{-# LANGUAGE Safe #-} module Util where import Control.Applicative import Control.Category import Control.Monad import Control.Monad.Fix import Control.Monad.Trans.State (state, evalState) import Data.Bits import Data.Bool import Data.Foldable hiding (maximumBy, minimumBy) import Data.Function (($), flip) import Data.Functor.Classes import Data.List.NonEmpty (NonEmpty (..)) import qualified Data.List.NonEmpty as NE import Data.Maybe import Data.Semigroup import Data.Tuple (snd) import Data.Monoid (Monoid (..)) import Numeric.Natural import Prelude (Enum (..), Bounded, Eq (..), Ord (..), Read, Show, Traversable (..), Ordering (..), Char, Int, Word, (+), (-), fromIntegral, uncurry) infixr 3 &=& (&=&) :: Applicative p => (a -> p b) -> (a -> p c) -> a -> p (b, c) (&=&) = (liftA2 ∘ liftA2) (,) infixr 3 *=* (*=*) :: Applicative p => (a1 -> p b1) -> (a2 -> p b2) -> (a1, a2) -> p (b1, b2) (f *=* g) (x, y) = liftA2 (,) (f x) (g y) tripleK :: Applicative p => (a1 -> p b1) -> (a2 -> p b2) -> (a3 -> p b3) -> (a1, a2, a3) -> p (b1, b2, b3) tripleK f g h (x, y, z) = liftA3 (,,) (f x) (g y) (h z) infixr 2 <||> (<||>) :: Applicative p => p Bool -> p Bool -> p Bool (<||>) = liftA2 (||) infixr 3 <&&> (<&&>) :: Applicative p => p Bool -> p Bool -> p Bool (<&&>) = liftA2 (&&) liftA4 :: (Applicative p) => (a -> b -> c -> d -> e) -> p a -> p b -> p c -> p d -> p e liftA4 f x y z = (<*>) (liftA3 f x y z) apMA :: Monad m => m (a -> m b) -> a -> m b apMA f = join ∘ ap f ∘ pure whileJust :: (Alternative f, Monad m) => m (Maybe a) -> (a -> m b) -> m (f b) whileJust mmx f = mmx >>= maybe (pure empty) (\ x -> (<|) <$> f x <*> whileJust mmx f) untilJust :: Monad m => m (Maybe a) -> m a untilJust mmx = mmx >>= maybe (untilJust mmx) pure whenM :: Monad m => m Bool -> m () -> m () whenM p x = p >>= flip when x unlessM :: Monad m => m Bool -> m () -> m () unlessM p x = p >>= flip unless x list :: b -> (a -> [a] -> b) -> [a] -> b list y f = list' y (liftA2 f NE.head NE.tail) list' :: b -> (NonEmpty a -> b) -> [a] -> b list' y _ [] = y list' _ f (x:xs) = f (x:|xs) infixr 9 &, ∘, ∘∘ (∘) :: (Category p) => p b c -> p a b -> p a c (∘) = (.) (&) :: (Category p) => p a b -> p b c -> p a c (&) = flip (∘) (∘∘) :: (c -> d) -> (a -> b -> c) -> (a -> b -> d) (f ∘∘ g) x y = f (g x y) compose2 :: (a' -> b' -> c) -> (a -> a') -> (b -> b') -> a -> b -> c compose2 φ f g x y = φ (f x) (g y) compose3 :: (a' -> b' -> c' -> d) -> (a -> a') -> (b -> b') -> (c -> c') -> a -> b -> c -> d compose3 φ f g h x y z = φ (f x) (g y) (h z) infixl 0 `onn`, `onnn` onn :: (a -> a -> a -> b) -> (c -> a) -> c -> c -> c -> b onn f g x y z = f (g x) (g y) (g z) onnn :: (a -> a -> a -> a -> b) -> (c -> a) -> c -> c -> c -> c -> b onnn f g w x y z = f (g w) (g x) (g y) (g z) fst3 :: (a, b, c) -> a fst3 (x,_,_) = x snd3 :: (a, b, c) -> b snd3 (_,y,_) = y þrd3 :: (a, b, c) -> c þrd3 (_,_,z) = z infixr 0 ₪ (₪) :: a -> (a -> b) -> b (₪) = flip id infixl 4 <₪> (<₪>) :: Functor f => f a -> (a -> b) -> f b (<₪>) = flip fmap replicate :: Alternative f => Natural -> a -> f a replicate 0 _ = empty replicate n a = a <| replicate (pred n) a replicateA :: (Applicative p, Alternative f) => Natural -> p a -> p (f a) replicateA 0 _ = pure empty replicateA n a = (<|) <$> a <*> replicateA (pred n) a mtimesA :: (Applicative p, Semigroup a, Monoid a) => Natural -> p a -> p a mtimesA n = unAp . stimes n . Ap newtype Ap p a = Ap { unAp :: p a } deriving (Foldable, Functor, Traversable) deriving (Eq, Ord, Read, Show, Bounded, Enum) via p a deriving (Applicative, Monad, Alternative, MonadPlus, Eq1, Ord1, Read1, Show1) via p instance (Applicative p, Semigroup a) => Semigroup (Ap p a) where (<>) = liftA2 (<>) instance (Applicative p, Semigroup a, Monoid a) => Monoid (Ap p a) where mempty = pure mempty mappend = (<>) (!!?) :: Foldable f => f a -> Natural -> Maybe a (!!?) = go . toList where go [] _ = Nothing go (x:_) 0 = Just x go (_:xs) n = go xs (pred n) intercalate :: Semigroup a => a -> NonEmpty a -> a intercalate a = sconcat . NE.intersperse a bind2 :: Monad m => (a -> b -> m c) -> m a -> m b -> m c bind2 f x y = liftA2 (,) x y >>= uncurry f bind3 :: Monad m => (a -> b -> c -> m d) -> m a -> m b -> m c -> m d bind3 f x y z = liftA3 (,,) x y z >>= uncurry3 f traverse2 :: (Traversable t, Applicative t, Applicative p) => (a -> b -> p c) -> t a -> t b -> p (t c) traverse2 f xs ys = sequenceA (f <$> xs <*> ys) traverse3 :: (Traversable t, Applicative t, Applicative p) => (a -> b -> c -> p d) -> t a -> t b -> t c -> p (t d) traverse3 f xs ys zs = sequenceA (f <$> xs <*> ys <*> zs) foldMap2 :: (Foldable t, Applicative t, Monoid z) => (a -> b -> z) -> t a -> t b -> z foldMap2 f xs ys = fold (f <$> xs <*> ys) foldMap3 :: (Foldable t, Applicative t, Monoid z) => (a -> b -> c -> z) -> t a -> t b -> t c -> z foldMap3 f xs ys zs = fold (f <$> xs <*> ys <*> zs) uncurry3 :: (a -> b -> c -> d) -> (a, b, c) -> d uncurry3 f (x, y, z) = f x y z uncurry4 :: (a -> b -> c -> d -> e) -> (a, b, c, d) -> e uncurry4 f (w, x, y, z) = f w x y z curry3 :: ((a, b, c) -> d) -> a -> b -> c -> d curry3 f x y z = f (x, y, z) curry4 :: ((a, b, c, d) -> e) -> a -> b -> c -> d -> e curry4 f w x y z = f (w, x, y, z) infix 4 ∈, ∉ (∈), (∉) :: (Eq a, Foldable f) => a -> f a -> Bool (∈) = elem (∉) = not ∘∘ elem maximumBy, minimumBy :: Foldable f => (a -> a -> Ordering) -> f a -> Maybe a maximumBy f = foldr (\ a -> Just . fromMaybe a & \ b -> case f a b of GT -> a; _ -> b) Nothing minimumBy f = foldr (\ a -> Just . fromMaybe a & \ b -> case f a b of LT -> a; _ -> b) Nothing foldMapA :: (Applicative p, Monoid b, Foldable f) => (a -> p b) -> f a -> p b foldMapA f = foldr (liftA2 mappend . f) (pure mempty) altMap :: (Alternative p, Foldable f) => (a -> p b) -> f a -> p b altMap f = foldr ((<|>) . f) empty iterateM :: Monad m => Natural -> (a -> m a) -> a -> m (NonEmpty a) iterateM 0 _ x = pure (x:|[]) iterateM k f x = (x NE.<|) <$> (f x >>= iterateM (pred k) f) loopM :: MonadFix m => (a -> m (a, b)) -> m b loopM f = fmap snd . mfix $ \ (a, _) -> f a infixl 3 <|, |> (<|) :: Alternative f => a -> f a -> f a x <| xs = pure x <|> xs (|>) :: Alternative f => f a -> a -> f a xs |> x = xs <|> pure x count :: (Traversable f, Enum n) => f a -> f (n, a) count = countFrom (toEnum 0) countFrom :: (Traversable f, Enum n) => n -> f a -> f (n, a) countFrom n = flip evalState n . traverse (\ a -> state $ \ k -> ((k, a), succ k)) some :: Alternative p => p a -> p (NonEmpty a) some = liftA2 (:|) <*> many digit :: Char -> Maybe Word digit = go & \ n -> n <$ guard (fromIntegral n >= (0 :: Int)) where go x | dec < 10 = dec | abcl < 26 = abcl + 10 | abcu < 26 = abcu + 10 | otherwise = complement 0 where dec = fromIntegral $ fromEnum x - fromEnum '0' abcl = fromIntegral $ fromEnum x - fromEnum 'a' abcu = fromIntegral $ fromEnum x - fromEnum 'A' {-# INLINE digit #-}