{-# LANGUAGE Safe #-}
module Util where

import Control.Applicative
import Control.Category
import Control.Monad
import Control.Monad.Fix
import Control.Monad.Trans.State (state, evalState)
import Data.Bits
import Data.Bool
import Data.Foldable hiding (maximumBy, minimumBy)
import Data.Function (($), flip)
import Data.Functor.Classes
import Data.List.NonEmpty (NonEmpty (..))
import qualified Data.List.NonEmpty as NE
import Data.Maybe
import Data.Semigroup
import Data.Tuple (snd)
import Data.Monoid (Monoid (..))
import Numeric.Natural

import Prelude (Enum (..), Bounded, Eq (..), Ord (..), Read, Show, Traversable (..), Ordering (..), Char, Int, Word, (+), (-), fromIntegral, uncurry)

infixr 3 &=&
(&=&) :: Applicative p => (a -> p b) -> (a -> p c) -> a -> p (b, c)
(&=&) = (liftA2  liftA2) (,)

infixr 3 *=*
(*=*) :: Applicative p => (a1 -> p b1) -> (a2 -> p b2) -> (a1, a2) -> p (b1, b2)
(f *=* g) (x, y) = liftA2 (,) (f x) (g y)

tripleK :: Applicative p => (a1 -> p b1) -> (a2 -> p b2) -> (a3 -> p b3) -> (a1, a2, a3) -> p (b1, b2, b3)
tripleK f g h (x, y, z) = liftA3 (,,) (f x) (g y) (h z)

infixr 2 <||>
(<||>) :: Applicative p => p Bool -> p Bool -> p Bool
(<||>) = liftA2 (||)

infixr 3 <&&>
(<&&>) :: Applicative p => p Bool -> p Bool -> p Bool
(<&&>) = liftA2 (&&)

liftA4 :: (Applicative p) => (a -> b -> c -> d -> e) -> p a -> p b -> p c -> p d -> p e
liftA4 f x y z = (<*>) (liftA3 f x y z)

apMA :: Monad m => m (a -> m b) -> a -> m b
apMA f = join  ap f  pure

whileJust :: (Alternative f, Monad m) => m (Maybe a) -> (a -> m b) -> m (f b)
whileJust mmx f = mmx >>= maybe (pure empty) (\ x -> (<|) <$> f x <*> whileJust mmx f)

untilJust :: Monad m => m (Maybe a) -> m a
untilJust mmx = mmx >>= maybe (untilJust mmx) pure

whenM :: Monad m => m Bool -> m () -> m ()
whenM p x = p >>= flip when x

unlessM :: Monad m => m Bool -> m () -> m ()
unlessM p x = p >>= flip unless x

list :: b -> (a -> [a] -> b) -> [a] -> b
list y f = list' y (liftA2 f NE.head NE.tail)

list' :: b -> (NonEmpty a -> b) -> [a] -> b
list' y _ []     = y
list' _ f (x:xs) = f (x:|xs)

infixr 9 &, , ∘∘

() :: (Category p) => p b c -> p a b -> p a c
() = (.)

(&) :: (Category p) => p a b -> p b c -> p a c
(&) = flip ()

(∘∘) :: (c -> d) -> (a -> b -> c) -> (a -> b -> d)
(f ∘∘ g) x y = f (g x y)

compose2 :: (a' -> b' -> c) -> (a -> a') -> (b -> b') -> a -> b -> c
compose2 φ f g x y = φ (f x) (g y)

compose3 :: (a' -> b' -> c' -> d) -> (a -> a') -> (b -> b') -> (c -> c') -> a -> b -> c -> d
compose3 φ f g h x y z = φ (f x) (g y) (h z)

infixl 0 `onn`, `onnn`
onn :: (a -> a -> a -> b) -> (c -> a) -> c -> c -> c -> b
onn f g x y z = f (g x) (g y) (g z)

onnn :: (a -> a -> a -> a -> b) -> (c -> a) -> c -> c -> c -> c -> b
onnn f g w x y z = f (g w) (g x) (g y) (g z)

fst3 :: (a, b, c) -> a
fst3 (x,_,_) = x

snd3 :: (a, b, c) -> b
snd3 (_,y,_) = y

þrd3 :: (a, b, c) -> c
þrd3 (_,_,z) = z

infixr 0 
() :: a -> (a -> b) -> b
() = flip id

infixl 4 <₪>
(<₪>) :: Functor f => f a -> (a -> b) -> f b
(<₪>) = flip fmap

replicate :: Alternative f => Natural -> a -> f a
replicate 0 _ = empty
replicate n a = a <| replicate (pred n) a

replicateA :: (Applicative p, Alternative f) => Natural -> p a -> p (f a)
replicateA 0 _ = pure empty
replicateA n a = (<|) <$> a <*> replicateA (pred n) a

mtimesA :: (Applicative p, Semigroup a, Monoid a) => Natural -> p a -> p a
mtimesA n = unAp . stimes n . Ap

newtype Ap p a = Ap { unAp :: p a }
  deriving (Foldable, Functor, Traversable)
  deriving (Eq, Ord, Read, Show, Bounded, Enum) via p a
  deriving (Applicative, Monad, Alternative, MonadPlus, Eq1, Ord1, Read1, Show1) via p
instance (Applicative p, Semigroup a) => Semigroup (Ap p a) where (<>) = liftA2 (<>)
instance (Applicative p, Semigroup a, Monoid a) => Monoid (Ap p a) where
    mempty = pure mempty
    mappend = (<>)

(!!?) :: Foldable f => f a -> Natural -> Maybe a
(!!?) = go . toList where go [] _ = Nothing
                          go (x:_) 0 = Just x
                          go (_:xs) n = go xs (pred n)

intercalate :: Semigroup a => a -> NonEmpty a -> a
intercalate a = sconcat . NE.intersperse a

bind2 :: Monad m => (a -> b -> m c) -> m a -> m b -> m c
bind2 f x y = liftA2 (,) x y >>= uncurry f

bind3 :: Monad m => (a -> b -> c -> m d) -> m a -> m b -> m c -> m d
bind3 f x y z = liftA3 (,,) x y z >>= uncurry3 f

traverse2 :: (Traversable t, Applicative t, Applicative p)
          => (a -> b -> p c) -> t a -> t b -> p (t c)
traverse2 f xs ys = sequenceA (f <$> xs <*> ys)

traverse3 :: (Traversable t, Applicative t, Applicative p)
          => (a -> b -> c -> p d) -> t a -> t b -> t c -> p (t d)
traverse3 f xs ys zs = sequenceA (f <$> xs <*> ys <*> zs)

foldMap2 :: (Foldable t, Applicative t, Monoid z)
         => (a -> b -> z) -> t a -> t b -> z
foldMap2 f xs ys = fold (f <$> xs <*> ys)

foldMap3 :: (Foldable t, Applicative t, Monoid z)
         => (a -> b -> c -> z) -> t a -> t b -> t c -> z
foldMap3 f xs ys zs = fold (f <$> xs <*> ys <*> zs)

uncurry3 :: (a -> b -> c -> d) -> (a, b, c) -> d
uncurry3 f (x, y, z) = f x y z

uncurry4 :: (a -> b -> c -> d -> e) -> (a, b, c, d) -> e
uncurry4 f (w, x, y, z) = f w x y z

curry3 :: ((a, b, c) -> d) -> a -> b -> c -> d
curry3 f x y z = f (x, y, z)

curry4 :: ((a, b, c, d) -> e) -> a -> b -> c -> d -> e
curry4 f w x y z = f (w, x, y, z)

infix 4 , 
(), () :: (Eq a, Foldable f) => a -> f a -> Bool
() = elem
() = not ∘∘ elem

maximumBy, minimumBy :: Foldable f => (a -> a -> Ordering) -> f a -> Maybe a
maximumBy f = foldr (\ a -> Just . fromMaybe a & \ b -> case f a b of GT -> a; _ -> b) Nothing
minimumBy f = foldr (\ a -> Just . fromMaybe a & \ b -> case f a b of LT -> a; _ -> b) Nothing

foldMapA :: (Applicative p, Monoid b, Foldable f) => (a -> p b) -> f a -> p b
foldMapA f = foldr (liftA2 mappend . f) (pure mempty)

altMap :: (Alternative p, Foldable f) => (a -> p b) -> f a -> p b
altMap f = foldr ((<|>) . f) empty

iterateM :: Monad m => Natural -> (a -> m a) -> a -> m (NonEmpty a)
iterateM 0 _ x = pure (x:|[])
iterateM k f x = (x NE.<|) <$> (f x >>= iterateM (pred k) f)

loopM :: MonadFix m => (a -> m (a, b)) -> m b
loopM f = fmap snd . mfix $ \ (a, _) -> f a

infixl 3 <|, |>

(<|) :: Alternative f => a -> f a -> f a
x <| xs = pure x <|> xs

(|>) :: Alternative f => f a -> a -> f a
xs |> x = xs <|> pure x

count :: (Traversable f, Enum n) => f a -> f (n, a)
count = countFrom (toEnum 0)

countFrom :: (Traversable f, Enum n) => n -> f a -> f (n, a)
countFrom n = flip evalState n . traverse (\ a -> state $ \ k -> ((k, a), succ k))

some :: Alternative p => p a -> p (NonEmpty a)
some = liftA2 (:|) <*> many

digit :: Char -> Maybe Word
digit = go & \ n -> n <$ guard (fromIntegral n >= (0 :: Int))
  where
    go x
      | dec < 10 = dec
      | abcl < 26 = abcl + 10
      | abcu < 26 = abcu + 10
      | otherwise = complement 0
      where
        dec = fromIntegral $ fromEnum x - fromEnum '0'
        abcl = fromIntegral $ fromEnum x - fromEnum 'a'
        abcu = fromIntegral $ fromEnum x - fromEnum 'A'
{-# INLINE digit #-}