| Safe Haskell | Safe |
|---|---|
| Language | Haskell2010 |
Traction.Prelude
Synopsis
- seq :: a -> b -> b
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- ($) :: (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- guard :: Alternative f => Bool -> f ()
- join :: Monad m => m (m a) -> m a
- class Bounded a where
- class Enum a
- class Eq a where
- (/) :: Fractional a => a -> a -> a
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class Read a where
- class Show a where
- class Functor f => Applicative (f :: Type -> Type) where
- class Foldable (t :: Type -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- toList :: t a -> [a]
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- (<>) :: Semigroup a => a -> a -> a
- class Semigroup a => Monoid a where
- data Bool
- data Char
- data Double
- data Int
- data Int8
- data Int16
- data Int32
- data Int64
- data Maybe a
- data Either a b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- const :: a -> b -> a
- (.) :: (b -> c) -> (a -> b) -> a -> c
- id :: a -> a
- class Applicative f => Alternative (f :: Type -> Type) where
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- class Bifunctor (p :: Type -> Type -> Type) where
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- unless :: Applicative f => Bool -> f () -> f ()
- replicateM_ :: Applicative m => Int -> m a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c])
- forever :: Applicative f => f a -> f b
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m
- fmapDefault :: Traversable t => (a -> b) -> t a -> t b
- mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
- mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- optional :: Alternative f => f a -> f (Maybe a)
- newtype WrappedMonad (m :: Type -> Type) a = WrapMonad {
- unwrapMonad :: m a
- newtype WrappedArrow (a :: Type -> Type -> Type) b c = WrapArrow {
- unwrapArrow :: a b c
- newtype ZipList a = ZipList {
- getZipList :: [a]
- newtype Const a (b :: k) :: forall k. Type -> k -> Type = Const {
- getConst :: a
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- and :: Foldable t => t Bool -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
- readMaybe :: Read a => String -> Maybe a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- bool :: a -> a -> Bool -> a
- (&) :: a -> (a -> b) -> b
- void :: Functor f => f a -> f ()
- ($>) :: Functor f => f a -> b -> f b
- (^) :: (Num a, Integral b) => a -> b -> a
- fromMaybe :: a -> Maybe a -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- flip :: (a -> b -> c) -> b -> a -> c
- ap :: Monad m => m (a -> b) -> m a -> m b
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- when :: Applicative f => Bool -> f () -> f ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- liftA :: Applicative f => (a -> b) -> f a -> f b
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- error :: HasCallStack => [Char] -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- hoistEitherT :: (forall b. m b -> n b) -> EitherT x m a -> EitherT x n a
- hoistMaybe :: Monad m => x -> Maybe a -> EitherT x m a
- secondEitherT :: Functor m => (a -> b) -> EitherT x m a -> EitherT x m b
- firstEitherT :: Functor m => (x -> y) -> EitherT x m a -> EitherT y m a
- bimapEitherT :: Functor m => (x -> y) -> (a -> b) -> EitherT x m a -> EitherT y m b
- hoistEither :: Monad m => Either x a -> EitherT x m a
- mapEitherT :: (m (Either x a) -> n (Either y b)) -> EitherT x m a -> EitherT y n b
- right :: Monad m => a -> EitherT x m a
- left :: Monad m => x -> EitherT x m a
- eitherT :: Monad m => (x -> m b) -> (a -> m b) -> EitherT x m a -> m b
- newEitherT :: m (Either x a) -> EitherT x m a
- runEitherT :: EitherT x m a -> m (Either x a)
- pattern EitherT :: forall (m :: Type -> Type) x a. m (Either x a) -> ExceptT x m a
- type EitherT = ExceptT
- fromMaybeM :: Applicative f => f a -> Maybe a -> f a
- whenM :: Monad m => m Bool -> m () -> m ()
- unlessM :: Monad m => m Bool -> m () -> m ()
- with :: Functor f => f a -> (a -> b) -> f b
Documentation
The value of seq a b is bottom if a is bottom, and
otherwise equal to b. In other words, it evaluates the first
argument a to weak head normal form (WHNF). seq is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b does
not guarantee that a will be evaluated before b.
The only guarantee given by seq is that the both a
and b will be evaluated before seq returns a value.
In particular, this means that b may be evaluated before
a. If you need to guarantee a specific order of evaluation,
you must use the function pseq from the "parallel" package.
($) :: (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x) means the same as (f . However, $ x)$ has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as ,
or map ($ 0) xs.zipWith ($) fs xs
Note that ($) is levity-polymorphic in its result type, so that
foo $ True where foo :: Bool -> Int#
is well-typed
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative computations. Defined by
guard True =pure() guard False =empty
Examples
Common uses of guard include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative-based parser.
As an example of signaling an error in the error monad Maybe,
consider a safe division function safeDiv x y that returns
Nothing when the denominator y is zero and otherwise. For example:Just (x `div`
y)
>>> safeDiv 4 0 Nothing >>> safeDiv 4 2 Just 2
A definition of safeDiv using guards, but not guard:
safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0 = Just (x `div` y)
| otherwise = Nothing
A definition of safeDiv using guard and Monad do-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
join :: Monad m => m (m a) -> m a #
The join function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
Examples
A common use of join is to run an IO computation returned from
an STM transaction, since STM transactions
can't perform IO directly. Recall that
atomically :: STM a -> IO a
is used to run STM transactions atomically. So, by
specializing the types of atomically and join to
atomically:: STM (IO b) -> IO (IO b)join:: IO (IO b) -> IO b
we can compose them as
join.atomically:: STM (IO b) -> IO b
The Bounded class is used to name the upper and lower limits of a
type. Ord is not a superclass of Bounded since types that are not
totally ordered may also have upper and lower bounds.
The Bounded class may be derived for any enumeration type;
minBound is the first constructor listed in the data declaration
and maxBound is the last.
Bounded may also be derived for single-constructor datatypes whose
constituent types are in Bounded.
Instances
| Bounded Bool | Since: base-2.1 |
| Bounded Char | Since: base-2.1 |
| Bounded Int | Since: base-2.1 |
| Bounded Int8 | Since: base-2.1 |
| Bounded Int16 | Since: base-2.1 |
| Bounded Int32 | Since: base-2.1 |
| Bounded Int64 | Since: base-2.1 |
| Bounded Ordering | Since: base-2.1 |
| Bounded Word | Since: base-2.1 |
| Bounded Word8 | Since: base-2.1 |
| Bounded Word16 | Since: base-2.1 |
| Bounded Word32 | Since: base-2.1 |
| Bounded Word64 | Since: base-2.1 |
| Bounded VecCount | Since: base-4.10.0.0 |
| Bounded VecElem | Since: base-4.10.0.0 |
| Bounded () | Since: base-2.1 |
| Bounded All | Since: base-2.1 |
| Bounded Any | Since: base-2.1 |
| Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded WordPtr | |
| Bounded IntPtr | |
| Bounded GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode | |
| Bounded IsolationLevel | |
Defined in Database.PostgreSQL.Simple.Transaction | |
| Bounded ReadWriteMode | |
Defined in Database.PostgreSQL.Simple.Transaction | |
| Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Dual a) | Since: base-2.1 |
| Bounded a => Bounded (Sum a) | Since: base-2.1 |
| Bounded a => Bounded (Product a) | Since: base-2.1 |
| (Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
| Bounded (Proxy t) | Since: base-4.7.0.0 |
| (Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
| Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
| a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
| Bounded b => Bounded (Tagged s b) | |
| (Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
| a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum from 0 through n-1.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum,
the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::BoolenumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBoundInstances
The Eq class defines equality (==) and inequality (/=).
All the basic datatypes exported by the Prelude are instances of Eq,
and Eq may be derived for any datatype whose constituents are also
instances of Eq.
The Haskell Report defines no laws for Eq. However, == is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
(/) :: Fractional a => a -> a -> a infixl 7 #
fractional division
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given
suitable Euclidean functions f and g:
x=y * quot x y + rem x ywithrem x y=fromInteger 0org (rem x y)<g yx=y * div x y + mod x ywithmod x y=fromInteger 0orf (mod x y)<f y
An example of a suitable Euclidean function, for Integer's instance, is
abs.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
| Integral Int | Since: base-2.0.1 |
| Integral Int8 | Since: base-2.1 |
| Integral Int16 | Since: base-2.1 |
| Integral Int32 | Since: base-2.1 |
| Integral Int64 | Since: base-2.1 |
| Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
| Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
| Integral Word | Since: base-2.1 |
| Integral Word8 | Since: base-2.1 |
| Integral Word16 | Since: base-2.1 |
| Integral Word32 | Since: base-2.1 |
| Integral Word64 | Since: base-2.1 |
| Integral WordPtr | |
Defined in Foreign.Ptr | |
| Integral IntPtr | |
Defined in Foreign.Ptr | |
| Integral a => Integral (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods quot :: Identity a -> Identity a -> Identity a # rem :: Identity a -> Identity a -> Identity a # div :: Identity a -> Identity a -> Identity a # mod :: Identity a -> Identity a -> Identity a # quotRem :: Identity a -> Identity a -> (Identity a, Identity a) # divMod :: Identity a -> Identity a -> (Identity a, Identity a) # | |
| Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
| Integral a => Integral (Tagged s a) | |
Defined in Data.Tagged Methods quot :: Tagged s a -> Tagged s a -> Tagged s a # rem :: Tagged s a -> Tagged s a -> Tagged s a # div :: Tagged s a -> Tagged s a -> Tagged s a # mod :: Tagged s a -> Tagged s a -> Tagged s a # quotRem :: Tagged s a -> Tagged s a -> (Tagged s a, Tagged s a) # divMod :: Tagged s a -> Tagged s a -> (Tagged s a, Tagged s a) # | |
class Applicative m => Monad (m :: Type -> Type) where #
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad should satisfy the following laws:
Furthermore, the Monad and Applicative operations should relate as follows:
The above laws imply:
and that pure and (<*>) satisfy the applicative functor laws.
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
Inject a value into the monadic type.
Fail with a message. This operation is not part of the
mathematical definition of a monad, but is invoked on pattern-match
failure in a do expression.
As part of the MonadFail proposal (MFP), this function is moved
to its own class MonadFail (see Control.Monad.Fail for more
details). The definition here will be removed in a future
release.
Instances
| Monad [] | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| Monad IO | Since: base-2.1 |
| Monad Par1 | Since: base-4.9.0.0 |
| Monad Q | |
| Monad IResult | |
| Monad Result | |
| Monad Parser | |
| Monad Complex | Since: base-4.9.0.0 |
| Monad Identity | Since: base-4.8.0.0 |
| Monad STM | Since: base-4.3.0.0 |
| Monad First | Since: base-4.8.0.0 |
| Monad Last | Since: base-4.8.0.0 |
| Monad Dual | Since: base-4.8.0.0 |
| Monad Sum | Since: base-4.8.0.0 |
| Monad Product | Since: base-4.8.0.0 |
| Monad Down | Since: base-4.11.0.0 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Monad Put | |
| Monad DList | |
| Monad RowParser | |
| Monad Conversion | |
Defined in Database.PostgreSQL.Simple.Internal Methods (>>=) :: Conversion a -> (a -> Conversion b) -> Conversion b # (>>) :: Conversion a -> Conversion b -> Conversion b # return :: a -> Conversion a # fail :: String -> Conversion a # | |
| Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # fail :: String -> SmallArray a # | |
| Monad Vector | |
| Monad Db Source # | |
| Monad (Either e) | Since: base-4.4.0.0 |
| Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
| Monad (ST s) | Since: base-2.1 |
| Monad (Parser i) | |
| Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # fail :: String -> WrappedMonad m a # | |
| ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # fail :: String -> ArrowMonad a a0 # | |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
| Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
| Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
| Monad m => Monad (ExceptT e m) | |
| (Monad m, Error e) => Monad (ErrorT e m) | |
| Monad m => Monad (StateT s m) | |
| Monad (Tagged s) | |
| Monad ((->) r :: Type -> Type) | Since: base-2.1 |
| (Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
| Monad m => Monad (ReaderT r m) | |
| Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
class Functor (f :: Type -> Type) where #
The Functor class is used for types that can be mapped over.
Instances of Functor should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor for lists, Maybe and IO
satisfy these laws.
Minimal complete definition
Instances
| Functor [] | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Functor IO | Since: base-2.1 |
| Functor Par1 | Since: base-4.9.0.0 |
| Functor Q | |
| Functor IResult | |
| Functor Result | |
| Functor Parser | |
| Functor Complex | Since: base-4.9.0.0 |
| Functor ZipList | Since: base-2.1 |
| Functor Identity | Since: base-4.8.0.0 |
| Functor STM | Since: base-4.3.0.0 |
| Functor First | Since: base-4.8.0.0 |
| Functor Last | Since: base-4.8.0.0 |
| Functor Dual | Since: base-4.8.0.0 |
| Functor Sum | Since: base-4.8.0.0 |
| Functor Product | Since: base-4.8.0.0 |
| Functor Down | Since: base-4.11.0.0 |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Functor Put | |
Defined in Data.ByteString.Builder.Internal | |
| Functor DList | |
| Functor RowParser | |
| Functor Conversion | |
Defined in Database.PostgreSQL.Simple.Internal Methods fmap :: (a -> b) -> Conversion a -> Conversion b # (<$) :: a -> Conversion b -> Conversion a # | |
| Functor Only | |
| Functor In | |
| Functor Binary | |
| Functor PGArray | |
| Functor Doc | |
| Functor AnnotDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods fmap :: (a -> b) -> AnnotDetails a -> AnnotDetails b # (<$) :: a -> AnnotDetails b -> AnnotDetails a # | |
| Functor Span | |
| Functor SmallArray | |
Defined in Data.Primitive.SmallArray Methods fmap :: (a -> b) -> SmallArray a -> SmallArray b # (<$) :: a -> SmallArray b -> SmallArray a # | |
| Functor Vector | |
| Functor Db Source # | |
| Functor Unique Source # | |
| Functor (Either a) | Since: base-3.0 |
| Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor ((,) a) | Since: base-2.1 |
| Functor (HashMap k) | |
| Functor (ST s) | Since: base-2.1 |
| Functor (Array i) | Since: base-2.1 |
| Functor (IResult i) | |
| Functor (Parser i) | |
| Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Functor (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # (<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad m => Functor (Handler m) | |
| Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
| Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
| Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
| Functor f => Functor (Alt f) | Since: base-4.8.0.0 |
| Functor m => Functor (ExceptT e m) | |
| Functor m => Functor (ErrorT e m) | |
| Functor m => Functor (StateT s m) | |
| Functor (Tagged s) | |
| Functor ((->) r :: Type -> Type) | Since: base-2.1 |
| Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
| Functor m => Functor (ReaderT r m) | |
| Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
Basic numeric class.
The Haskell Report defines no laws for Num. However, '(+)' and '(*)' are
customarily expected to define a ring and have the following properties:
- Associativity of (+)
(x + y) + z=x + (y + z)- Commutativity of (+)
x + y=y + xfromInteger 0is the additive identityx + fromInteger 0=xnegategives the additive inversex + negate x=fromInteger 0- Associativity of (*)
(x * y) * z=x * (y * z)fromInteger 1is the multiplicative identityx * fromInteger 1=xandfromInteger 1 * x=x- Distributivity of (*) with respect to (+)
a * (b + c)=(a * b) + (a * c)and(b + c) * a=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord implement an ordered ring. Indeed, in base only Integer and
Rational do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs and signum should satisfy the law:
abs x * signum x == x
For real numbers, the signum is either -1 (negative), 0 (zero)
or 1 (positive).
fromInteger :: Integer -> a #
Conversion from an Integer.
An integer literal represents the application of the function
fromInteger to the appropriate value of type Integer,
so such literals have type (.Num a) => a
Instances
| Num Int | Since: base-2.1 |
| Num Int8 | Since: base-2.1 |
| Num Int16 | Since: base-2.1 |
| Num Int32 | Since: base-2.1 |
| Num Int64 | Since: base-2.1 |
| Num Integer | Since: base-2.1 |
| Num Natural | Note that Since: base-4.8.0.0 |
| Num Word | Since: base-2.1 |
| Num Word8 | Since: base-2.1 |
| Num Word16 | Since: base-2.1 |
| Num Word32 | Since: base-2.1 |
| Num Word64 | Since: base-2.1 |
| Num Pos | |
| Num WordPtr | |
| Num IntPtr | |
| Num Column | |
| Num Row | |
| Num NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods (+) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # (-) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # (*) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # negate :: NominalDiffTime -> NominalDiffTime # abs :: NominalDiffTime -> NominalDiffTime # signum :: NominalDiffTime -> NominalDiffTime # fromInteger :: Integer -> NominalDiffTime # | |
| Num CodePoint | |
Defined in Data.Text.Encoding | |
| Num DecoderState | |
Defined in Data.Text.Encoding Methods (+) :: DecoderState -> DecoderState -> DecoderState # (-) :: DecoderState -> DecoderState -> DecoderState # (*) :: DecoderState -> DecoderState -> DecoderState # negate :: DecoderState -> DecoderState # abs :: DecoderState -> DecoderState # signum :: DecoderState -> DecoderState # fromInteger :: Integer -> DecoderState # | |
| Integral a => Num (Ratio a) | Since: base-2.0.1 |
| RealFloat a => Num (Complex a) | Since: base-2.1 |
| HasResolution a => Num (Fixed a) | Since: base-2.1 |
| Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
| Num a => Num (Sum a) | Since: base-4.7.0.0 |
| Num a => Num (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| Num a => Num (Down a) | Since: base-4.11.0.0 |
| Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| (Applicative f, Num a) => Num (Ap f a) | Since: base-4.12.0.0 |
| Num (f a) => Num (Alt f a) | Since: base-4.8.0.0 |
| Num a => Num (Tagged s a) | |
Defined in Data.Tagged | |
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined datatype whose
constituent types are in Ord. The declared order of the constructors in
the data declaration determines the ordering in derived Ord instances. The
Ordering datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord. However, <= is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z=True, thenx <= z=True - Reflexivity
x <= x=True- Antisymmetry
- if
x <= y && y <= x=True, thenx == y=True
Note that the following operator interactions are expected to hold:
x >= y=y <= xx < y=x <= y && x /= yx > y=y < xx < y=compare x y == LTx > y=compare x y == GTx == y=compare x y == EQmin x y == if x <= y then x else y=Truemax x y == if x >= y then x else y=True
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
| Ord Bool | |
| Ord Char | |
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Ord Int | |
| Ord Int8 | Since: base-2.1 |
| Ord Int16 | Since: base-2.1 |
| Ord Int32 | Since: base-2.1 |
| Ord Int64 | Since: base-2.1 |
| Ord Integer | |
| Ord Natural | Since: base-4.8.0.0 |
| Ord Ordering | |
Defined in GHC.Classes | |
| Ord Word | |
| Ord Word8 | Since: base-2.1 |
| Ord Word16 | Since: base-2.1 |
| Ord Word32 | Since: base-2.1 |
| Ord Word64 | Since: base-2.1 |
| Ord SomeTypeRep | |
Defined in Data.Typeable.Internal Methods compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
| Ord Exp | |
| Ord Match | |
| Ord Clause | |
| Ord Pat | |
| Ord Type | |
| Ord Dec | |
| Ord Name | |
| Ord FunDep | |
| Ord InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods compare :: InjectivityAnn -> InjectivityAnn -> Ordering # (<) :: InjectivityAnn -> InjectivityAnn -> Bool # (<=) :: InjectivityAnn -> InjectivityAnn -> Bool # (>) :: InjectivityAnn -> InjectivityAnn -> Bool # (>=) :: InjectivityAnn -> InjectivityAnn -> Bool # max :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # min :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # | |
| Ord Overlap | |
Defined in Language.Haskell.TH.Syntax | |
| Ord () | |
| Ord TyCon | |
| Ord Con | |
| Ord ByteString | |
Defined in Data.ByteString.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
| Ord UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime | |
| Ord JSONPathElement | |
Defined in Data.Aeson.Types.Internal Methods compare :: JSONPathElement -> JSONPathElement -> Ordering # (<) :: JSONPathElement -> JSONPathElement -> Bool # (<=) :: JSONPathElement -> JSONPathElement -> Bool # (>) :: JSONPathElement -> JSONPathElement -> Bool # (>=) :: JSONPathElement -> JSONPathElement -> Bool # max :: JSONPathElement -> JSONPathElement -> JSONPathElement # min :: JSONPathElement -> JSONPathElement -> JSONPathElement # | |
| Ord DotNetTime | |
Defined in Data.Aeson.Types.Internal Methods compare :: DotNetTime -> DotNetTime -> Ordering # (<) :: DotNetTime -> DotNetTime -> Bool # (<=) :: DotNetTime -> DotNetTime -> Bool # (>) :: DotNetTime -> DotNetTime -> Bool # (>=) :: DotNetTime -> DotNetTime -> Bool # max :: DotNetTime -> DotNetTime -> DotNetTime # min :: DotNetTime -> DotNetTime -> DotNetTime # | |
| Ord Pos | |
| Ord BigNat | |
| Ord Void | Since: base-4.8.0.0 |
| Ord Version | Since: base-2.1 |
| Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
| Ord BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
| Ord ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
| Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
| Ord Newline | Since: base-4.3.0.0 |
| Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
| Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
| Ord All | Since: base-2.1 |
| Ord Any | Since: base-2.1 |
| Ord Fixity | Since: base-4.6.0.0 |
| Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
| Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
| Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
| Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
| Ord WordPtr | |
| Ord IntPtr | |
| Ord GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods compare :: GeneralCategory -> GeneralCategory -> Ordering # (<) :: GeneralCategory -> GeneralCategory -> Bool # (<=) :: GeneralCategory -> GeneralCategory -> Bool # (>) :: GeneralCategory -> GeneralCategory -> Bool # (>=) :: GeneralCategory -> GeneralCategory -> Bool # max :: GeneralCategory -> GeneralCategory -> GeneralCategory # min :: GeneralCategory -> GeneralCategory -> GeneralCategory # | |
| Ord Format | |
| Ord Oid | |
| Ord Column | |
| Ord Row | |
| Ord LoFd | |
| Ord IsolationLevel | |
Defined in Database.PostgreSQL.Simple.Transaction Methods compare :: IsolationLevel -> IsolationLevel -> Ordering # (<) :: IsolationLevel -> IsolationLevel -> Bool # (<=) :: IsolationLevel -> IsolationLevel -> Bool # (>) :: IsolationLevel -> IsolationLevel -> Bool # (>=) :: IsolationLevel -> IsolationLevel -> Bool # max :: IsolationLevel -> IsolationLevel -> IsolationLevel # min :: IsolationLevel -> IsolationLevel -> IsolationLevel # | |
| Ord ReadWriteMode | |
Defined in Database.PostgreSQL.Simple.Transaction Methods compare :: ReadWriteMode -> ReadWriteMode -> Ordering # (<) :: ReadWriteMode -> ReadWriteMode -> Bool # (<=) :: ReadWriteMode -> ReadWriteMode -> Bool # (>) :: ReadWriteMode -> ReadWriteMode -> Bool # (>=) :: ReadWriteMode -> ReadWriteMode -> Bool # max :: ReadWriteMode -> ReadWriteMode -> ReadWriteMode # min :: ReadWriteMode -> ReadWriteMode -> ReadWriteMode # | |
| Ord Query | |
| Ord Identifier | |
Defined in Database.PostgreSQL.Simple.Types Methods compare :: Identifier -> Identifier -> Ordering # (<) :: Identifier -> Identifier -> Bool # (<=) :: Identifier -> Identifier -> Bool # (>) :: Identifier -> Identifier -> Bool # (>=) :: Identifier -> Identifier -> Bool # max :: Identifier -> Identifier -> Identifier # min :: Identifier -> Identifier -> Identifier # | |
| Ord QualifiedIdentifier | |
Defined in Database.PostgreSQL.Simple.Types Methods compare :: QualifiedIdentifier -> QualifiedIdentifier -> Ordering # (<) :: QualifiedIdentifier -> QualifiedIdentifier -> Bool # (<=) :: QualifiedIdentifier -> QualifiedIdentifier -> Bool # (>) :: QualifiedIdentifier -> QualifiedIdentifier -> Bool # (>=) :: QualifiedIdentifier -> QualifiedIdentifier -> Bool # max :: QualifiedIdentifier -> QualifiedIdentifier -> QualifiedIdentifier # min :: QualifiedIdentifier -> QualifiedIdentifier -> QualifiedIdentifier # | |
| Ord Savepoint | |
Defined in Database.PostgreSQL.Simple.Types | |
| Ord ByteArray | Non-lexicographic ordering. This compares the lengths of the byte arrays first and uses a lexicographic ordering if the lengths are equal. Subject to change between major versions. Since: primitive-0.6.3.0 |
| Ord ModName | |
Defined in Language.Haskell.TH.Syntax | |
| Ord PkgName | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Module | |
| Ord OccName | |
Defined in Language.Haskell.TH.Syntax | |
| Ord NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods compare :: NameFlavour -> NameFlavour -> Ordering # (<) :: NameFlavour -> NameFlavour -> Bool # (<=) :: NameFlavour -> NameFlavour -> Bool # (>) :: NameFlavour -> NameFlavour -> Bool # (>=) :: NameFlavour -> NameFlavour -> Bool # max :: NameFlavour -> NameFlavour -> NameFlavour # min :: NameFlavour -> NameFlavour -> NameFlavour # | |
| Ord NameSpace | |
| Ord Loc | |
| Ord Info | |
| Ord ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods compare :: ModuleInfo -> ModuleInfo -> Ordering # (<) :: ModuleInfo -> ModuleInfo -> Bool # (<=) :: ModuleInfo -> ModuleInfo -> Bool # (>) :: ModuleInfo -> ModuleInfo -> Bool # (>=) :: ModuleInfo -> ModuleInfo -> Bool # max :: ModuleInfo -> ModuleInfo -> ModuleInfo # min :: ModuleInfo -> ModuleInfo -> ModuleInfo # | |
| Ord Fixity | |
| Ord FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods compare :: FixityDirection -> FixityDirection -> Ordering # (<) :: FixityDirection -> FixityDirection -> Bool # (<=) :: FixityDirection -> FixityDirection -> Bool # (>) :: FixityDirection -> FixityDirection -> Bool # (>=) :: FixityDirection -> FixityDirection -> Bool # max :: FixityDirection -> FixityDirection -> FixityDirection # min :: FixityDirection -> FixityDirection -> FixityDirection # | |
| Ord Lit | |
| Ord Body | |
| Ord Guard | |
| Ord Stmt | |
| Ord Range | |
| Ord DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DerivClause -> DerivClause -> Ordering # (<) :: DerivClause -> DerivClause -> Bool # (<=) :: DerivClause -> DerivClause -> Bool # (>) :: DerivClause -> DerivClause -> Bool # (>=) :: DerivClause -> DerivClause -> Bool # max :: DerivClause -> DerivClause -> DerivClause # min :: DerivClause -> DerivClause -> DerivClause # | |
| Ord DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DerivStrategy -> DerivStrategy -> Ordering # (<) :: DerivStrategy -> DerivStrategy -> Bool # (<=) :: DerivStrategy -> DerivStrategy -> Bool # (>) :: DerivStrategy -> DerivStrategy -> Bool # (>=) :: DerivStrategy -> DerivStrategy -> Bool # max :: DerivStrategy -> DerivStrategy -> DerivStrategy # min :: DerivStrategy -> DerivStrategy -> DerivStrategy # | |
| Ord TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods compare :: TypeFamilyHead -> TypeFamilyHead -> Ordering # (<) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (<=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # max :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # min :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # | |
| Ord TySynEqn | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Foreign | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Callconv | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Safety | |
| Ord Pragma | |
| Ord Inline | |
| Ord RuleMatch | |
| Ord Phases | |
| Ord RuleBndr | |
Defined in Language.Haskell.TH.Syntax | |
| Ord AnnTarget | |
| Ord SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
| Ord SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
| Ord DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
| Ord Bang | |
| Ord PatSynDir | |
| Ord PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods compare :: PatSynArgs -> PatSynArgs -> Ordering # (<) :: PatSynArgs -> PatSynArgs -> Bool # (<=) :: PatSynArgs -> PatSynArgs -> Bool # (>) :: PatSynArgs -> PatSynArgs -> Bool # (>=) :: PatSynArgs -> PatSynArgs -> Bool # max :: PatSynArgs -> PatSynArgs -> PatSynArgs # min :: PatSynArgs -> PatSynArgs -> PatSynArgs # | |
| Ord TyVarBndr | |
| Ord FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods compare :: FamilyResultSig -> FamilyResultSig -> Ordering # (<) :: FamilyResultSig -> FamilyResultSig -> Bool # (<=) :: FamilyResultSig -> FamilyResultSig -> Bool # (>) :: FamilyResultSig -> FamilyResultSig -> Bool # (>=) :: FamilyResultSig -> FamilyResultSig -> Bool # max :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # min :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # | |
| Ord TyLit | |
| Ord Role | |
| Ord AnnLookup | |
| Ord LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime | |
| Ord UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods compare :: UniversalTime -> UniversalTime -> Ordering # (<) :: UniversalTime -> UniversalTime -> Bool # (<=) :: UniversalTime -> UniversalTime -> Bool # (>) :: UniversalTime -> UniversalTime -> Bool # (>=) :: UniversalTime -> UniversalTime -> Bool # max :: UniversalTime -> UniversalTime -> UniversalTime # min :: UniversalTime -> UniversalTime -> UniversalTime # | |
| Ord NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods compare :: NominalDiffTime -> NominalDiffTime -> Ordering # (<) :: NominalDiffTime -> NominalDiffTime -> Bool # (<=) :: NominalDiffTime -> NominalDiffTime -> Bool # (>) :: NominalDiffTime -> NominalDiffTime -> Bool # (>=) :: NominalDiffTime -> NominalDiffTime -> Bool # max :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # min :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # | |
| Ord AbsoluteTime | |
Defined in Data.Time.Clock.Internal.AbsoluteTime Methods compare :: AbsoluteTime -> AbsoluteTime -> Ordering # (<) :: AbsoluteTime -> AbsoluteTime -> Bool # (<=) :: AbsoluteTime -> AbsoluteTime -> Bool # (>) :: AbsoluteTime -> AbsoluteTime -> Bool # (>=) :: AbsoluteTime -> AbsoluteTime -> Bool # max :: AbsoluteTime -> AbsoluteTime -> AbsoluteTime # min :: AbsoluteTime -> AbsoluteTime -> AbsoluteTime # | |
| Ord Day | |
| Ord UnpackedUUID | |
Defined in Data.UUID.Types.Internal | |
| Ord UUID | |
| Ord DbPoolConfiguration Source # | |
Defined in Traction.Control Methods compare :: DbPoolConfiguration -> DbPoolConfiguration -> Ordering # (<) :: DbPoolConfiguration -> DbPoolConfiguration -> Bool # (<=) :: DbPoolConfiguration -> DbPoolConfiguration -> Bool # (>) :: DbPoolConfiguration -> DbPoolConfiguration -> Bool # (>=) :: DbPoolConfiguration -> DbPoolConfiguration -> Bool # max :: DbPoolConfiguration -> DbPoolConfiguration -> DbPoolConfiguration # min :: DbPoolConfiguration -> DbPoolConfiguration -> DbPoolConfiguration # | |
| Ord a => Ord [a] | |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Integral a => Ord (Ratio a) | Since: base-2.0.1 |
| Ord (Ptr a) | Since: base-2.1 |
| Ord (FunPtr a) | |
Defined in GHC.Ptr | |
| Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
| Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # | |
| Ord (Fixed a) | Since: base-2.1 |
| Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
| Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
| Ord a => Ord (First a) | Since: base-2.1 |
| Ord a => Ord (Last a) | Since: base-2.1 |
| Ord a => Ord (Dual a) | Since: base-2.1 |
| Ord a => Ord (Sum a) | Since: base-2.1 |
| Ord a => Ord (Product a) | Since: base-2.1 |
| Ord a => Ord (Down a) | Since: base-4.6.0.0 |
| Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
| Ord a => Ord (Set a) | |
| Ord a => Ord (DList a) | |
| Ord a => Ord (Hashed a) | |
Defined in Data.Hashable.Class | |
| Ord a => Ord (Only a) | |
| Ord a => Ord (In a) | |
| Ord a => Ord (Binary a) | |
Defined in Database.PostgreSQL.Simple.Types | |
| Ord a => Ord (PGArray a) | |
Defined in Database.PostgreSQL.Simple.Types | |
| Ord a => Ord (Values a) | |
Defined in Database.PostgreSQL.Simple.Types | |
| (Ord a, Prim a) => Ord (PrimArray a) | Lexicographic ordering. Subject to change between major versions. Since: primitive-0.6.4.0 |
Defined in Data.Primitive.PrimArray | |
| Ord a => Ord (SmallArray a) | Lexicographic ordering. Subject to change between major versions. |
Defined in Data.Primitive.SmallArray Methods compare :: SmallArray a -> SmallArray a -> Ordering # (<) :: SmallArray a -> SmallArray a -> Bool # (<=) :: SmallArray a -> SmallArray a -> Bool # (>) :: SmallArray a -> SmallArray a -> Bool # (>=) :: SmallArray a -> SmallArray a -> Bool # max :: SmallArray a -> SmallArray a -> SmallArray a # min :: SmallArray a -> SmallArray a -> SmallArray a # | |
| Ord a => Ord (HashSet a) | |
| (Storable a, Ord a) => Ord (Vector a) | |
Defined in Data.Vector.Storable | |
| (Prim a, Ord a) => Ord (Vector a) | |
Defined in Data.Vector.Primitive | |
| Ord a => Ord (Vector a) | |
Defined in Data.Vector | |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| Ord (V1 p) | Since: base-4.9.0.0 |
| Ord (U1 p) | Since: base-4.7.0.0 |
| Ord (TypeRep a) | Since: base-4.4.0.0 |
| (Ord a, Ord b) => Ord (a, b) | |
| (Ord k, Ord v) => Ord (HashMap k v) | The order is total. Note: Because the hash is not guaranteed to be stable across library
versions, OSes, or architectures, neither is an actual order of elements in
|
Defined in Data.HashMap.Base | |
| (Ix i, Ord e) => Ord (Array i e) | Since: base-2.1 |
| Ord (Proxy s) | Since: base-4.7.0.0 |
| (Ord h, Ord t) => Ord (h :. t) | |
Defined in Database.PostgreSQL.Simple.Types | |
| Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
| Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c) => Ord (a, b, c) | |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
| Ord (f a) => Ord (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
| Ord (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
| Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
| (Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) | |
Defined in Control.Monad.Trans.Except Methods compare :: ExceptT e m a -> ExceptT e m a -> Ordering # (<) :: ExceptT e m a -> ExceptT e m a -> Bool # (<=) :: ExceptT e m a -> ExceptT e m a -> Bool # (>) :: ExceptT e m a -> ExceptT e m a -> Bool # (>=) :: ExceptT e m a -> ExceptT e m a -> Bool # | |
| (Ord e, Ord1 m, Ord a) => Ord (ErrorT e m a) | |
Defined in Control.Monad.Trans.Error | |
| Ord b => Ord (Tagged s b) | |
| Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
| Ord (a :~~: b) | Since: base-4.10.0.0 |
| Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
| Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # | |
Parsing of Strings, producing values.
Derived instances of Read make the following assumptions, which
derived instances of Show obey:
- If the constructor is defined to be an infix operator, then the
derived
Readinstance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Readwill parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Readinstance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where
readsPrec d r = readParen (d > app_prec)
(\r -> [(Leaf m,t) |
("Leaf",s) <- lex r,
(m,t) <- readsPrec (app_prec+1) s]) r
++ readParen (d > up_prec)
(\r -> [(u:^:v,w) |
(u,s) <- readsPrec (up_prec+1) r,
(":^:",t) <- lex s,
(v,w) <- readsPrec (up_prec+1) t]) r
where app_prec = 10
up_prec = 5Note that right-associativity of :^: is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where
readPrec = parens $ (prec app_prec $ do
Ident "Leaf" <- lexP
m <- step readPrec
return (Leaf m))
+++ (prec up_prec $ do
u <- step readPrec
Symbol ":^:" <- lexP
v <- step readPrec
return (u :^: v))
where app_prec = 10
up_prec = 5
readListPrec = readListPrecDefaultWhy do both readsPrec and readPrec exist, and why does GHC opt to
implement readPrec in derived Read instances instead of readsPrec?
The reason is that readsPrec is based on the ReadS type, and although
ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes language extension. Therefore, readPrec (and its
cousin, readListPrec) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec instead of readsPrec whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read instances in GHC will implement
readPrec instead of readsPrec. The default implementations of
readsPrec (and its cousin, readList) will simply use readPrec under
the hood. If you are writing a Read instance by hand, it is recommended
to write it like so:
instanceReadT wherereadPrec= ...readListPrec=readListPrecDefault
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that
showsPrec started with.
The method readList is provided to allow the programmer to
give a specialised way of parsing lists of values.
For example, this is used by the predefined Read instance of
the Char type, where values of type String should be are
expected to use double quotes, rather than square brackets.
Proposed replacement for readsPrec using new-style parsers (GHC only).
readListPrec :: ReadPrec [a] #
Proposed replacement for readList using new-style parsers (GHC only).
The default definition uses readList. Instances that define readPrec
should also define readListPrec as readListPrecDefault.
Instances
| Read Bool | Since: base-2.1 |
| Read Char | Since: base-2.1 |
| Read Double | Since: base-2.1 |
| Read Float | Since: base-2.1 |
| Read Int | Since: base-2.1 |
| Read Int8 | Since: base-2.1 |
| Read Int16 | Since: base-2.1 |
| Read Int32 | Since: base-2.1 |
| Read Int64 | Since: base-2.1 |
| Read Integer | Since: base-2.1 |
| Read Natural | Since: base-4.8.0.0 |
| Read Ordering | Since: base-2.1 |
| Read Word | Since: base-4.5.0.0 |
| Read Word8 | Since: base-2.1 |
| Read Word16 | Since: base-2.1 |
| Read Word32 | Since: base-2.1 |
| Read Word64 | Since: base-2.1 |
| Read () | Since: base-2.1 |
| Read ByteString | |
Defined in Data.ByteString.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
| Read Value | |
| Read DotNetTime | |
Defined in Data.Aeson.Types.Internal Methods readsPrec :: Int -> ReadS DotNetTime # readList :: ReadS [DotNetTime] # readPrec :: ReadPrec DotNetTime # readListPrec :: ReadPrec [DotNetTime] # | |
| Read Void | Reading a Since: base-4.8.0.0 |
| Read Version | Since: base-2.1 |
| Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
| Read Newline | Since: base-4.3.0.0 |
| Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
| Read All | Since: base-2.1 |
| Read Any | Since: base-2.1 |
| Read Fixity | Since: base-4.6.0.0 |
| Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
| Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
| Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
| Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
| Read WordPtr | |
| Read IntPtr | |
| Read Lexeme | Since: base-2.1 |
| Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
| Read Oid | |
| Read ConnectInfo | |
Defined in Database.PostgreSQL.Simple.Internal Methods readsPrec :: Int -> ReadS ConnectInfo # readList :: ReadS [ConnectInfo] # readPrec :: ReadPrec ConnectInfo # readListPrec :: ReadPrec [ConnectInfo] # | |
| Read Null | |
| Read Default | |
| Read Query | |
| Read Identifier | |
Defined in Database.PostgreSQL.Simple.Types Methods readsPrec :: Int -> ReadS Identifier # readList :: ReadS [Identifier] # readPrec :: ReadPrec Identifier # readListPrec :: ReadPrec [Identifier] # | |
| Read QualifiedIdentifier | |
Defined in Database.PostgreSQL.Simple.Types Methods readsPrec :: Int -> ReadS QualifiedIdentifier # readList :: ReadS [QualifiedIdentifier] # | |
| Read Savepoint | |
| Read UnpackedUUID | |
| Read UUID | |
| Read a => Read [a] | Since: base-2.1 |
| Read a => Read (Maybe a) | Since: base-2.1 |
| (Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
| Read p => Read (Par1 p) | Since: base-4.7.0.0 |
| Read a => Read (Complex a) | Since: base-2.1 |
| HasResolution a => Read (Fixed a) | Since: base-4.3.0.0 |
| Read a => Read (ZipList a) | Since: base-4.7.0.0 |
| Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Read a => Read (First a) | Since: base-2.1 |
| Read a => Read (Last a) | Since: base-2.1 |
| Read a => Read (Dual a) | Since: base-2.1 |
| Read a => Read (Sum a) | Since: base-2.1 |
| Read a => Read (Product a) | Since: base-2.1 |
| Read a => Read (Down a) | Since: base-4.7.0.0 |
| Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
| (Read a, Ord a) => Read (Set a) | |
| Read a => Read (DList a) | |
| Read a => Read (Only a) | |
| Read a => Read (In a) | |
| Read a => Read (Binary a) | |
| Read a => Read (PGArray a) | |
| Read a => Read (Values a) | |
| Read a => Read (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods readsPrec :: Int -> ReadS (SmallArray a) # readList :: ReadS [SmallArray a] # readPrec :: ReadPrec (SmallArray a) # readListPrec :: ReadPrec [SmallArray a] # | |
| (Eq a, Hashable a, Read a) => Read (HashSet a) | |
| (Read a, Storable a) => Read (Vector a) | |
| (Read a, Prim a) => Read (Vector a) | |
| Read a => Read (Vector a) | |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| Read (V1 p) | Since: base-4.9.0.0 |
| Read (U1 p) | Since: base-4.9.0.0 |
| (Read a, Read b) => Read (a, b) | Since: base-2.1 |
| (Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
| (Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
| Read (Proxy t) | Since: base-4.7.0.0 |
| (Read h, Read t) => Read (h :. t) | |
| Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
| Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
| Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
| Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
| a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
| (Read e, Read1 m, Read a) => Read (ExceptT e m a) | |
| (Read e, Read1 m, Read a) => Read (ErrorT e m a) | |
| Read b => Read (Tagged s b) | |
| Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
| (Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
| (Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
| a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
| Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
| Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read | |
Conversion of values to readable Strings.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5Note that right-associativity of :^: is ignored. For example,
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> a | the value to be converted to a |
| -> ShowS |
Convert a value to a readable String.
showsPrec should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that showsPrec started with.
Instances
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*> or liftA2. If it defines both, then they must behave
the same as their default definitions:
(<*>) =liftA2id
liftA2f x y = f<$>x<*>y
Further, any definition must satisfy the following:
- identity
pureid<*>v = v- composition
pure(.)<*>u<*>v<*>w = u<*>(v<*>w)- homomorphism
puref<*>purex =pure(f x)- interchange
u
<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor instance for f will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2p (liftA2q u v) =liftA2f u .liftA2g v
If f is also a Monad, it should satisfy
(which implies that pure and <*> satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*> that is more
efficient than the default one.
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2 that is more
efficient than the default one. In particular, if fmap is an
expensive operation, it is likely better to use liftA2 than to
fmap over the structure and then use <*>.
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
| Applicative [] | Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Applicative IO | Since: base-2.1 |
| Applicative Par1 | Since: base-4.9.0.0 |
| Applicative Q | |
| Applicative IResult | |
| Applicative Result | |
| Applicative Parser | |
| Applicative Complex | Since: base-4.9.0.0 |
| Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN
= 'ZipList' (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Applicative Identity | Since: base-4.8.0.0 |
| Applicative STM | Since: base-4.8.0.0 |
| Applicative First | Since: base-4.8.0.0 |
| Applicative Last | Since: base-4.8.0.0 |
| Applicative Dual | Since: base-4.8.0.0 |
| Applicative Sum | Since: base-4.8.0.0 |
| Applicative Product | Since: base-4.8.0.0 |
| Applicative Down | Since: base-4.11.0.0 |
| Applicative NonEmpty | Since: base-4.9.0.0 |
| Applicative Put | |
| Applicative DList | |
| Applicative RowParser | |
Defined in Database.PostgreSQL.Simple.Internal | |
| Applicative Conversion | |
Defined in Database.PostgreSQL.Simple.Internal Methods pure :: a -> Conversion a # (<*>) :: Conversion (a -> b) -> Conversion a -> Conversion b # liftA2 :: (a -> b -> c) -> Conversion a -> Conversion b -> Conversion c # (*>) :: Conversion a -> Conversion b -> Conversion b # (<*) :: Conversion a -> Conversion b -> Conversion a # | |
| Applicative SmallArray | |
Defined in Data.Primitive.SmallArray Methods pure :: a -> SmallArray a # (<*>) :: SmallArray (a -> b) -> SmallArray a -> SmallArray b # liftA2 :: (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c # (*>) :: SmallArray a -> SmallArray b -> SmallArray b # (<*) :: SmallArray a -> SmallArray b -> SmallArray a # | |
| Applicative Vector | |
| Applicative Db Source # | |
| Applicative (Either e) | Since: base-3.0 |
| Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)Since: base-2.1 |
| Applicative (ST s) | Since: base-4.4.0.0 |
| Applicative (Parser i) | |
| Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
| Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
| (Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
| (Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
| (Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
| Applicative (Tagged s) | |
| Applicative ((->) a :: Type -> Type) | Since: base-2.1 |
| Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
| (Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
| Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
| Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
| (Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
class Foldable (t :: Type -> Type) where #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum, product, maximum, and minimum should all be essentially
equivalent to foldMap forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Methods
fold :: Monoid m => t m -> m #
Combine the elements of a structure using a monoid.
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure to a monoid, and combine the results.
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure.
In the case of lists, foldr, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that, since the head of the resulting expression is produced by
an application of the operator to the first element of the list,
foldr can produce a terminating expression from an infinite list.
For a general Foldable structure this should be semantically identical
to,
foldr f z =foldrf z .toList
foldr' :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, but with strict application of the operator.
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure.
In the case of lists, foldl, when applied to a binary
operator, a starting value (typically the left-identity of the operator),
and a list, reduces the list using the binary operator, from left to
right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. This means that foldl' will
diverge if given an infinite list.
Also note that if you want an efficient left-fold, you probably want to
use foldl' instead of foldl. The reason for this is that latter does
not force the "inner" results (e.g. z in the above example)
before applying them to the operator (e.g. to f x1(). This results
in a thunk chain f x2)O(n) elements long, which then must be evaluated from
the outside-in.
For a general Foldable structure this should be semantically identical
to,
foldl f z =foldlf z .toList
foldl' :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to weak head normal
form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a finite
list to a single, monolithic result (e.g. length).
For a general Foldable structure this should be semantically identical
to,
foldl f z =foldl'f z .toList
foldr1 :: (a -> a -> a) -> t a -> a #
A variant of foldr that has no base case,
and thus may only be applied to non-empty structures.
foldr1f =foldr1f .toList
foldl1 :: (a -> a -> a) -> t a -> a #
A variant of foldl that has no base case,
and thus may only be applied to non-empty structures.
foldl1f =foldl1f .toList
List of elements of a structure, from left to right.
Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.
Returns the size/length of a finite structure as an Int. The
default implementation is optimized for structures that are similar to
cons-lists, because there is no general way to do better.
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
The sum function computes the sum of the numbers of a structure.
product :: Num a => t a -> a #
The product function computes the product of the numbers of a
structure.
Instances
| Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
| Foldable IResult | |
Defined in Data.Aeson.Types.Internal Methods fold :: Monoid m => IResult m -> m # foldMap :: Monoid m => (a -> m) -> IResult a -> m # foldr :: (a -> b -> b) -> b -> IResult a -> b # foldr' :: (a -> b -> b) -> b -> IResult a -> b # foldl :: (b -> a -> b) -> b -> IResult a -> b # foldl' :: (b -> a -> b) -> b -> IResult a -> b # foldr1 :: (a -> a -> a) -> IResult a -> a # foldl1 :: (a -> a -> a) -> IResult a -> a # elem :: Eq a => a -> IResult a -> Bool # maximum :: Ord a => IResult a -> a # minimum :: Ord a => IResult a -> a # | |
| Foldable Result | |
Defined in Data.Aeson.Types.Internal Methods fold :: Monoid m => Result m -> m # foldMap :: Monoid m => (a -> m) -> Result a -> m # foldr :: (a -> b -> b) -> b -> Result a -> b # foldr' :: (a -> b -> b) -> b -> Result a -> b # foldl :: (b -> a -> b) -> b -> Result a -> b # foldl' :: (b -> a -> b) -> b -> Result a -> b # foldr1 :: (a -> a -> a) -> Result a -> a # foldl1 :: (a -> a -> a) -> Result a -> a # elem :: Eq a => a -> Result a -> Bool # maximum :: Ord a => Result a -> a # minimum :: Ord a => Result a -> a # | |
| Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
| Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
| Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
| Foldable DList | |
Defined in Data.DList Methods fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
| Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
| Foldable SmallArray | |
Defined in Data.Primitive.SmallArray Methods fold :: Monoid m => SmallArray m -> m # foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] # null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # sum :: Num a => SmallArray a -> a # product :: Num a => SmallArray a -> a # | |
| Foldable HashSet | |
Defined in Data.HashSet.Base Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
| Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
| Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
| Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
| Foldable (HashMap k) | |
Defined in Data.HashMap.Base Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
| Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
| Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
| Foldable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
| Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
| Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
| Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
| Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
| Foldable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
| Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
| Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
| Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
| Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
| Foldable (Tagged s) | |
Defined in Data.Tagged Methods fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
| Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
| Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be traversed from left to right.
A definition of traverse must satisfy the following laws:
- naturality
t .for every applicative transformationtraversef =traverse(t . f)t- identity
traverseIdentity = Identity- composition
traverse(Compose .fmapg . f) = Compose .fmap(traverseg) .traversef
A definition of sequenceA must satisfy the following laws:
- naturality
t .for every applicative transformationsequenceA=sequenceA.fmaptt- identity
sequenceA.fmapIdentity = Identity- composition
sequenceA.fmapCompose = Compose .fmapsequenceA.sequenceA
where an applicative transformation is a function
t :: (Applicative f, Applicative g) => f a -> g a
preserving the Applicative operations, i.e.
and the identity functor Identity and composition of functors Compose
are defined as
newtype Identity a = Identity a
instance Functor Identity where
fmap f (Identity x) = Identity (f x)
instance Applicative Identity where
pure x = Identity x
Identity f <*> Identity x = Identity (f x)
newtype Compose f g a = Compose (f (g a))
instance (Functor f, Functor g) => Functor (Compose f g) where
fmap f (Compose x) = Compose (fmap (fmap f) x)
instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure x = Compose (pure (pure x))
Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)(The naturality law is implied by parametricity.)
Instances are similar to Functor, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where traverse f Empty = pure Empty traverse f (Leaf x) = Leaf <$> f x traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functorinstance,fmapshould be equivalent to traversal with the identity applicative functor (fmapDefault). - In the
Foldableinstance,foldMapshould be equivalent to traversal with a constant applicative functor (foldMapDefault).
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_.
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_.
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_.
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_.
Instances
| Traversable [] | Since: base-2.1 |
Defined in Data.Traversable | |
| Traversable Maybe | Since: base-2.1 |
| Traversable Par1 | Since: base-4.9.0.0 |
| Traversable IResult | |
| Traversable Result | |
| Traversable Complex | Since: base-4.9.0.0 |
| Traversable ZipList | Since: base-4.9.0.0 |
| Traversable Identity | Since: base-4.9.0.0 |
| Traversable First | Since: base-4.8.0.0 |
| Traversable Last | Since: base-4.8.0.0 |
| Traversable Dual | Since: base-4.8.0.0 |
| Traversable Sum | Since: base-4.8.0.0 |
| Traversable Product | Since: base-4.8.0.0 |
| Traversable Down | Since: base-4.12.0.0 |
| Traversable NonEmpty | Since: base-4.9.0.0 |
| Traversable SmallArray | |
Defined in Data.Primitive.SmallArray Methods traverse :: Applicative f => (a -> f b) -> SmallArray a -> f (SmallArray b) # sequenceA :: Applicative f => SmallArray (f a) -> f (SmallArray a) # mapM :: Monad m => (a -> m b) -> SmallArray a -> m (SmallArray b) # sequence :: Monad m => SmallArray (m a) -> m (SmallArray a) # | |
| Traversable Vector | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Traversable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Traversable (HashMap k) | |
Defined in Data.HashMap.Base | |
| Ix i => Traversable (Array i) | Since: base-2.1 |
| Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Traversable f => Traversable (Rec1 f) | Since: base-4.9.0.0 |
| Traversable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable Methods traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) # sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) # mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) # sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) # | |
| Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
| Traversable f => Traversable (Ap f) | Since: base-4.12.0.0 |
| Traversable f => Traversable (Alt f) | Since: base-4.12.0.0 |
| Traversable f => Traversable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except | |
| Traversable f => Traversable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error | |
| Traversable (Tagged s) | |
| Traversable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| (Traversable f, Traversable g) => Traversable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable f => Traversable (M1 i c f) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>mempty= xmempty<>x = xx(<>(y<>z) = (x<>y)<>zSemigrouplaw)mconcat=foldr'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
An associative operation
NOTE: This method is redundant and has the default
implementation since base-4.11.0.0.mappend = '(<>)'
Fold a list using the monoid.
For most types, the default definition for mconcat will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
Instances
| Monoid Ordering | Since: base-2.1 |
| Monoid () | Since: base-2.1 |
| Monoid ByteString | |
Defined in Data.ByteString.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid Builder | |
| Monoid More | |
| Monoid All | Since: base-2.1 |
| Monoid Any | Since: base-2.1 |
| Monoid Query | |
| Monoid Doc | |
| Monoid ByteArray | |
| Monoid [a] | Since: base-2.1 |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
| Monoid (IResult a) | |
| Monoid (Result a) | |
| Monoid (Parser a) | |
| Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
| Monoid (First a) | Since: base-2.1 |
| Monoid (Last a) | Since: base-2.1 |
| Monoid a => Monoid (Dual a) | Since: base-2.1 |
| Monoid (Endo a) | Since: base-2.1 |
| Num a => Monoid (Sum a) | Since: base-2.1 |
| Num a => Monoid (Product a) | Since: base-2.1 |
| Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
| Ord a => Monoid (Set a) | |
| Monoid (DList a) | |
| Monoid (Doc a) | |
| Monoid (PrimArray a) | Since: primitive-0.6.4.0 |
| Monoid (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods mempty :: SmallArray a # mappend :: SmallArray a -> SmallArray a -> SmallArray a # mconcat :: [SmallArray a] -> SmallArray a # | |
| (Hashable a, Eq a) => Monoid (HashSet a) | |
| Storable a => Monoid (Vector a) | |
| Prim a => Monoid (Vector a) | |
| Monoid (Vector a) | |
| Monoid (MergeSet a) | |
| Monoid b => Monoid (a -> b) | Since: base-2.1 |
| Monoid (U1 p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
| (Eq k, Hashable k) => Monoid (HashMap k v) | |
| Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
| Monoid (Parser i a) | |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
| Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
| (Semigroup a, Monoid a) => Monoid (Tagged s a) | |
| Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
| (Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
| Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
| Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
Instances
The character type Char is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char.
To convert a Char to or from the corresponding Int value defined
by Unicode, use toEnum and fromEnum from the
Enum class respectively (or equivalently ord and chr).
Instances
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
| Eq Double | Note that due to the presence of
Also note that
|
| Floating Double | Since: base-2.1 |
| Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Read Double | Since: base-2.1 |
| RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
| Lift Double | |
| Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
| Storable Double | Since: base-2.1 |
| FromField Double | int2, int4, float4, float8 (Uses attoparsec's |
Defined in Database.PostgreSQL.Simple.FromField Methods | |
| ToField Double | |
Defined in Database.PostgreSQL.Simple.ToField | |
| Prim Double | |
Defined in Data.Primitive.Types Methods alignment# :: Double -> Int# # indexByteArray# :: ByteArray# -> Int# -> Double # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Double#) # writeByteArray# :: MutableByteArray# s -> Int# -> Double -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Double -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Double # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Double#) # writeOffAddr# :: Addr# -> Int# -> Double -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Double -> State# s -> State# s # | |
| Unbox Double | |
Defined in Data.Vector.Unboxed.Base | |
| Vector Vector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Double -> m (Vector Double) # basicUnsafeThaw :: PrimMonad m => Vector Double -> m (Mutable Vector (PrimState m) Double) # basicLength :: Vector Double -> Int # basicUnsafeSlice :: Int -> Int -> Vector Double -> Vector Double # basicUnsafeIndexM :: Monad m => Vector Double -> Int -> m Double # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Double -> Vector Double -> m () # | |
| MVector MVector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Double -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Double -> MVector s Double # basicOverlaps :: MVector s Double -> MVector s Double -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Double) # basicInitialize :: PrimMonad m => MVector (PrimState m) Double -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Double -> m (MVector (PrimState m) Double) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Double -> Int -> m Double # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Double -> Int -> Double -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Double -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Double -> Double -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Double -> MVector (PrimState m) Double -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Double -> MVector (PrimState m) Double -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Double -> Int -> m (MVector (PrimState m) Double) # | |
| Generic1 (URec Double :: k -> Type) | |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
| Traversable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Eq (URec Double p) | Since: base-4.9.0.0 |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| Show (URec Double p) | Since: base-4.9.0.0 |
| Generic (URec Double p) | |
| newtype Vector Double | |
| data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| newtype MVector s Double | |
| type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1].
The exact range for a given implementation can be determined by using
minBound and maxBound from the Bounded class.
Instances
| Bounded Int | Since: base-2.1 |
| Enum Int | Since: base-2.1 |
| Eq Int | |
| Integral Int | Since: base-2.0.1 |
| Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
| Num Int | Since: base-2.1 |
| Ord Int | |
| Read Int | Since: base-2.1 |
| Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
| Show Int | Since: base-2.1 |
| Ix Int | Since: base-2.1 |
| Lift Int | |
| Hashable Int | |
Defined in Data.Hashable.Class | |
| Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
| FromField Int | int2, int4, and if compiled as 64-bit code, int8 as well. This library was compiled as 64-bit code. |
Defined in Database.PostgreSQL.Simple.FromField Methods fromField :: FieldParser Int # | |
| ToField Int | |
Defined in Database.PostgreSQL.Simple.ToField | |
| Prim Int | |
Defined in Data.Primitive.Types Methods alignment# :: Int -> Int# # indexByteArray# :: ByteArray# -> Int# -> Int # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int#) # writeByteArray# :: MutableByteArray# s -> Int# -> Int -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Int # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Int#) # writeOffAddr# :: Addr# -> Int# -> Int -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Int -> State# s -> State# s # | |
| ByteSource Int | |
Defined in Data.UUID.Types.Internal.Builder | |
| Unbox Int | |
Defined in Data.Vector.Unboxed.Base | |
| Vector Vector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Int -> m (Vector Int) # basicUnsafeThaw :: PrimMonad m => Vector Int -> m (Mutable Vector (PrimState m) Int) # basicLength :: Vector Int -> Int # basicUnsafeSlice :: Int -> Int -> Vector Int -> Vector Int # basicUnsafeIndexM :: Monad m => Vector Int -> Int -> m Int # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Int -> Vector Int -> m () # | |
| MVector MVector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Int -> MVector s Int # basicOverlaps :: MVector s Int -> MVector s Int -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Int) # basicInitialize :: PrimMonad m => MVector (PrimState m) Int -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Int -> m (MVector (PrimState m) Int) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Int -> Int -> m Int # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Int -> Int -> Int -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Int -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Int -> Int -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Int -> MVector (PrimState m) Int -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Int -> MVector (PrimState m) Int -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Int -> Int -> m (MVector (PrimState m) Int) # | |
| Generic1 (URec Int :: k -> Type) | |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
| Traversable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Eq (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| Show (URec Int p) | Since: base-4.9.0.0 |
| Generic (URec Int p) | |
| newtype Vector Int | |
| data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type ByteSink Int g | |
Defined in Data.UUID.Types.Internal.Builder type ByteSink Int g = Takes4Bytes g | |
| newtype MVector s Int | |
| type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
8-bit signed integer type
Instances
16-bit signed integer type
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| Monad Maybe | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Traversable Maybe | Since: base-2.1 |
| Alternative Maybe | Since: base-2.1 |
| MonadPlus Maybe | Since: base-2.1 |
| Eq1 Maybe | Since: base-4.9.0.0 |
| Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Show1 Maybe | Since: base-4.9.0.0 |
| MonadThrow Maybe | |
Defined in Control.Monad.Catch | |
| Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
| MonadBaseControl Maybe Maybe | |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Show a => Show (Maybe a) | Since: base-2.1 |
| Generic (Maybe a) | |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Lift a => Lift (Maybe a) | |
| Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
| SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| FromField a => FromRow (Maybe [a]) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b) => FromRow (Maybe (a, b)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b, FromField c) => FromRow (Maybe (a, b, c)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b, FromField c, FromField d) => FromRow (Maybe (a, b, c, d)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b, FromField c, FromField d, FromField e) => FromRow (Maybe (a, b, c, d, e)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b, FromField c, FromField d, FromField e, FromField f) => FromRow (Maybe (a, b, c, d, e, f)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b, FromField c, FromField d, FromField e, FromField f, FromField g) => FromRow (Maybe (a, b, c, d, e, f, g)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b, FromField c, FromField d, FromField e, FromField f, FromField g, FromField h) => FromRow (Maybe (a, b, c, d, e, f, g, h)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b, FromField c, FromField d, FromField e, FromField f, FromField g, FromField h, FromField i) => FromRow (Maybe (a, b, c, d, e, f, g, h, i)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| (FromField a, FromField b, FromField c, FromField d, FromField e, FromField f, FromField g, FromField h, FromField i, FromField j) => FromRow (Maybe (a, b, c, d, e, f, g, h, i, j)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
| FromField a => FromRow (Maybe (Only a)) | |
| FromField a => FromRow (Maybe (Vector a)) | |
| FromField a => FromField (Maybe a) | For dealing with null values. Compatible with any postgresql type
compatible with type |
Defined in Database.PostgreSQL.Simple.FromField Methods fromField :: FieldParser (Maybe a) # | |
| ToField a => ToField (Maybe a) | |
Defined in Database.PostgreSQL.Simple.ToField | |
| Generic1 Maybe | |
| SingI (Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI a2 => SingI (Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type StM Maybe a | |
Defined in Control.Monad.Trans.Control | |
| type Rep (Maybe a) | Since: base-4.6.0.0 |
| data Sing (b :: Maybe a) | |
| type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
| type Rep1 Maybe | Since: base-4.6.0.0 |
The Either type represents values with two possibilities: a value of
type is either Either a b or Left a.Right b
The Either type is sometimes used to represent a value which is
either correct or an error; by convention, the Left constructor is
used to hold an error value and the Right constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type is the type of values which can be either
a Either String IntString or an Int. The Left constructor can be used only on
Strings, and the Right constructor can be used only on Ints:
>>>let s = Left "foo" :: Either String Int>>>sLeft "foo">>>let n = Right 3 :: Either String Int>>>nRight 3>>>:type ss :: Either String Int>>>:type nn :: Either String Int
The fmap from our Functor instance will ignore Left values, but
will apply the supplied function to values contained in a Right:
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>fmap (*2) sLeft "foo">>>fmap (*2) nRight 6
The Monad instance for Either allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int from a Char, or fail.
>>>import Data.Char ( digitToInt, isDigit )>>>:{let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>:}
The following should work, since both '1' and '2' can be
parsed as Ints.
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleRight 3
But the following should fail overall, since the first operation where
we attempt to parse 'm' as an Int will fail:
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleLeft "parse error"
Instances
| Bifunctor Either | Since: base-4.8.0.0 |
| Eq2 Either | Since: base-4.9.0.0 |
| Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] # | |
| Show2 Either | Since: base-4.9.0.0 |
| Hashable2 Either | |
Defined in Data.Hashable.Class | |
| Monad (Either e) | Since: base-4.4.0.0 |
| Functor (Either a) | Since: base-3.0 |
| Applicative (Either e) | Since: base-3.0 |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
| Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] # | |
| Show a => Show1 (Either a) | Since: base-4.9.0.0 |
| e ~ SomeException => MonadThrow (Either e) | |
Defined in Control.Monad.Catch | |
| e ~ SomeException => MonadCatch (Either e) | Since: exceptions-0.8.3 |
| e ~ SomeException => MonadMask (Either e) | Since: exceptions-0.8.3 |
Defined in Control.Monad.Catch | |
| Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
| Generic1 (Either a :: Type -> Type) | |
| MonadBaseControl (Either e) (Either e) | |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| (Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| (Show a, Show b) => Show (Either a b) | Since: base-3.0 |
| Generic (Either a b) | |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| (Lift a, Lift b) => Lift (Either a b) | |
| (Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
| (FromField a, FromField b) => FromField (Either a b) | Compatible with both types. Conversions to type |
Defined in Database.PostgreSQL.Simple.FromField Methods fromField :: FieldParser (Either a b) # | |
| type StM (Either e) a | |
Defined in Control.Monad.Trans.Control | |
| type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1)) | |
| type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 b))) | |
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap.
The name of this operator is an allusion to $.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function
application lifted over a Functor.
Examples
Convert from a to a Maybe Int using Maybe Stringshow:
>>>show <$> NothingNothing>>>show <$> Just 3Just "3"
Convert from an to an Either Int IntEither IntString using show:
>>>show <$> Left 17Left 17>>>show <$> Right 17Right "17"
Double each element of a list:
>>>(*2) <$> [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>even <$> (2,2)(2,True)
const x is a unary function which evaluates to x for all inputs.
>>>const 42 "hello"42
>>>map (const 42) [0..3][42,42,42,42]
class Applicative f => Alternative (f :: Type -> Type) where #
A monoid on applicative functors.
If defined, some and many should be the least solutions
of the equations:
Methods
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 #
An associative binary operation
One or more.
Zero or more.
Instances
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>)
Instances
class Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left value or the Right value,
or both at the same time.
Formally, the class Bifunctor represents a bifunctor
from Hask -> Hask.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor by either defining bimap or by
defining both first and second.
If you supply bimap, you should ensure that:
bimapidid≡id
If you supply first and second, ensure:
firstid≡idsecondid≡id
If you supply both, you should also ensure:
bimapf g ≡firstf.secondg
These ensure by parametricity:
bimap(f.g) (h.i) ≡bimapf h.bimapg ifirst(f.g) ≡firstf.firstgsecond(f.g) ≡secondf.secondg
Since: base-4.8.0.0
Methods
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d #
Map over both arguments at the same time.
bimapf g ≡firstf.secondg
Examples
>>>bimap toUpper (+1) ('j', 3)('J',4)
>>>bimap toUpper (+1) (Left 'j')Left 'J'
>>>bimap toUpper (+1) (Right 3)Right 4
Instances
| Bifunctor Either | Since: base-4.8.0.0 |
| Bifunctor (,) | Since: base-4.8.0.0 |
| Bifunctor ((,,) x1) | Since: base-4.8.0.0 |
| Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
| Bifunctor (Tagged :: Type -> Type -> Type) | |
| Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 |
| Bifunctor ((,,,) x1 x2) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,) x1 x2 x3) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,,) x1 x2 x3 x4) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) | Since: base-4.8.0.0 |
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when.
replicateM_ :: Applicative m => Int -> m a -> m () #
Like replicateM, but discards the result.
replicateM :: Applicative m => Int -> m a -> m [a] #
performs the action replicateM n actn times,
gathering the results.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () #
Like foldM, but discards the result.
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
The foldM function is analogous to foldl, except that its result is
encapsulated in a monad. Note that foldM works from left-to-right over
the list arguments. This could be an issue where ( and the `folded
function' are not commutative.>>)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #
mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) #
The mapAndUnzipM function maps its first argument over a list, returning
the result as a pair of lists. This function is mainly used with complicated
data structures or a state-transforming monad.
forever :: Applicative f => f a -> f b #
Repeat an action indefinitely.
Examples
A common use of forever is to process input from network sockets,
Handles, and channels
(e.g. MVar and
Chan).
For example, here is how we might implement an echo
server, using
forever both to listen for client connections on a network socket
and to echo client input on client connection handles:
echoServer :: Socket -> IO () echoServer socket =forever$ do client <- accept socketforkFinally(echo client) (\_ -> hClose client) where echo :: Handle -> IO () echo client =forever$ hGetLine client >>= hPutStrLn client
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter function.
foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m #
fmapDefault :: Traversable t => (a -> b) -> t a -> t b #
This function may be used as a value for fmap in a Functor
instance, provided that traverse is defined. (Using
fmapDefault with a Traversable instance defined only by
sequenceA will result in infinite recursion.)
fmapDefaultf ≡runIdentity.traverse(Identity. f)
mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) #
mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) #
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
newtype WrappedMonad (m :: Type -> Type) a #
Constructors
| WrapMonad | |
Fields
| |
Instances
newtype WrappedArrow (a :: Type -> Type -> Type) b c #
Constructors
| WrapArrow | |
Fields
| |
Instances
| Generic1 (WrappedArrow a b :: Type -> Type) | |
Defined in Control.Applicative Associated Types type Rep1 (WrappedArrow a b) :: k -> Type # Methods from1 :: WrappedArrow a b a0 -> Rep1 (WrappedArrow a b) a0 # to1 :: Rep1 (WrappedArrow a b) a0 -> WrappedArrow a b a0 # | |
| Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| (ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods empty :: WrappedArrow a b a0 # (<|>) :: WrappedArrow a b a0 -> WrappedArrow a b a0 -> WrappedArrow a b a0 # some :: WrappedArrow a b a0 -> WrappedArrow a b [a0] # many :: WrappedArrow a b a0 -> WrappedArrow a b [a0] # | |
| Generic (WrappedArrow a b c) | |
Defined in Control.Applicative Associated Types type Rep (WrappedArrow a b c) :: Type -> Type # Methods from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x # to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c # | |
| type Rep1 (WrappedArrow a b :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Control.Applicative type Rep1 (WrappedArrow a b :: Type -> Type) = D1 (MetaData "WrappedArrow" "Control.Applicative" "base" True) (C1 (MetaCons "WrapArrow" PrefixI True) (S1 (MetaSel (Just "unwrapArrow") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 (a b)))) | |
| type Rep (WrappedArrow a b c) | Since: base-4.7.0.0 |
Defined in Control.Applicative type Rep (WrappedArrow a b c) = D1 (MetaData "WrappedArrow" "Control.Applicative" "base" True) (C1 (MetaCons "WrapArrow" PrefixI True) (S1 (MetaSel (Just "unwrapArrow") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (a b c)))) | |
Lists, but with an Applicative functor based on zipping.
Constructors
| ZipList | |
Fields
| |
Instances
| Functor ZipList | Since: base-2.1 |
| Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN
= 'ZipList' (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Traversable ZipList | Since: base-4.9.0.0 |
| Alternative ZipList | Since: base-4.11.0.0 |
| Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
| Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
| Read a => Read (ZipList a) | Since: base-4.7.0.0 |
| Show a => Show (ZipList a) | Since: base-4.7.0.0 |
| Generic (ZipList a) | |
| Generic1 ZipList | |
| type Rep (ZipList a) | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
| type Rep1 ZipList | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
newtype Const a (b :: k) :: forall k. Type -> k -> Type #
The Const functor.
Instances
| Generic1 (Const a :: k -> Type) | |
| Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
| Eq2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
| Ord2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] # | |
| Show2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
| Hashable2 (Const :: Type -> Type -> Type) | |
Defined in Data.Hashable.Class | |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
| Eq a => Eq1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
| Ord a => Ord1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read a => Read1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] # | |
| Show a => Show1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
| Hashable a => Hashable1 (Const a :: Type -> Type) | |
Defined in Data.Hashable.Class | |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |
| Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
| Floating a => Floating (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
| Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
| (Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
| Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
| RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |
| RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
| Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int | |
| IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # | |
| Generic (Const a b) | |
| Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| Hashable a => Hashable (Const a b) | |
Defined in Data.Hashable.Class | |
| Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |
| FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |
| Prim a => Prim (Const a b) | Since: primitive-0.6.5.0 |
Defined in Data.Primitive.Types Methods sizeOf# :: Const a b -> Int# # alignment# :: Const a b -> Int# # indexByteArray# :: ByteArray# -> Int# -> Const a b # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Const a b#) # writeByteArray# :: MutableByteArray# s -> Int# -> Const a b -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Const a b -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Const a b # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Const a b#) # writeOffAddr# :: Addr# -> Int# -> Const a b -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Const a b -> State# s -> State# s # | |
| type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The least element of a non-empty structure with respect to the given comparison function.
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The largest element of a non-empty structure with respect to the given comparison function.
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence.
As of base 4.8.0.0, sequence_ is just sequenceA_, specialized
to Monad.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
Evaluate each action in the structure from left to right, and
ignore the results. For a version that doesn't ignore the results
see sequenceA.
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an action, evaluate these
actions from left to right, and ignore the results. For a version
that doesn't ignore the results see traverse.
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
Monadic fold over the elements of a structure, associating to the left, i.e. from left to right.
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b #
Monadic fold over the elements of a structure, associating to the right, i.e. from right to left.
readMaybe :: Read a => String -> Maybe a #
Parse a string using the Read instance.
Succeeds if there is exactly one valid result.
>>>readMaybe "123" :: Maybe IntJust 123
>>>readMaybe "hello" :: Maybe IntNothing
Since: base-4.6.0.0
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either type.
If the value is , apply the first function to Left aa;
if it is , apply the second function to Right bb.
Examples
We create two values of type , one using the
Either String IntLeft constructor and another using the Right constructor. Then
we apply "either" the length function (if we have a String)
or the "times-two" function (if we have an Int):
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>either length (*2) s3>>>either length (*2) n6
Case analysis for the Bool type. evaluates to bool x y px
when p is False, and evaluates to y when p is True.
This is equivalent to if p then y else x; that is, one can
think of it as an if-then-else construct with its arguments
reordered.
Examples
Basic usage:
>>>bool "foo" "bar" True"bar">>>bool "foo" "bar" False"foo"
Confirm that and bool x y pif p then y else x are
equivalent:
>>>let p = True; x = "bar"; y = "foo">>>bool x y p == if p then y else xTrue>>>let p = False>>>bool x y p == if p then y else xTrue
Since: base-4.7.0.0
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void valueIO action.
Examples
Replace the contents of a with unit:Maybe Int
>>>void NothingNothing>>>void (Just 3)Just ()
Replace the contents of an with unit,
resulting in an Either Int Int:Either Int '()'
>>>void (Left 8675309)Left 8675309>>>void (Right 8675309)Right ()
Replace every element of a list with unit:
>>>void [1,2,3][(),(),()]
Replace the second element of a pair with unit:
>>>void (1,2)(1,())
Discard the result of an IO action:
>>>mapM print [1,2]1 2 [(),()]>>>void $ mapM print [1,2]1 2
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$.
Examples
Replace the contents of a with a constant Maybe IntString:
>>>Nothing $> "foo"Nothing>>>Just 90210 $> "foo"Just "foo"
Replace the contents of an with a constant
Either Int IntString, resulting in an :Either Int String
>>>Left 8675309 $> "foo"Left 8675309>>>Right 8675309 $> "foo"Right "foo"
Replace each element of a list with a constant String:
>>>[1,2,3] $> "foo"["foo","foo","foo"]
Replace the second element of a pair with a constant String:
>>>(1,2) $> "foo"(1,"foo")
Since: base-4.7.0.0
fromMaybe :: a -> Maybe a -> a #
The fromMaybe function takes a default value and and Maybe
value. If the Maybe is Nothing, it returns the default values;
otherwise, it returns the value contained in the Maybe.
Examples
Basic usage:
>>>fromMaybe "" (Just "Hello, World!")"Hello, World!"
>>>fromMaybe "" Nothing""
Read an integer from a string using readMaybe. If we fail to
parse an integer, we want to return 0 by default:
>>>import Text.Read ( readMaybe )>>>fromMaybe 0 (readMaybe "5")5>>>fromMaybe 0 (readMaybe "")0
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe function takes a default value, a function, and a Maybe
value. If the Maybe value is Nothing, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just and returns the result.
Examples
Basic usage:
>>>maybe False odd (Just 3)True
>>>maybe False odd NothingFalse
Read an integer from a string using readMaybe. If we succeed,
return twice the integer; that is, apply (*2) to it. If instead
we fail to parse an integer, return 0 by default:
>>>import Text.Read ( readMaybe )>>>maybe 0 (*2) (readMaybe "5")10>>>maybe 0 (*2) (readMaybe "")0
Apply show to a Maybe Int. If we have Just n, we want to show
the underlying Int n. But if we have Nothing, we return the
empty string instead of (for example) "Nothing":
>>>maybe "" show (Just 5)"5">>>maybe "" show Nothing""
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip ff.
>>>flip (++) "hello" "world""worldhello"
liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).
liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).
liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging if the Boolean value debug
is True, and otherwise do nothing.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=, but with the arguments interchanged.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
liftA :: Applicative f => (a -> b) -> f a -> f b #
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
A variant of <*> with the arguments reversed.
error :: HasCallStack => [Char] -> a #
error stops execution and displays an error message.
hoistEitherT :: (forall b. m b -> n b) -> EitherT x m a -> EitherT x n a #
Hoist
hoistMaybe :: Monad m => x -> Maybe a -> EitherT x m a #
Hoist a 'Maybe a' into a 'Right a'
secondEitherT :: Functor m => (a -> b) -> EitherT x m a -> EitherT x m b #
Map the Right unwrapped computation using the given function.
firstEitherT :: Functor m => (x -> y) -> EitherT x m a -> EitherT y m a #
Map the Left unwrapped computation using the given function.
bimapEitherT :: Functor m => (x -> y) -> (a -> b) -> EitherT x m a -> EitherT y m b #
Map the unwrapped computation using the given function.
newEitherT :: m (Either x a) -> EitherT x m a #
Constructor for computations in the either monad.
(The inverse of runEitherT).
runEitherT :: EitherT x m a -> m (Either x a) #
Extractor for computations in the either monad.
(The inverse of newEitherT).
fromMaybeM :: Applicative f => f a -> Maybe a -> f a Source #