVector s (a, b, c, d) Source #

basicOverlaps :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d)) Source #

basicInitialize :: MVector s (a, b, c, d) -> ST s () Source #

basicUnsafeReplicate :: Int -> (a, b, c, d) -> ST s (MVector s (a, b, c, d)) Source #

basicUnsafeRead :: MVector s (a, b, c, d) -> Int -> ST s (a, b, c, d) Source #

basicUnsafeWrite :: MVector s (a, b, c, d) -> Int -> (a, b, c, d) -> ST s () Source #

basicClear :: MVector s (a, b, c, d) -> ST s () Source #

basicSet :: MVector s (a, b, c, d) -> (a, b, c, d) -> ST s () Source #

basicUnsafeCopy :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> ST s () Source #

basicUnsafeMove :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> ST s () Source #

basicUnsafeGrow :: MVector s (a, b, c, d) -> Int -> ST s (MVector s (a, b, c, d)) Source #

(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector MVector (a, b, c, d, e) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b, c, d, e) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) Source #

basicOverlaps :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d, e)) Source #

basicInitialize :: MVector s (a, b, c, d, e) -> ST s () Source #

basicUnsafeReplicate :: Int -> (a, b, c, d, e) -> ST s (MVector s (a, b, c, d, e)) Source #

basicUnsafeRead :: MVector s (a, b, c, d, e) -> Int -> ST s (a, b, c, d, e) Source #

basicUnsafeWrite :: MVector s (a, b, c, d, e) -> Int -> (a, b, c, d, e) -> ST s () Source #

basicClear :: MVector s (a, b, c, d, e) -> ST s () Source #

basicSet :: MVector s (a, b, c, d, e) -> (a, b, c, d, e) -> ST s () Source #

basicUnsafeCopy :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> ST s () Source #

basicUnsafeMove :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> ST s () Source #

basicUnsafeGrow :: MVector s (a, b, c, d, e) -> Int -> ST s (MVector s (a, b, c, d, e)) Source #

Unbox (f (g a)) => MVector MVector (Compose f g a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Compose f g a) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (Compose f g a) -> MVector s (Compose f g a) Source #

basicOverlaps :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (Compose f g a)) Source #

basicInitialize :: MVector s (Compose f g a) -> ST s () Source #

basicUnsafeReplicate :: Int -> Compose f g a -> ST s (MVector s (Compose f g a)) Source #

basicUnsafeRead :: MVector s (Compose f g a) -> Int -> ST s (Compose f g a) Source #

basicUnsafeWrite :: MVector s (Compose f g a) -> Int -> Compose f g a -> ST s () Source #

basicClear :: MVector s (Compose f g a) -> ST s () Source #

basicSet :: MVector s (Compose f g a) -> Compose f g a -> ST s () Source #

basicUnsafeCopy :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> ST s () Source #

basicUnsafeMove :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> ST s () Source #

basicUnsafeGrow :: MVector s (Compose f g a) -> Int -> ST s (MVector s (Compose f g a)) Source #

(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector MVector (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b, c, d, e, f) -> Int Source #

basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) Source #

basicOverlaps :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> Bool Source #

basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d, e, f)) Source #

basicInitialize :: MVector s (a, b, c, d, e, f) -> ST s () Source #

basicUnsafeReplicate :: Int -> (a, b, c, d, e, f) -> ST s (MVector s (a, b, c, d, e, f)) Source #

basicUnsafeRead :: MVector s (a, b, c, d, e, f) -> Int -> ST s (a, b, c, d, e, f) Source #

basicUnsafeWrite :: MVector s (a, b, c, d, e, f) -> Int -> (a, b, c, d, e, f) -> ST s () Source #

basicClear :: MVector s (a, b, c, d, e, f) -> ST s () Source #

basicSet :: MVector s (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> ST s () Source #

basicUnsafeCopy :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> ST s () Source #

basicUnsafeMove :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> ST s () Source #

basicUnsafeGrow :: MVector s (a, b, c, d, e, f) -> Int -> ST s (MVector s (a, b, c, d, e, f)) Source #

NFData1 (MVector s) Source #

Since: 0.12.1.0

Instance details

Defined in Data.Vector.Unboxed.Base

Methods

liftRnf :: (a -> ()) -> MVector s a -> () #

NFData (MVector s a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

rnf :: MVector s a -> () #

newtype MVector s All Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s All = MV_All (MVector s Bool)
newtype MVector s Any Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Any = MV_Any (MVector s Bool)
newtype MVector s Bool Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Bool = MV_Bool (MVector s Word8)
newtype MVector s Char Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Char = MV_Char (MVector s Char)
newtype MVector s Double Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Float Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word64 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word32 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word16 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word8 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word = MV_Word (MVector s Word)
newtype MVector s Int64 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int32 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int16 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int8 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int8 = MV_Int8 (MVector s Int8)
newtype MVector s Int Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int = MV_Int (MVector s Int)
newtype MVector s () Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s () = MV_Unit Int
newtype MVector s (WrappedMonoid a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Last a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Last a) = MV_Last (MVector s a)
newtype MVector s (First a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (First a) = MV_First (MVector s a)
newtype MVector s (Max a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Max a) = MV_Max (MVector s a)
newtype MVector s (Min a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Min a) = MV_Min (MVector s a)
newtype MVector s (Product a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Product a) = MV_Product (MVector s a)
newtype MVector s (Sum a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Sum a) = MV_Sum (MVector s a)
newtype MVector s (Dual a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Dual a) = MV_Dual (MVector s a)
newtype MVector s (Down a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Down a) = MV_Down (MVector s a)
newtype MVector s (Identity a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Identity a) = MV_Identity (MVector s a)
newtype MVector s (Complex a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Complex a) = MV_Complex (MVector s (a, a))
newtype MVector s (UnboxViaPrim a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b) = MV_2 !Int !(MVector s a) !(MVector s b)
newtype MVector s (Arg a b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Arg a b) = MV_Arg (MVector s (a, b))
newtype MVector s (As a b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (As a b) = MV_UnboxAs (MVector s b)
data MVector s (a, b, c) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b, c) = MV_3 !Int !(MVector s a) !(MVector s b) !(MVector s c)
newtype MVector s (Alt f a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Alt f a) = MV_Alt (MVector s (f a))
newtype MVector s (Const a b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Const a b) = MV_Const (MVector s a)
data MVector s (a, b, c, d) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b, c, d) = MV_4 !Int !(MVector s a) !(MVector s b) !(MVector s c) !(MVector s d)
data MVector s (a, b, c, d, e) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b, c, d, e) = MV_5 !Int !(MVector s a) !(MVector s b) !(MVector s c) !(MVector s d) !(MVector s e)
newtype MVector s (Compose f g a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Compose f g a) = MV_Compose (MVector s (f (g a)))
data MVector s (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b, c, d, e, f) = MV_6 !Int !(MVector s a) !(MVector s b) !(MVector s c) !(MVector s d) !(MVector s e) !(MVector s f)

class (Vector Vector a, MVector MVector a) => Unbox a Source #

Instances

Instances details
Unbox Bool Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Char Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Double Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Float Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Int Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Int8 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Int16 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Int32 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Int64 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Word Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Word8 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Word16 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Word32 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Word64 Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox () Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox All Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox Any Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Complex a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Min a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Max a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (First a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Last a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (WrappedMonoid a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Identity a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Dual a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Sum a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Product a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Down a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

(Unbox a, Unbox b) => Unbox (a, b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

(Unbox a, Unbox b) => Unbox (Arg a b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

(Unbox a, Unbox b, Unbox c) => Unbox (a, b, c) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Unbox (Const a b) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox (f a) => Unbox (Alt f a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

(Unbox a, Unbox b, Unbox c, Unbox d) => Unbox (a, b, c, d) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => Unbox (a, b, c, d, e) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox (f (g a)) => Unbox (Compose f g a) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => Unbox (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Vector.Unboxed.Base

Accessors

Length information

length :: Unbox a => MVector s a -> Int Source #

Length of the mutable vector.

null :: Unbox a => MVector s a -> Bool Source #

Check whether the vector is empty.

Extracting subvectors

slice Source #

Arguments

:: Unbox a 
=> Int

i starting index

-> Int

n length

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. The vector must contain at least i+n elements.

init :: Unbox a => MVector s a -> MVector s a Source #

Drop the last element of the mutable vector without making a copy. If the vector is empty, an exception is thrown.

tail :: Unbox a => MVector s a -> MVector s a Source #

Drop the first element of the mutable vector without making a copy. If the vector is empty, an exception is thrown.

take :: Unbox a => Int -> MVector s a -> MVector s a Source #

Take the n first elements of the mutable vector without making a copy. For negative n, the empty vector is returned. If n is larger than the vector's length, the vector is returned unchanged.

drop :: Unbox a => Int -> MVector s a -> MVector s a Source #

Drop the n first element of the mutable vector without making a copy. For negative n, the vector is returned unchanged. If n is larger than the vector's length, the empty vector is returned.

splitAt :: Unbox a => Int -> MVector s a -> (MVector s a, MVector s a) Source #

O(1) Split the mutable vector into the first n elements and the remainder, without copying.

Note that splitAt n v is equivalent to (take n v, drop n v), but slightly more efficient.

unsafeSlice Source #

Arguments

:: Unbox a 
=> Int

starting index

-> Int

length of the slice

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. No bounds checks are performed.

unsafeInit :: Unbox a => MVector s a -> MVector s a Source #

Same as init, but doesn't do range checks.

unsafeTail :: Unbox a => MVector s a -> MVector s a Source #

Same as tail, but doesn't do range checks.

unsafeTake :: Unbox a => Int -> MVector s a -> MVector s a Source #

Unsafe variant of take. If n is out of range, it will simply create an invalid slice that likely violate memory safety.

unsafeDrop :: Unbox a => Int -> MVector s a -> MVector s a Source #

Unsafe variant of drop. If n is out of range, it will simply create an invalid slice that likely violate memory safety.

Overlapping

overlaps :: Unbox a => MVector s a -> MVector s a -> Bool Source #

Check whether two vectors overlap.

Construction

Initialisation

new :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length.

unsafeNew :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length. The vector content is uninitialized, which means it is filled with whatever the underlying memory buffer happens to contain.

Since: 0.5

replicate :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length (0 if the length is negative) and fill it with an initial value.

replicateM :: (PrimMonad m, Unbox a) => Int -> m a -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length (0 if the length is negative) and fill it with values produced by repeatedly executing the monadic action.

generate :: (PrimMonad m, Unbox a) => Int -> (Int -> a) -> m (MVector (PrimState m) a) Source #

O(n) Create a mutable vector of the given length (0 if the length is negative) and fill it with the results of applying the function to each index. Iteration starts at index 0.

Since: 0.12.3.0

generateM :: (PrimMonad m, Unbox a) => Int -> (Int -> m a) -> m (MVector (PrimState m) a) Source #

O(n) Create a mutable vector of the given length (0 if the length is negative) and fill it with the results of applying the monadic function to each index. Iteration starts at index 0.

Since: 0.12.3.0

clone :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m (MVector (PrimState m) a) Source #

Create a copy of a mutable vector.

Growing

grow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) Source #

Grow an unboxed vector by the given number of elements. The number must be non-negative. It has the same semantics as grow for generic vectors.

Examples

Expand
>>> import qualified Data.Vector.Unboxed as VU
>>> import qualified Data.Vector.Unboxed.Mutable as MVU
>>> mv <- VU.thaw $ VU.fromList ([('a', 10), ('b', 20), ('c', 30)] :: [(Char, Int)])
>>> mv' <- MVU.grow mv 2

Extra memory at the end of the newly allocated vector is initialized to 0 bytes, which for Unbox instance will usually correspond to some default value for a particular type, e.g. 0 for Int, False for Bool, etc. However, if unsafeGrow was used instead, this would not have been guaranteed and some garbage would be there instead.

>>> VU.freeze mv'
[('a',10),('b',20),('c',30),('\NUL',0),('\NUL',0)]

Having the extra space we can write new values in there:

>>> MVU.write mv' 3 ('d', 999)
>>> VU.freeze mv'
[('a',10),('b',20),('c',30),('d',999),('\NUL',0)]

It is important to note that the source mutable vector is not affected when the newly allocated one is mutated.

>>> MVU.write mv' 2 ('X', 888)
>>> VU.freeze mv'
[('a',10),('b',20),('X',888),('d',999),('\NUL',0)]
>>> VU.freeze mv
[('a',10),('b',20),('c',30)]

Since: 0.5

unsafeGrow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) Source #

Grow a vector by the given number of elements. The number must be non-negative, but this is not checked. This has the same semantics as unsafeGrow for generic vectors.

Since: 0.5

Restricting memory usage

clear :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m () Source #

Reset all elements of the vector to some undefined value, clearing all references to external objects. This is usually a noop for unboxed vectors.

Zipping and unzipping

zip :: (Unbox a, Unbox b) => MVector s a -> MVector s b -> MVector s (a, b) Source #

O(1) Zip 2 vectors.

zip3 :: (Unbox a, Unbox b, Unbox c) => MVector s a -> MVector s b -> MVector s c -> MVector s (a, b, c) Source #

O(1) Zip 3 vectors.

zip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s (a, b, c, d) Source #

O(1) Zip 4 vectors.

zip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s (a, b, c, d, e) Source #

O(1) Zip 5 vectors.

zip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s f -> MVector s (a, b, c, d, e, f) Source #

O(1) Zip 6 vectors.

unzip :: (Unbox a, Unbox b) => MVector s (a, b) -> (MVector s a, MVector s b) Source #

O(1) Unzip 2 vectors.

unzip3 :: (Unbox a, Unbox b, Unbox c) => MVector s (a, b, c) -> (MVector s a, MVector s b, MVector s c) Source #

O(1) Unzip 3 vectors.

unzip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s (a, b, c, d) -> (MVector s a, MVector s b, MVector s c, MVector s d) Source #

O(1) Unzip 4 vectors.

unzip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s (a, b, c, d, e) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e) Source #

O(1) Unzip 5 vectors.

unzip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s (a, b, c, d, e, f) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e, MVector s f) Source #

O(1) Unzip 6 vectors.

Accessing individual elements

read :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a Source #

Yield the element at the given position. Will throw an exception if the index is out of range.

Examples

Expand
>>> import qualified Data.Vector.Unboxed.Mutable as MVU
>>> v <- MVU.generate 10 (\x -> x*x)
>>> MVU.read v 3
9

readMaybe :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (Maybe a) Source #

Yield the element at the given position. Returns Nothing if the index is out of range.

Examples

Expand
>>> import qualified Data.Vector.Unboxed.Mutable as MVU
>>> v <- MVU.generate 10 (\x -> x*x)
>>> MVU.readMaybe v 3
Just 9
>>> MVU.readMaybe v 13
Nothing

Since: 0.13

write :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m () Source #

Replace the element at the given position.

modify :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> a) -> Int -> m () Source #

Modify the element at the given position.

modifyM :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> m a) -> Int -> m () Source #

Modify the element at the given position using a monadic function.

Since: 0.12.3.0

swap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m () Source #

Swap the elements at the given positions.

exchange :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m a Source #

Replace the element at the given position and return the old element.

unsafeRead :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a Source #

Yield the element at the given position. No bounds checks are performed.

unsafeWrite :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m () Source #

Replace the element at the given position. No bounds checks are performed.

unsafeModify :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> a) -> Int -> m () Source #

Modify the element at the given position. No bounds checks are performed.

unsafeModifyM :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> m a) -> Int -> m () Source #

Modify the element at the given position using a monadic function. No bounds checks are performed.

Since: 0.12.3.0

unsafeSwap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m () Source #

Swap the elements at the given positions. No bounds checks are performed.

unsafeExchange :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m a Source #

Replace the element at the given position and return the old element. No bounds checks are performed.

Folds

mapM_ :: (PrimMonad m, Unbox a) => (a -> m b) -> MVector (PrimState m) a -> m () Source #

O(n) Apply the monadic action to every element of the vector, discarding the results.

Since: 0.12.3.0

imapM_ :: (PrimMonad m, Unbox a) => (Int -> a -> m b) -> MVector (PrimState m) a -> m () Source #

O(n) Apply the monadic action to every element of the vector and its index, discarding the results.

Since: 0.12.3.0

forM_ :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (a -> m b) -> m () Source #

O(n) Apply the monadic action to every element of the vector, discarding the results. It's the same as flip mapM_.

Since: 0.12.3.0

iforM_ :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> (Int -> a -> m b) -> m () Source #

O(n) Apply the monadic action to every element of the vector and its index, discarding the results. It's the same as flip imapM_.

Since: 0.12.3.0

foldl :: (PrimMonad m, Unbox a) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold.

Since: 0.12.3.0

foldl' :: (PrimMonad m, Unbox a) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold with strict accumulator.

Since: 0.12.3.0

foldM :: (PrimMonad m, Unbox a) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold.

Since: 0.12.3.0

foldM' :: (PrimMonad m, Unbox a) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold with strict accumulator.

Since: 0.12.3.0

foldr :: (PrimMonad m, Unbox a) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold.

Since: 0.12.3.0

foldr' :: (PrimMonad m, Unbox a) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold with strict accumulator.

Since: 0.12.3.0

foldrM :: (PrimMonad m, Unbox a) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold.

Since: 0.12.3.0

foldrM' :: (PrimMonad m, Unbox a) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold with strict accumulator.

Since: 0.12.3.0

ifoldl :: (PrimMonad m, Unbox a) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold using a function applied to each element and its index.

Since: 0.12.3.0

ifoldl' :: (PrimMonad m, Unbox a) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold with strict accumulator using a function applied to each element and its index.

Since: 0.12.3.0

ifoldM :: (PrimMonad m, Unbox a) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold using a function applied to each element and its index.

Since: 0.12.3.0

ifoldM' :: (PrimMonad m, Unbox a) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold with strict accumulator using a function applied to each element and its index.

Since: 0.12.3.0

ifoldr :: (PrimMonad m, Unbox a) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold using a function applied to each element and its index.

Since: 0.12.3.0

ifoldr' :: (PrimMonad m, Unbox a) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold with strict accumulator using a function applied to each element and its index.

Since: 0.12.3.0

ifoldrM :: (PrimMonad m, Unbox a) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold using a function applied to each element and its index.

Since: 0.12.3.0

ifoldrM' :: (PrimMonad m, Unbox a) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold with strict accumulator using a function applied to each element and its index.

Since: 0.12.3.0

Modifying vectors

nextPermutation :: (PrimMonad m, Ord e, Unbox e) => MVector (PrimState m) e -> m Bool Source #

Compute the (lexicographically) next permutation of the given vector in-place. Returns False when the input is the last permutation.

Filling and copying

set :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> a -> m () Source #

Set all elements of the vector to the given value.

copy Source #

Arguments

:: (PrimMonad m, Unbox a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap.

move Source #

Arguments

:: (PrimMonad m, Unbox a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Move the contents of a vector. The two vectors must have the same length.

If the vectors do not overlap, then this is equivalent to copy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.

unsafeCopy Source #

Arguments

:: (PrimMonad m, Unbox a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap, but this is not checked.

unsafeMove Source #

Arguments

:: (PrimMonad m, Unbox a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Move the contents of a vector. The two vectors must have the same length, but this is not checked.

If the vectors do not overlap, then this is equivalent to unsafeCopy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.

Re-exports

class Monad m => PrimMonad (m :: Type -> Type) #

Class of monads which can perform primitive state-transformer actions.

Minimal complete definition

primitive

Instances

Instances details
PrimMonad IO 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState IO #

Methods

primitive :: (State# (PrimState IO) -> (# State# (PrimState IO), a #)) -> IO a #

PrimMonad (ST s) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ST s) #

Methods

primitive :: (State# (PrimState (ST s)) -> (# State# (PrimState (ST s)), a #)) -> ST s a #

PrimMonad (ST s) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ST s) #

Methods

primitive :: (State# (PrimState (ST s)) -> (# State# (PrimState (ST s)), a #)) -> ST s a #

PrimMonad m => PrimMonad (MaybeT m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (MaybeT m) #

Methods

primitive :: (State# (PrimState (MaybeT m)) -> (# State# (PrimState (MaybeT m)), a #)) -> MaybeT m a #

PrimMonad m => PrimMonad (ListT m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ListT m) #

Methods

primitive :: (State# (PrimState (ListT m)) -> (# State# (PrimState (ListT m)), a #)) -> ListT m a #

(Monoid w, PrimMonad m) => PrimMonad (WriterT w m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (WriterT w m) #

Methods

primitive :: (State# (PrimState (WriterT w m)) -> (# State# (PrimState (WriterT w m)), a #)) -> WriterT w m a #

(Monoid w, PrimMonad m) => PrimMonad (AccumT w m)

Since: primitive-0.6.3.0

Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (AccumT w m) #

Methods

primitive :: (State# (PrimState (AccumT w m)) -> (# State# (PrimState (AccumT w m)), a #)) -> AccumT w m a #

(Monoid w, PrimMonad m) => PrimMonad (WriterT w m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (WriterT w m) #

Methods

primitive :: (State# (PrimState (WriterT w m)) -> (# State# (PrimState (WriterT w m)), a #)) -> WriterT w m a #

(Monoid w, PrimMonad m) => PrimMonad (WriterT w m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (WriterT w m) #

Methods

primitive :: (State# (PrimState (WriterT w m)) -> (# State# (PrimState (WriterT w m)), a #)) -> WriterT w m a #

PrimMonad m => PrimMonad (StateT s m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (StateT s m) #

Methods

primitive :: (State# (PrimState (StateT s m)) -> (# State# (PrimState (StateT s m)), a #)) -> StateT s m a #

PrimMonad m => PrimMonad (StateT s m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (StateT s m) #

Methods

primitive :: (State# (PrimState (StateT s m)) -> (# State# (PrimState (StateT s m)), a #)) -> StateT s m a #

PrimMonad m => PrimMonad (SelectT r m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (SelectT r m) #

Methods

primitive :: (State# (PrimState (SelectT r m)) -> (# State# (PrimState (SelectT r m)), a #)) -> SelectT r m a #

PrimMonad m => PrimMonad (ReaderT r m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ReaderT r m) #

Methods

primitive :: (State# (PrimState (ReaderT r m)) -> (# State# (PrimState (ReaderT r m)), a #)) -> ReaderT r m a #

PrimMonad m => PrimMonad (IdentityT m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (IdentityT m) #

Methods

primitive :: (State# (PrimState (IdentityT m)) -> (# State# (PrimState (IdentityT m)), a #)) -> IdentityT m a #

PrimMonad m => PrimMonad (ExceptT e m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ExceptT e m) #

Methods

primitive :: (State# (PrimState (ExceptT e m)) -> (# State# (PrimState (ExceptT e m)), a #)) -> ExceptT e m a #

(Error e, PrimMonad m) => PrimMonad (ErrorT e m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ErrorT e m) #

Methods

primitive :: (State# (PrimState (ErrorT e m)) -> (# State# (PrimState (ErrorT e m)), a #)) -> ErrorT e m a #

PrimMonad m => PrimMonad (ContT r m)

Since: primitive-0.6.3.0

Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ContT r m) #

Methods

primitive :: (State# (PrimState (ContT r m)) -> (# State# (PrimState (ContT r m)), a #)) -> ContT r m a #

(Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (RWST r w s m) #

Methods

primitive :: (State# (PrimState (RWST r w s m)) -> (# State# (PrimState (RWST r w s m)), a #)) -> RWST r w s m a #

(Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (RWST r w s m) #

Methods

primitive :: (State# (PrimState (RWST r w s m)) -> (# State# (PrimState (RWST r w s m)), a #)) -> RWST r w s m a #

(Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (RWST r w s m) #

Methods

primitive :: (State# (PrimState (RWST r w s m)) -> (# State# (PrimState (RWST r w s m)), a #)) -> RWST r w s m a #

type family PrimState (m :: Type -> Type) #

State token type.

Instances

Instances details
type PrimState IO 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ST s) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ST s) = s
type PrimState (ST s) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ST s) = s
type PrimState (MaybeT m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ListT m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (WriterT w m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (WriterT w m) = PrimState m
type PrimState (AccumT w m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (AccumT w m) = PrimState m
type PrimState (WriterT w m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (WriterT w m) = PrimState m
type PrimState (WriterT w m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (WriterT w m) = PrimState m
type PrimState (StateT s m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (StateT s m) = PrimState m
type PrimState (StateT s m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (StateT s m) = PrimState m
type PrimState (SelectT r m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (SelectT r m) = PrimState m
type PrimState (ReaderT r m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ReaderT r m) = PrimState m
type PrimState (IdentityT m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ExceptT e m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ExceptT e m) = PrimState m
type PrimState (ErrorT e m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ErrorT e m) = PrimState m
type PrimState (ContT r m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ContT r m) = PrimState m
type PrimState (RWST r w s m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (RWST r w s m) = PrimState m
type PrimState (RWST r w s m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (RWST r w s m) = PrimState m
type PrimState (RWST r w s m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (RWST r w s m) = PrimState m

data RealWorld #

RealWorld is deeply magical. It is primitive, but it is not unlifted (hence ptrArg). We never manipulate values of type RealWorld; it's only used in the type system, to parameterise State#.