{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Vec.DataFamily.SpineStrict (
Vec (..),
empty,
singleton,
toPull,
fromPull,
_Pull,
toList,
fromList,
_Vec,
fromListPrefix,
reifyList,
(!),
ix,
_Cons,
_head,
_tail,
cons,
head,
tail,
(++),
split,
concatMap,
concat,
chunks,
foldMap,
foldMap1,
ifoldMap,
ifoldMap1,
foldr,
ifoldr,
length,
null,
sum,
product,
map,
imap,
traverse,
traverse1,
itraverse,
itraverse_,
zipWith,
izipWith,
bind,
join,
universe,
ensureSpine,
) where
import Prelude ()
import Prelude.Compat
(Bool (..), Eq (..), Functor (..), Int, Maybe (..), Monad (..),
Monoid (..), Num (..), Ord (..), Ordering (EQ), Show (..), ShowS, const,
flip, id, seq, showParen, showString, ($), (&&), (.), (<$>))
import Control.Applicative (Applicative (..), liftA2)
import Control.DeepSeq (NFData (..))
import Data.Distributive (Distributive (..))
import Data.Fin (Fin (..))
import Data.Functor.Apply (Apply (..))
import Data.Functor.Rep (Representable (..), distributeRep)
import Data.Hashable (Hashable (..))
import Data.Nat
import Data.Semigroup (Semigroup (..))
import qualified Control.Lens as I
import qualified Data.Foldable as I (Foldable (..))
import qualified Data.Functor.Bind as I (Bind (..))
import qualified Data.Semigroup.Foldable as I (Foldable1 (..))
import qualified Data.Semigroup.Traversable as I (Traversable1 (..))
import qualified Data.Traversable as I (Traversable (..))
import qualified Data.Fin as F
import qualified Data.Type.Nat as N
import qualified Data.Vec.Pull as P
infixr 5 :::
data family Vec (n :: Nat) a
data instance Vec 'Z a = VNil
data instance Vec ('S n) a = a ::: !(Vec n a)
instance (Eq a, N.InlineInduction n) => Eq (Vec n a) where
(==) = getEqual (N.inlineInduction1 start step) where
start :: Equal 'Z a
start = Equal $ \_ _ -> True
step :: Equal m a -> Equal ('S m) a
step (Equal go) = Equal $ \(x ::: xs) (y ::: ys) ->
x == y && go xs ys
newtype Equal n a = Equal { getEqual :: Vec n a -> Vec n a -> Bool }
instance (Ord a, N.InlineInduction n) => Ord (Vec n a) where
compare = getCompare (N.inlineInduction1 start step) where
start :: Compare 'Z a
start = Compare $ \_ _ -> EQ
step :: Compare m a -> Compare ('S m) a
step (Compare go) = Compare $ \(x ::: xs) (y ::: ys) ->
compare x y <> go xs ys
newtype Compare n a = Compare { getCompare :: Vec n a -> Vec n a -> Ordering }
instance (Show a, N.InlineInduction n) => Show (Vec n a) where
showsPrec = getShowsPrec (N.inlineInduction1 start step) where
start :: ShowsPrec 'Z a
start = ShowsPrec $ \_ _ -> showString "VNil"
step :: ShowsPrec m a -> ShowsPrec ('S m) a
step (ShowsPrec go) = ShowsPrec $ \d (x ::: xs) -> showParen (d > 5)
$ showsPrec 6 x
. showString " ::: "
. go 5 xs
newtype ShowsPrec n a = ShowsPrec { getShowsPrec :: Int -> Vec n a -> ShowS }
instance N.InlineInduction n => Functor (Vec n) where
fmap = map
instance N.InlineInduction n => I.Foldable (Vec n) where
foldMap = foldMap
foldr = foldr
#if MIN_VERSION_base(4,8,0)
null = null
length = length
sum = sum
product = product
#endif
instance (N.InlineInduction m, n ~ 'S m) => I.Foldable1 (Vec n) where
foldMap1 = foldMap1
instance N.InlineInduction n => I.Traversable (Vec n) where
traverse = traverse
instance (N.InlineInduction m, n ~ 'S m) => I.Traversable1 (Vec n) where
traverse1 = traverse1
instance (NFData a, N.InlineInduction n) => NFData (Vec n a) where
rnf = getRnf (N.inlineInduction1 z s) where
z = Rnf $ \VNil -> ()
s (Rnf rec) = Rnf $ \(x ::: xs) -> rnf x `seq` rec xs
newtype Rnf n a = Rnf { getRnf :: Vec n a -> () }
instance (Hashable a, N.InlineInduction n) => Hashable (Vec n a) where
hashWithSalt = getHashWithSalt (N.inlineInduction1 z s) where
z = HashWithSalt $ \salt VNil -> salt `hashWithSalt` (0 :: Int)
s (HashWithSalt rec) = HashWithSalt $ \salt (x ::: xs) -> rec (salt
`hashWithSalt` x) xs
newtype HashWithSalt n a = HashWithSalt { getHashWithSalt :: Int -> Vec n a -> Int }
instance N.InlineInduction n => Applicative (Vec n) where
pure x = N.inlineInduction1 VNil (x :::)
(<*>) = zipWith ($)
_ *> x = x
x <* _ = x
#if MIN_VERSION_base(4,10,0)
liftA2 = zipWith
#endif
instance N.InlineInduction n => Monad (Vec n) where
return = pure
(>>=) = bind
_ >> x = x
instance N.InlineInduction n => Distributive (Vec n) where
distribute = distributeRep
instance N.InlineInduction n => Representable (Vec n) where
type Rep (Vec n) = Fin n
tabulate = fromPull . tabulate
index = index . toPull
instance (Semigroup a, N.InlineInduction n) => Semigroup (Vec n a) where
(<>) = zipWith (<>)
instance (Monoid a, N.InlineInduction n) => Monoid (Vec n a) where
mempty = pure mempty
mappend = zipWith mappend
instance N.InlineInduction n => Apply (Vec n) where
(<.>) = zipWith ($)
_ .> x = x
x <. _ = x
instance N.InlineInduction n => I.Bind (Vec n) where
(>>-) = bind
join = join
instance N.InlineInduction n => I.FunctorWithIndex (Fin n) (Vec n) where
imap = imap
instance N.InlineInduction n => I.FoldableWithIndex (Fin n) (Vec n) where
ifoldMap = ifoldMap
ifoldr = ifoldr
instance N.InlineInduction n => I.TraversableWithIndex (Fin n) (Vec n) where
itraverse = itraverse
instance N.InlineInduction n => I.Each (Vec n a) (Vec n b) a b where
each = traverse
type instance I.Index (Vec n a) = Fin n
type instance I.IxValue (Vec n a) = a
instance I.Ixed (Vec n a) where
ix = ix
instance I.Field1 (Vec ('S n) a) (Vec ('S n) a) a a where
_1 = _head
instance I.Field2 (Vec ('S ('S n)) a) (Vec ('S ('S n)) a) a a where
_2 = _tail . _head
instance I.Field3 (Vec ('S ('S ('S n))) a) (Vec ('S ('S ('S n))) a) a a where
_3 = _tail . _tail . _head
instance I.Field4 (Vec ('S ('S ('S ('S n)))) a) (Vec ('S ('S ('S ('S n)))) a) a a where
_4 = _tail . _tail . _tail . _head
instance I.Field5 (Vec ('S ('S ('S ('S ('S n))))) a) (Vec ('S ('S ('S ('S ('S n))))) a) a a where
_5 = _tail . _tail . _tail . _tail . _head
instance I.Field6 (Vec ('S ('S ('S ('S ('S ('S n)))))) a) (Vec ('S ('S ('S ('S ('S ('S n)))))) a) a a where
_6 = _tail . _tail . _tail . _tail . _tail . _head
instance I.Field7 (Vec ('S ('S ('S ('S ('S ('S ('S n))))))) a) (Vec ('S ('S ('S ('S ('S ('S ('S n))))))) a) a a where
_7 = _tail . _tail . _tail . _tail . _tail . _tail . _head
instance I.Field8 (Vec ('S ('S ('S ('S ('S ('S ('S ('S n)))))))) a) (Vec ('S ('S ('S ('S ('S ('S ('S ('S n)))))))) a) a a where
_8 = _tail . _tail . _tail . _tail . _tail . _tail . _tail . _head
instance I.Field9 (Vec ('S ('S ('S ('S ('S ('S ('S ('S ('S n))))))))) a) (Vec ('S ('S ('S ('S ('S ('S ('S ('S ('S n))))))))) a) a a where
_9 = _tail . _tail . _tail . _tail . _tail . _tail . _tail . _tail . _head
empty :: Vec 'Z a
empty = VNil
singleton :: a -> Vec ('S 'Z) a
singleton x = x ::: VNil
toPull :: forall n a. N.InlineInduction n => Vec n a -> P.Vec n a
toPull = getToPull (N.inlineInduction1 start step) where
start :: ToPull 'Z a
start = ToPull $ \_ -> P.Vec F.absurd
step :: ToPull m a -> ToPull ('S m) a
step (ToPull f) = ToPull $ \(x ::: xs) -> P.Vec $ \i -> case i of
FZ -> x
FS i' -> P.unVec (f xs) i'
newtype ToPull n a = ToPull { getToPull :: Vec n a -> P.Vec n a }
fromPull :: forall n a. N.InlineInduction n => P.Vec n a -> Vec n a
fromPull = getFromPull (N.inlineInduction1 start step) where
start :: FromPull 'Z a
start = FromPull $ const VNil
step :: FromPull m a -> FromPull ('S m) a
step (FromPull f) = FromPull $ \(P.Vec v) -> v FZ ::: f (P.Vec (v . FS))
newtype FromPull n a = FromPull { getFromPull :: P.Vec n a -> Vec n a }
_Pull :: N.InlineInduction n => I.Iso (Vec n a) (Vec n b) (P.Vec n a) (P.Vec n b)
_Pull = I.iso toPull fromPull
toList :: forall n a. N.InlineInduction n => Vec n a -> [a]
toList = getToList (N.inlineInduction1 start step) where
start :: ToList 'Z a
start = ToList (const [])
step :: ToList m a -> ToList ('S m) a
step (ToList f) = ToList $ \(x ::: xs) -> x : f xs
newtype ToList n a = ToList { getToList :: Vec n a -> [a] }
fromList :: N.InlineInduction n => [a] -> Maybe (Vec n a)
fromList = getFromList (N.inlineInduction1 start step) where
start :: FromList 'Z a
start = FromList $ \xs -> case xs of
[] -> Just VNil
(_ : _) -> Nothing
step :: FromList n a -> FromList ('N.S n) a
step (FromList f) = FromList $ \xs -> case xs of
[] -> Nothing
(x : xs') -> (x :::) <$> f xs'
newtype FromList n a = FromList { getFromList :: [a] -> Maybe (Vec n a) }
_Vec :: N.InlineInduction n => I.Prism' [a] (Vec n a)
_Vec = I.prism' toList fromList
fromListPrefix :: N.InlineInduction n => [a] -> Maybe (Vec n a)
fromListPrefix = getFromList (N.inlineInduction1 start step) where
start :: FromList 'Z a
start = FromList $ \_ -> Just VNil
step :: FromList n a -> FromList ('N.S n) a
step (FromList f) = FromList $ \xs -> case xs of
[] -> Nothing
(x : xs') -> (x :::) <$> f xs'
reifyList :: [a] -> (forall n. N.InlineInduction n => Vec n a -> r) -> r
reifyList [] f = f VNil
reifyList (x : xs) f = reifyList xs $ \xs' -> f (x ::: xs')
flipIndex :: N.InlineInduction n => Fin n -> Vec n a -> a
flipIndex = getIndex (N.inlineInduction1 start step) where
start :: Index 'Z a
start = Index F.absurd
step :: Index m a-> Index ('N.S m) a
step (Index go) = Index $ \n (x ::: xs) -> case n of
FZ -> x
FS m -> go m xs
newtype Index n a = Index { getIndex :: Fin n -> Vec n a -> a }
(!) :: N.InlineInduction n => Vec n a -> Fin n -> a
(!) = flip flipIndex
ix :: Fin n -> I.Lens' (Vec n a) a
ix FZ f (x ::: xs) = (::: xs) <$> f x
ix (FS n) f (x ::: xs) = (x :::) <$> ix n f xs
_Cons :: I.Iso (Vec ('S n) a) (Vec ('S n) b) (a, Vec n a) (b, Vec n b)
_Cons = I.iso (\(x ::: xs) -> (x, xs)) (\(x, xs) -> x ::: xs)
_head :: I.Lens' (Vec ('S n) a) a
_head f (x ::: xs) = (::: xs) <$> f x
{-# INLINE head #-}
_tail :: I.Lens' (Vec ('S n) a) (Vec n a)
_tail f (x ::: xs) = (x :::) <$> f xs
{-# INLINE _tail #-}
cons :: a -> Vec n a -> Vec ('S n) a
cons = (:::)
head :: Vec ('S n) a -> a
head (x ::: _) = x
tail :: Vec ('S n) a -> Vec n a
tail (_ ::: xs) = xs
infixr 5 ++
(++) :: forall n m a. N.InlineInduction n => Vec n a -> Vec m a -> Vec (N.Plus n m) a
as ++ ys = getAppend (N.inlineInduction1 start step) as where
start :: Append m 'Z a
start = Append $ \_ -> ys
step :: Append m p a -> Append m ('S p) a
step (Append f) = Append $ \(x ::: xs) -> x ::: f xs
newtype Append m n a = Append { getAppend :: Vec n a -> Vec (N.Plus n m) a }
split :: N.InlineInduction n => Vec (N.Plus n m) a -> (Vec n a, Vec m a)
split = appSplit (N.inlineInduction1 start step) where
start :: Split m 'Z a
start = Split $ \xs -> (VNil, xs)
step :: Split m n a -> Split m ('S n) a
step (Split f) = Split $ \(x ::: xs) -> case f xs of
(ys, zs) -> (x ::: ys, zs)
newtype Split m n a = Split { appSplit :: Vec (N.Plus n m) a -> (Vec n a, Vec m a) }
concatMap :: forall a b n m. (N.InlineInduction m, N.InlineInduction n) => (a -> Vec m b) -> Vec n a -> Vec (N.Mult n m) b
concatMap f = getConcatMap $ N.inlineInduction1 start step where
start :: ConcatMap m a 'Z b
start = ConcatMap $ \_ -> VNil
step :: ConcatMap m a p b -> ConcatMap m a ('S p) b
step (ConcatMap g) = ConcatMap $ \(x ::: xs) -> f x ++ g xs
newtype ConcatMap m a n b = ConcatMap { getConcatMap :: Vec n a -> Vec (N.Mult n m) b }
concat :: (N.InlineInduction m, N.InlineInduction n) => Vec n (Vec m a) -> Vec (N.Mult n m) a
concat = concatMap id
chunks :: (N.InlineInduction n, N.InlineInduction m) => Vec (N.Mult n m) a -> Vec n (Vec m a)
chunks = getChunks $ N.induction1 start step where
start :: Chunks m 'Z a
start = Chunks $ \_ -> VNil
step :: forall m n a. N.InlineInduction m => Chunks m n a -> Chunks m ('S n) a
step (Chunks go) = Chunks $ \xs ->
let (ys, zs) = split xs :: (Vec m a, Vec (N.Mult n m) a)
in ys ::: go zs
newtype Chunks m n a = Chunks { getChunks :: Vec (N.Mult n m) a -> Vec n (Vec m a) }
map :: forall a b n. N.InlineInduction n => (a -> b) -> Vec n a -> Vec n b
map f = getMap $ N.inlineInduction1 start step where
start :: Map a 'Z b
start = Map $ \_ -> VNil
step :: Map a m b -> Map a ('S m) b
step (Map go) = Map $ \(x ::: xs) -> f x ::: go xs
newtype Map a n b = Map { getMap :: Vec n a -> Vec n b }
imap :: N.InlineInduction n => (Fin n -> a -> b) -> Vec n a -> Vec n b
imap = getIMap $ N.inlineInduction1 start step where
start :: IMap a 'Z b
start = IMap $ \_ _ -> VNil
step :: IMap a m b -> IMap a ('S m) b
step (IMap go) = IMap $ \f (x ::: xs) -> f FZ x ::: go (f . FS) xs
newtype IMap a n b = IMap { getIMap :: (Fin n -> a -> b) -> Vec n a -> Vec n b }
traverse :: forall n f a b. (Applicative f, N.InlineInduction n) => (a -> f b) -> Vec n a -> f (Vec n b)
traverse f = getTraverse $ N.inlineInduction1 start step where
start :: Traverse f a 'Z b
start = Traverse $ \_ -> pure VNil
step :: Traverse f a m b -> Traverse f a ('S m) b
step (Traverse go) = Traverse $ \(x ::: xs) -> liftA2 (:::) (f x) (go xs)
{-# INLINE traverse #-}
newtype Traverse f a n b = Traverse { getTraverse :: Vec n a -> f (Vec n b) }
traverse1 :: forall n f a b. (Apply f, N.InlineInduction n) => (a -> f b) -> Vec ('S n) a -> f (Vec ('S n) b)
traverse1 f = getTraverse1 $ N.inlineInduction1 start step where
start :: Traverse1 f a 'Z b
start = Traverse1 $ \(x ::: _) -> (::: VNil) <$> f x
step :: Traverse1 f a m b -> Traverse1 f a ('S m) b
step (Traverse1 go) = Traverse1 $ \(x ::: xs) -> liftF2 (:::) (f x) (go xs)
newtype Traverse1 f a n b = Traverse1 { getTraverse1 :: Vec ('S n) a -> f (Vec ('S n) b) }
itraverse :: forall n f a b. (Applicative f, N.InlineInduction n) => (Fin n -> a -> f b) -> Vec n a -> f (Vec n b)
itraverse = getITraverse $ N.inlineInduction1 start step where
start :: ITraverse f a 'Z b
start = ITraverse $ \_ _ -> pure VNil
step :: ITraverse f a m b -> ITraverse f a ('S m) b
step (ITraverse go) = ITraverse $ \f (x ::: xs) -> liftA2 (:::) (f FZ x) (go (f . FS) xs)
{-# INLINE itraverse #-}
newtype ITraverse f a n b = ITraverse { getITraverse :: (Fin n -> a -> f b) -> Vec n a -> f (Vec n b) }
itraverse_ :: forall n f a b. (Applicative f, N.InlineInduction n) => (Fin n -> a -> f b) -> Vec n a -> f ()
itraverse_ = getITraverse_ $ N.inlineInduction1 start step where
start :: ITraverse_ f a 'Z b
start = ITraverse_ $ \_ _ -> pure ()
step :: ITraverse_ f a m b -> ITraverse_ f a ('S m) b
step (ITraverse_ go) = ITraverse_ $ \f (x ::: xs) -> f FZ x *> go (f . FS) xs
newtype ITraverse_ f a n b = ITraverse_ { getITraverse_ :: (Fin n -> a -> f b) -> Vec n a -> f () }
foldMap :: (Monoid m, N.InlineInduction n) => (a -> m) -> Vec n a -> m
foldMap f = getFold $ N.inlineInduction1 (Fold (const mempty)) $ \(Fold go) ->
Fold $ \(x ::: xs) -> f x `mappend` go xs
newtype Fold a n b = Fold { getFold :: Vec n a -> b }
foldMap1 :: forall s a n. (Semigroup s, N.InlineInduction n) => (a -> s) -> Vec ('S n) a -> s
foldMap1 f = getFold1 $ N.inlineInduction1 start step where
start :: Fold1 a 'Z s
start = Fold1 $ \(x ::: _) -> f x
step :: Fold1 a m s -> Fold1 a ('S m) s
step (Fold1 g) = Fold1 $ \(x ::: xs) -> f x <> g xs
newtype Fold1 a n b = Fold1 { getFold1 :: Vec ('S n) a -> b }
ifoldMap :: forall a n m. (Monoid m, N.InlineInduction n) => (Fin n -> a -> m) -> Vec n a -> m
ifoldMap = getIFoldMap $ N.inlineInduction1 start step where
start :: IFoldMap a 'Z m
start = IFoldMap $ \_ _ -> mempty
step :: IFoldMap a p m -> IFoldMap a ('S p) m
step (IFoldMap go) = IFoldMap $ \f (x ::: xs) -> f FZ x `mappend` go (f . FS) xs
newtype IFoldMap a n m = IFoldMap { getIFoldMap :: (Fin n -> a -> m) -> Vec n a -> m }
ifoldMap1 :: forall a n s. (Semigroup s, N.InlineInduction n) => (Fin ('S n) -> a -> s) -> Vec ('S n) a -> s
ifoldMap1 = getIFoldMap1 $ N.inlineInduction1 start step where
start :: IFoldMap1 a 'Z s
start = IFoldMap1 $ \f (x ::: _) -> f FZ x
step :: IFoldMap1 a p s -> IFoldMap1 a ('S p) s
step (IFoldMap1 go) = IFoldMap1 $ \f (x ::: xs) -> f FZ x <> go (f . FS) xs
newtype IFoldMap1 a n m = IFoldMap1 { getIFoldMap1 :: (Fin ('S n) -> a -> m) -> Vec ('S n) a -> m }
foldr :: forall a b n. N.InlineInduction n => (a -> b -> b) -> b -> Vec n a -> b
foldr f z = getFold $ N.inlineInduction1 start step where
start :: Fold a 'Z b
start = Fold $ \_ -> z
step :: Fold a m b -> Fold a ('S m) b
step (Fold go) = Fold $ \(x ::: xs) -> f x (go xs)
ifoldr :: forall a b n. N.InlineInduction n => (Fin n -> a -> b -> b) -> b -> Vec n a -> b
ifoldr = getIFoldr $ N.inlineInduction1 start step where
start :: IFoldr a 'Z b
start = IFoldr $ \_ z _ -> z
step :: IFoldr a m b -> IFoldr a ('S m) b
step (IFoldr go) = IFoldr $ \f z (x ::: xs) -> f FZ x (go (f . FS) z xs)
newtype IFoldr a n b = IFoldr { getIFoldr :: (Fin n -> a -> b -> b) -> b -> Vec n a -> b }
length :: forall n a. N.InlineInduction n => Vec n a -> Int
length _ = getLength l where
l :: Length n
l = N.inlineInduction (Length 0) $ \(Length n) -> Length (1 + n)
newtype Length (n :: Nat) = Length { getLength :: Int }
null :: forall n a. N.SNatI n => Vec n a -> Bool
null _ = case N.snat :: N.SNat n of
N.SZ -> True
N.SS -> False
sum :: (Num a, N.InlineInduction n) => Vec n a -> a
sum = getFold $ N.inlineInduction1 start step where
start :: Num a => Fold a 'Z a
start = Fold $ \_ -> 0
step :: Num a => Fold a m a -> Fold a ('S m) a
step (Fold f) = Fold $ \(x ::: xs) -> x + f xs
product :: (Num a, N.InlineInduction n) => Vec n a -> a
product = getFold $ N.inlineInduction1 start step where
start :: Num a => Fold a 'Z a
start = Fold $ \_ -> 0
step :: Num a => Fold a m a -> Fold a ('S m) a
step (Fold f) = Fold $ \(x ::: xs) -> x + f xs
zipWith :: forall a b c n. N.InlineInduction n => (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
zipWith f = getZipWith $ N.inlineInduction start step where
start :: ZipWith a b c 'Z
start = ZipWith $ \_ _ -> VNil
step :: ZipWith a b c m -> ZipWith a b c ('S m)
step (ZipWith go) = ZipWith $ \(x ::: xs) (y ::: ys) -> f x y ::: go xs ys
newtype ZipWith a b c n = ZipWith { getZipWith :: Vec n a -> Vec n b -> Vec n c }
izipWith :: N.InlineInduction n => (Fin n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
izipWith = getIZipWith $ N.inlineInduction start step where
start :: IZipWith a b c 'Z
start = IZipWith $ \_ _ _ -> VNil
step :: IZipWith a b c m -> IZipWith a b c ('S m)
step (IZipWith go) = IZipWith $ \f (x ::: xs) (y ::: ys) -> f FZ x y ::: go (f . FS) xs ys
newtype IZipWith a b c n = IZipWith { getIZipWith :: (Fin n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c }
bind :: N.InlineInduction n => Vec n a -> (a -> Vec n b) -> Vec n b
bind = getBind $ N.inlineInduction1 start step where
start :: Bind a 'Z b
start = Bind $ \_ _ -> VNil
step :: Bind a m b -> Bind a ('S m) b
step (Bind go) = Bind $ \(x ::: xs) f -> head (f x) ::: go xs (tail . f)
newtype Bind a n b = Bind { getBind :: Vec n a -> (a -> Vec n b) -> Vec n b }
join :: N.InlineInduction n => Vec n (Vec n a) -> Vec n a
join = getJoin $ N.inlineInduction1 start step where
start :: Join 'Z a
start = Join $ \_ -> VNil
step :: N.InlineInduction m => Join m a -> Join ('S m) a
step (Join go) = Join $ \(x ::: xs) -> head x ::: go (map tail xs)
newtype Join n a = Join { getJoin :: Vec n (Vec n a) -> Vec n a }
universe :: N.InlineInduction n => Vec n (Fin n)
universe = getUniverse (N.inlineInduction first step) where
first :: Universe 'Z
first = Universe VNil
step :: N.InlineInduction m => Universe m -> Universe ('S m)
step (Universe go) = Universe (FZ ::: map FS go)
newtype Universe n = Universe { getUniverse :: Vec n (Fin n) }
ensureSpine :: N.InlineInduction n => Vec n a -> Vec n a
ensureSpine = getEnsureSpine (N.inlineInduction1 first step) where
first :: EnsureSpine 'Z a
first = EnsureSpine $ \_ -> VNil
step :: EnsureSpine m a -> EnsureSpine ('S m) a
step (EnsureSpine go) = EnsureSpine $ \ ~(x ::: xs) -> x ::: go xs
newtype EnsureSpine n a = EnsureSpine { getEnsureSpine :: Vec n a -> Vec n a }