{-# LANGUAGE TypeSynonymInstances, FlexibleInstances, OverloadedStrings #-}
module Sound.Tidal.UI where
import Prelude hiding ((<*), (*>))
import Data.Char (digitToInt, isDigit, ord)
import Data.Bits (testBit, Bits, xor, shiftL, shiftR)
import Data.Ratio ((%), Ratio)
import Data.Fixed (mod')
import Data.List (sort, sortOn, findIndices, elemIndex, groupBy, transpose, intercalate, findIndex)
import Data.Maybe (isJust, fromJust, fromMaybe, mapMaybe)
import qualified Data.Text as T
import qualified Data.Map.Strict as Map
import Data.Bool (bool)
import Sound.Tidal.Bjorklund (bjorklund)
import Sound.Tidal.Core
import qualified Sound.Tidal.Params as P
import Sound.Tidal.Pattern
import Sound.Tidal.Utils
xorwise :: Int -> Int
xorwise :: Int -> Int
xorwise Int
x =
let a :: Int
a = forall a. Bits a => a -> a -> a
xor (forall a. Bits a => a -> Int -> a
shiftL Int
x Int
13) Int
x
b :: Int
b = forall a. Bits a => a -> a -> a
xor (forall a. Bits a => a -> Int -> a
shiftR Int
a Int
17) Int
a
in forall a. Bits a => a -> a -> a
xor (forall a. Bits a => a -> Int -> a
shiftL Int
b Int
5) Int
b
timeToIntSeed :: RealFrac a => a -> Int
timeToIntSeed :: forall a. RealFrac a => a -> Int
timeToIntSeed = Int -> Int
xorwise forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
truncate forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
* a
536870912) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> b
snd forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a b. (RealFrac a, Integral b) => a -> (b, a)
properFraction :: (RealFrac a => a -> (Int,a))) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Fractional a => a -> a -> a
/ a
300)
intSeedToRand :: Fractional a => Int -> a
intSeedToRand :: forall a. Fractional a => Int -> a
intSeedToRand = (forall a. Fractional a => a -> a -> a
/ a
536870912) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Real a, Fractional b) => a -> b
realToFrac forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Integral a => a -> a -> a
`mod` Int
536870912)
timeToRand :: (RealFrac a, Fractional b) => a -> b
timeToRand :: forall a b. (RealFrac a, Fractional b) => a -> b
timeToRand = forall a. Fractional a => Int -> a
intSeedToRand forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. RealFrac a => a -> Int
timeToIntSeed
timeToRands :: (RealFrac a, Fractional b) => a -> Int -> [b]
timeToRands :: forall a b. (RealFrac a, Fractional b) => a -> Int -> [b]
timeToRands a
t Int
n = forall a. Fractional a => Int -> Int -> [a]
timeToRands' (forall a. RealFrac a => a -> Int
timeToIntSeed a
t) Int
n
timeToRands' :: Fractional a => Int -> Int -> [a]
timeToRands' :: forall a. Fractional a => Int -> Int -> [a]
timeToRands' Int
seed Int
n
| Int
n forall a. Ord a => a -> a -> Bool
<= Int
0 = []
| Bool
otherwise = (forall a. Fractional a => Int -> a
intSeedToRand Int
seed) forall a. a -> [a] -> [a]
: (forall a. Fractional a => Int -> Int -> [a]
timeToRands' (Int -> Int
xorwise Int
seed) (Int
nforall a. Num a => a -> a -> a
-Int
1))
rand :: Fractional a => Pattern a
rand :: forall a. Fractional a => Pattern a
rand = forall a. (State -> [Event a]) -> Pattern a
Pattern (\(State a :: Arc
a@(Arc Time
s Time
e) ValueMap
_) -> [forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event ([((Int, Int), (Int, Int))] -> Context
Context []) forall a. Maybe a
Nothing Arc
a (forall a b. (Real a, Fractional b) => a -> b
realToFrac forall a b. (a -> b) -> a -> b
$ (forall a b. (RealFrac a, Fractional b) => a -> b
timeToRand ((Time
e forall a. Num a => a -> a -> a
+ Time
s)forall a. Fractional a => a -> a -> a
/Time
2) :: Double))])
brand :: Pattern Bool
brand :: Pattern Bool
brand = Double -> Pattern Bool
_brandBy Double
0.5
brandBy :: Pattern Double -> Pattern Bool
brandBy :: Pattern Double -> Pattern Bool
brandBy Pattern Double
probpat = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Double
prob -> Double -> Pattern Bool
_brandBy Double
prob) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
probpat
_brandBy :: Double -> Pattern Bool
_brandBy :: Double -> Pattern Bool
_brandBy Double
prob = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. Ord a => a -> a -> Bool
< Double
prob) forall a. Fractional a => Pattern a
rand
irand :: Num a => Pattern Int -> Pattern a
irand :: forall a. Num a => Pattern Int -> Pattern a
irand = (forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall a. Num a => Int -> Pattern a
_irand)
_irand :: Num a => Int -> Pattern a
_irand :: forall a. Num a => Int -> Pattern a
_irand Int
i = forall a b. (Integral a, Num b) => a -> b
fromIntegral forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a b. (RealFrac a, Integral b) => a -> b
floor :: Double -> Int) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
* forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Fractional a => Pattern a
rand
perlinWith :: Fractional a => Pattern Double -> Pattern a
perlinWith :: forall a. Fractional a => Pattern Double -> Pattern a
perlinWith Pattern Double
p = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (Real a, Fractional b) => a -> b
realToFrac forall a b. (a -> b) -> a -> b
$ (forall {a}. Floating a => a -> a -> a -> a
interp) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Pattern Double
pforall a. Num a => a -> a -> a
-Pattern Double
pa) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall a b. (RealFrac a, Fractional b) => a -> b
timeToRand forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
pa) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall a b. (RealFrac a, Fractional b) => a -> b
timeToRand forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
pb) where
pa :: Pattern Double
pa = (forall a b. (Integral a, Num b) => a -> b
fromIntegral :: Int -> Double) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
floor forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
p
pb :: Pattern Double
pb = (forall a b. (Integral a, Num b) => a -> b
fromIntegral :: Int -> Double) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
+Int
1) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
floor forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
p
interp :: a -> a -> a -> a
interp a
x a
a a
b = a
a forall a. Num a => a -> a -> a
+ forall {a}. Floating a => a -> a
smootherStep a
x forall a. Num a => a -> a -> a
* (a
bforall a. Num a => a -> a -> a
-a
a)
smootherStep :: a -> a
smootherStep a
x = a
6.0 forall a. Num a => a -> a -> a
* a
xforall a. Floating a => a -> a -> a
**a
5 forall a. Num a => a -> a -> a
- a
15.0 forall a. Num a => a -> a -> a
* a
xforall a. Floating a => a -> a -> a
**a
4 forall a. Num a => a -> a -> a
+ a
10.0 forall a. Num a => a -> a -> a
* a
xforall a. Floating a => a -> a -> a
**a
3
perlin :: Fractional a => Pattern a
perlin :: forall a. Fractional a => Pattern a
perlin = forall a. Fractional a => Pattern Double -> Pattern a
perlinWith (forall a. (Time -> a) -> Pattern a
sig forall a. Fractional a => Time -> a
fromRational)
perlin2With :: Pattern Double -> Pattern Double -> Pattern Double
perlin2With :: Pattern Double -> Pattern Double -> Pattern Double
perlin2With Pattern Double
x Pattern Double
y = (forall a. Fractional a => a -> a -> a
/Pattern Double
2) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
+Pattern Double
1) forall a b. (a -> b) -> a -> b
$ forall {a}. Floating a => a -> a -> a -> a -> a -> a -> a
interp2 forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
xfrac forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Pattern Double
yfrac forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Pattern Double
dota forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Pattern Double
dotb forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Pattern Double
dotc forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Pattern Double
dotd where
fl :: Pattern Double -> Pattern Double
fl = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((forall a b. (Integral a, Num b) => a -> b
fromIntegral :: Int -> Double) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
floor)
ce :: Pattern Double -> Pattern Double
ce = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((forall a b. (Integral a, Num b) => a -> b
fromIntegral :: Int -> Double) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
+Int
1) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
floor)
xfrac :: Pattern Double
xfrac = Pattern Double
x forall a. Num a => a -> a -> a
- Pattern Double -> Pattern Double
fl Pattern Double
x
yfrac :: Pattern Double
yfrac = Pattern Double
y forall a. Num a => a -> a -> a
- Pattern Double -> Pattern Double
fl Pattern Double
y
randAngle :: a -> a -> a
randAngle a
a a
b = a
2 forall a. Num a => a -> a -> a
* forall a. Floating a => a
pi forall a. Num a => a -> a -> a
* forall a b. (RealFrac a, Fractional b) => a -> b
timeToRand (a
a forall a. Num a => a -> a -> a
+ a
0.0001 forall a. Num a => a -> a -> a
* a
b)
pcos :: f a -> f a -> f b
pcos f a
x' f a
y' = forall {a}. Floating a => a -> a
cos forall a b. (a -> b) -> a -> b
$ forall {a} {a}. (Floating a, RealFrac a) => a -> a -> a
randAngle forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
x' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f a
y'
psin :: f a -> f a -> f b
psin f a
x' f a
y' = forall {a}. Floating a => a -> a
sin forall a b. (a -> b) -> a -> b
$ forall {a} {a}. (Floating a, RealFrac a) => a -> a -> a
randAngle forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
x' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f a
y'
dota :: Pattern Double
dota = forall {f :: * -> *} {b} {a}.
(Applicative f, Floating b, Floating (f b), RealFrac a) =>
f a -> f a -> f b
pcos (Pattern Double -> Pattern Double
fl Pattern Double
x) (Pattern Double -> Pattern Double
fl Pattern Double
y) forall a. Num a => a -> a -> a
* Pattern Double
xfrac forall a. Num a => a -> a -> a
+ forall {f :: * -> *} {b} {a}.
(Applicative f, Floating b, Floating (f b), RealFrac a) =>
f a -> f a -> f b
psin (Pattern Double -> Pattern Double
fl Pattern Double
x) (Pattern Double -> Pattern Double
fl Pattern Double
y) forall a. Num a => a -> a -> a
* Pattern Double
yfrac
dotb :: Pattern Double
dotb = forall {f :: * -> *} {b} {a}.
(Applicative f, Floating b, Floating (f b), RealFrac a) =>
f a -> f a -> f b
pcos (Pattern Double -> Pattern Double
ce Pattern Double
x) (Pattern Double -> Pattern Double
fl Pattern Double
y) forall a. Num a => a -> a -> a
* (Pattern Double
xfrac forall a. Num a => a -> a -> a
- Pattern Double
1) forall a. Num a => a -> a -> a
+ forall {f :: * -> *} {b} {a}.
(Applicative f, Floating b, Floating (f b), RealFrac a) =>
f a -> f a -> f b
psin (Pattern Double -> Pattern Double
ce Pattern Double
x) (Pattern Double -> Pattern Double
fl Pattern Double
y) forall a. Num a => a -> a -> a
* Pattern Double
yfrac
dotc :: Pattern Double
dotc = forall {f :: * -> *} {b} {a}.
(Applicative f, Floating b, Floating (f b), RealFrac a) =>
f a -> f a -> f b
pcos (Pattern Double -> Pattern Double
fl Pattern Double
x) (Pattern Double -> Pattern Double
ce Pattern Double
y) forall a. Num a => a -> a -> a
* Pattern Double
xfrac forall a. Num a => a -> a -> a
+ forall {f :: * -> *} {b} {a}.
(Applicative f, Floating b, Floating (f b), RealFrac a) =>
f a -> f a -> f b
psin (Pattern Double -> Pattern Double
fl Pattern Double
x) (Pattern Double -> Pattern Double
ce Pattern Double
y) forall a. Num a => a -> a -> a
* (Pattern Double
yfrac forall a. Num a => a -> a -> a
- Pattern Double
1)
dotd :: Pattern Double
dotd = forall {f :: * -> *} {b} {a}.
(Applicative f, Floating b, Floating (f b), RealFrac a) =>
f a -> f a -> f b
pcos (Pattern Double -> Pattern Double
ce Pattern Double
x) (Pattern Double -> Pattern Double
ce Pattern Double
y) forall a. Num a => a -> a -> a
* (Pattern Double
xfrac forall a. Num a => a -> a -> a
- Pattern Double
1) forall a. Num a => a -> a -> a
+ forall {f :: * -> *} {b} {a}.
(Applicative f, Floating b, Floating (f b), RealFrac a) =>
f a -> f a -> f b
psin (Pattern Double -> Pattern Double
ce Pattern Double
x) (Pattern Double -> Pattern Double
ce Pattern Double
y) forall a. Num a => a -> a -> a
* (Pattern Double
yfrac forall a. Num a => a -> a -> a
- Pattern Double
1)
interp2 :: a -> a -> a -> a -> a -> a -> a
interp2 a
x' a
y' a
a a
b a
c a
d = (a
1.0 forall a. Num a => a -> a -> a
- forall {a}. Floating a => a -> a
s a
x') forall a. Num a => a -> a -> a
* (a
1.0 forall a. Num a => a -> a -> a
- forall {a}. Floating a => a -> a
s a
y') forall a. Num a => a -> a -> a
* a
a forall a. Num a => a -> a -> a
+ forall {a}. Floating a => a -> a
s a
x' forall a. Num a => a -> a -> a
* (a
1.0 forall a. Num a => a -> a -> a
- forall {a}. Floating a => a -> a
s a
y') forall a. Num a => a -> a -> a
* a
b
forall a. Num a => a -> a -> a
+ (a
1.0 forall a. Num a => a -> a -> a
- forall {a}. Floating a => a -> a
s a
x') forall a. Num a => a -> a -> a
* forall {a}. Floating a => a -> a
s a
y' forall a. Num a => a -> a -> a
* a
c forall a. Num a => a -> a -> a
+ forall {a}. Floating a => a -> a
s a
x' forall a. Num a => a -> a -> a
* forall {a}. Floating a => a -> a
s a
y' forall a. Num a => a -> a -> a
* a
d
s :: a -> a
s a
x' = a
6.0 forall a. Num a => a -> a -> a
* a
x'forall a. Floating a => a -> a -> a
**a
5 forall a. Num a => a -> a -> a
- a
15.0 forall a. Num a => a -> a -> a
* a
x'forall a. Floating a => a -> a -> a
**a
4 forall a. Num a => a -> a -> a
+ a
10.0 forall a. Num a => a -> a -> a
* a
x'forall a. Floating a => a -> a -> a
**a
3
perlin2 :: Pattern Double -> Pattern Double
perlin2 :: Pattern Double -> Pattern Double
perlin2 = Pattern Double -> Pattern Double -> Pattern Double
perlin2With (forall a. (Time -> a) -> Pattern a
sig forall a. Fractional a => Time -> a
fromRational)
choose :: [a] -> Pattern a
choose :: forall a. [a] -> Pattern a
choose = forall a. Pattern Double -> [a] -> Pattern a
chooseBy forall a. Fractional a => Pattern a
rand
chooseBy :: Pattern Double -> [a] -> Pattern a
chooseBy :: forall a. Pattern Double -> [a] -> Pattern a
chooseBy Pattern Double
_ [] = forall a. Pattern a
silence
chooseBy Pattern Double
f [a]
xs = ([a]
xs forall a. [a] -> Int -> a
!!!) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
floor forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Num a => Pattern a -> Pattern a -> Pattern a -> Pattern a
range Pattern Double
0 (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
xs) Pattern Double
f
wchoose :: [(a,Double)] -> Pattern a
wchoose :: forall a. [(a, Double)] -> Pattern a
wchoose = forall a. Pattern Double -> [(a, Double)] -> Pattern a
wchooseBy forall a. Fractional a => Pattern a
rand
wchooseBy :: Pattern Double -> [(a,Double)] -> Pattern a
wchooseBy :: forall a. Pattern Double -> [(a, Double)] -> Pattern a
wchooseBy Pattern Double
pat [(a, Double)]
pairs = Double -> a
match forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
pat
where
match :: Double -> a
match Double
r = [a]
values forall a. [a] -> Int -> a
!! forall a. [a] -> a
head (forall a. (a -> Bool) -> [a] -> [Int]
findIndices (forall a. Ord a => a -> a -> Bool
> (Double
rforall a. Num a => a -> a -> a
*Double
total)) [Double]
cweights)
cweights :: [Double]
cweights = forall a. (a -> a -> a) -> [a] -> [a]
scanl1 forall a. Num a => a -> a -> a
(+) (forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd [(a, Double)]
pairs)
values :: [a]
values = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst [(a, Double)]
pairs
total :: Double
total = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd [(a, Double)]
pairs
degradeBy :: Pattern Double -> Pattern a -> Pattern a
degradeBy :: forall a. Pattern Double -> Pattern a -> Pattern a
degradeBy = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Double -> Pattern a -> Pattern a
_degradeBy
_degradeBy :: Double -> Pattern a -> Pattern a
_degradeBy :: forall a. Double -> Pattern a -> Pattern a
_degradeBy = forall a. Pattern Double -> Double -> Pattern a -> Pattern a
_degradeByUsing forall a. Fractional a => Pattern a
rand
_degradeByUsing :: Pattern Double -> Double -> Pattern a -> Pattern a
_degradeByUsing :: forall a. Pattern Double -> Double -> Pattern a -> Pattern a
_degradeByUsing Pattern Double
prand Double
x Pattern a
p = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> Pattern a -> Pattern a
filterValues ((forall a. Ord a => a -> a -> Bool
> Double
x) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> b
snd) forall a b. (a -> b) -> a -> b
$ (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a
p forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
<* Pattern Double
prand
unDegradeBy :: Pattern Double -> Pattern a -> Pattern a
unDegradeBy :: forall a. Pattern Double -> Pattern a -> Pattern a
unDegradeBy = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Double -> Pattern a -> Pattern a
_unDegradeBy
_unDegradeBy :: Double -> Pattern a -> Pattern a
_unDegradeBy :: forall a. Double -> Pattern a -> Pattern a
_unDegradeBy Double
x Pattern a
p = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> Pattern a -> Pattern a
filterValues ((forall a. Ord a => a -> a -> Bool
<= Double
x) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> b
snd) forall a b. (a -> b) -> a -> b
$ (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a
p forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
<* forall a. Fractional a => Pattern a
rand
degradeOverBy :: Int -> Pattern Double -> Pattern a -> Pattern a
degradeOverBy :: forall a. Int -> Pattern Double -> Pattern a -> Pattern a
degradeOverBy Int
i Pattern Double
tx Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
unwrap forall a b. (a -> b) -> a -> b
$ (\Double
x -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> Pattern a -> Pattern a
filterValues ((forall a. Ord a => a -> a -> Bool
> Double
x) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> b
snd) forall a b. (a -> b) -> a -> b
$ (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a
p forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
<* forall a. Int -> Pattern a -> Pattern a
fastRepeatCycles Int
i forall a. Fractional a => Pattern a
rand) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Pattern Time -> Pattern a -> Pattern a
slow (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i) Pattern Double
tx
sometimesBy :: Pattern Double -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy :: forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy Pattern Double
x Pattern a -> Pattern a
f Pattern a
pat = forall a. Pattern a -> Pattern a -> Pattern a
overlay (forall a. Pattern Double -> Pattern a -> Pattern a
degradeBy Pattern Double
x Pattern a
pat) (Pattern a -> Pattern a
f forall a b. (a -> b) -> a -> b
$ forall a. Pattern Double -> Pattern a -> Pattern a
unDegradeBy Pattern Double
x Pattern a
pat)
sometimesBy' :: Pattern Double -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy' :: forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy' Pattern Double
x Pattern a -> Pattern a
f Pattern a
pat = forall a. Pattern a -> Pattern a -> Pattern a
overlay (forall a. Pattern Double -> Pattern a -> Pattern a
degradeBy Pattern Double
x Pattern a
pat) (forall a. Pattern Double -> Pattern a -> Pattern a
unDegradeBy Pattern Double
x forall a b. (a -> b) -> a -> b
$ Pattern a -> Pattern a
f Pattern a
pat)
sometimes :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimes :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimes = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy Pattern Double
0.5
sometimes' :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimes' :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimes' = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy' Pattern Double
0.5
often :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
often :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
often = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy Pattern Double
0.75
often' :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
often' :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
often' = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy' Pattern Double
0.75
rarely :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
rarely :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
rarely = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy Pattern Double
0.25
rarely' :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
rarely' :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
rarely' = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy' Pattern Double
0.25
almostNever :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
almostNever :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
almostNever = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy Pattern Double
0.1
almostNever' :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
almostNever' :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
almostNever' = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy Pattern Double
0.1
almostAlways :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
almostAlways :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
almostAlways = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy Pattern Double
0.9
almostAlways' :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
almostAlways' :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
almostAlways' = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
sometimesBy' Pattern Double
0.9
never :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
never :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
never = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. a -> b -> a
const
always :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
always :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
always = forall a. a -> a
id
someCyclesBy :: Pattern Double -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
someCyclesBy :: forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
someCyclesBy Pattern Double
pd Pattern a -> Pattern a
f Pattern a
pat = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Double
d -> forall a.
Double -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_someCyclesBy Double
d Pattern a -> Pattern a
f Pattern a
pat) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
pd
_someCyclesBy :: Double -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_someCyclesBy :: forall a.
Double -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_someCyclesBy Double
x = forall a.
(Int -> Bool) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
when forall {a}. Integral a => a -> Bool
test
where test :: a -> Bool
test a
c = forall a b. (RealFrac a, Fractional b) => a -> b
timeToRand (forall a b. (Integral a, Num b) => a -> b
fromIntegral a
c :: Double) forall a. Ord a => a -> a -> Bool
< Double
x
somecyclesBy :: Pattern Double -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
somecyclesBy :: forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
somecyclesBy = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
someCyclesBy
someCycles :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
someCycles :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
someCycles = forall a.
Pattern Double
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
someCyclesBy Pattern Double
0.5
somecycles :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
somecycles :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
somecycles = forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
someCycles
degrade :: Pattern a -> Pattern a
degrade :: forall a. Pattern a -> Pattern a
degrade = forall a. Double -> Pattern a -> Pattern a
_degradeBy Double
0.5
brak :: Pattern a -> Pattern a
brak :: forall a. Pattern a -> Pattern a
brak = forall a.
(Int -> Bool) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
when ((forall a. Eq a => a -> a -> Bool
== Int
1) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Integral a => a -> a -> a
`mod` Int
2)) (((Integer
1forall a. Integral a => a -> a -> Ratio a
%Integer
4) forall a. Time -> Pattern a -> Pattern a
`rotR`) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (\Pattern a
x -> forall a. [Pattern a] -> Pattern a
fastcat [Pattern a
x, forall a. Pattern a
silence]))
iter :: Pattern Int -> Pattern c -> Pattern c
iter :: forall c. Pattern Int -> Pattern c -> Pattern c
iter = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Int -> Pattern a -> Pattern a
_iter
_iter :: Int -> Pattern a -> Pattern a
_iter :: forall a. Int -> Pattern a -> Pattern a
_iter Int
n Pattern a
p = forall a. [Pattern a] -> Pattern a
slowcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\Int
i -> (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i forall a. Integral a => a -> a -> Ratio a
% forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n) forall a. Time -> Pattern a -> Pattern a
`rotL` Pattern a
p) [Int
0 .. (Int
nforall a. Num a => a -> a -> a
-Int
1)]
iter' :: Pattern Int -> Pattern c -> Pattern c
iter' :: forall c. Pattern Int -> Pattern c -> Pattern c
iter' = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Int -> Pattern a -> Pattern a
_iter'
_iter' :: Int -> Pattern a -> Pattern a
_iter' :: forall a. Int -> Pattern a -> Pattern a
_iter' Int
n Pattern a
p = forall a. [Pattern a] -> Pattern a
slowcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\Int
i -> (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i forall a. Integral a => a -> a -> Ratio a
% forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n) forall a. Time -> Pattern a -> Pattern a
`rotR` Pattern a
p) [Int
0 .. (Int
nforall a. Num a => a -> a -> a
-Int
1)]
palindrome :: Pattern a -> Pattern a
palindrome :: forall a. Pattern a -> Pattern a
palindrome Pattern a
p = forall a. Pattern a -> Pattern a -> Pattern a
slowAppend Pattern a
p (forall a. Pattern a -> Pattern a
rev Pattern a
p)
seqP :: [(Time, Time, Pattern a)] -> Pattern a
seqP :: forall a. [(Time, Time, Pattern a)] -> Pattern a
seqP [(Time, Time, Pattern a)]
ps = forall a. [Pattern a] -> Pattern a
stack forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\(Time
s, Time
e, Pattern a
p) -> forall a. Time -> Time -> Pattern a -> Pattern a
playFor Time
s Time
e (Time -> Time
sam Time
s forall a. Time -> Pattern a -> Pattern a
`rotR` Pattern a
p)) [(Time, Time, Pattern a)]
ps
fadeOut :: Time -> Pattern a -> Pattern a
fadeOut :: forall a. Time -> Pattern a -> Pattern a
fadeOut Time
dur Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (forall a. Double -> Pattern a -> Pattern a
`_degradeBy` Pattern a
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Time -> Pattern a -> Pattern a
_slow Time
dur Pattern Double
envL
fadeOutFrom :: Time -> Time -> Pattern a -> Pattern a
fadeOutFrom :: forall a. Time -> Time -> Pattern a -> Pattern a
fadeOutFrom Time
from Time
dur Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (forall a. Double -> Pattern a -> Pattern a
`_degradeBy` Pattern a
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Time
from forall a. Time -> Pattern a -> Pattern a
`rotR` forall a. Time -> Pattern a -> Pattern a
_slow Time
dur Pattern Double
envL)
fadeIn :: Time -> Pattern a -> Pattern a
fadeIn :: forall a. Time -> Pattern a -> Pattern a
fadeIn Time
dur Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (forall a. Double -> Pattern a -> Pattern a
`_degradeBy` Pattern a
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Time -> Pattern a -> Pattern a
_slow Time
dur Pattern Double
envLR
fadeInFrom :: Time -> Time -> Pattern a -> Pattern a
fadeInFrom :: forall a. Time -> Time -> Pattern a -> Pattern a
fadeInFrom Time
from Time
dur Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (forall a. Double -> Pattern a -> Pattern a
`_degradeBy` Pattern a
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Time
from forall a. Time -> Pattern a -> Pattern a
`rotR` forall a. Time -> Pattern a -> Pattern a
_slow Time
dur Pattern Double
envLR)
spread :: (a -> t -> Pattern b) -> [a] -> t -> Pattern b
spread :: forall a t b. (a -> t -> Pattern b) -> [a] -> t -> Pattern b
spread a -> t -> Pattern b
f [a]
xs t
p = forall a. [Pattern a] -> Pattern a
slowcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (a -> t -> Pattern b
`f` t
p) [a]
xs
slowspread :: (a -> t -> Pattern b) -> [a] -> t -> Pattern b
slowspread :: forall a t b. (a -> t -> Pattern b) -> [a] -> t -> Pattern b
slowspread = forall a t b. (a -> t -> Pattern b) -> [a] -> t -> Pattern b
spread
fastspread :: (a -> t -> Pattern b) -> [a] -> t -> Pattern b
fastspread :: forall a t b. (a -> t -> Pattern b) -> [a] -> t -> Pattern b
fastspread a -> t -> Pattern b
f [a]
xs t
p = forall a. [Pattern a] -> Pattern a
fastcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (a -> t -> Pattern b
`f` t
p) [a]
xs
spread' :: Monad m => (a -> b -> m c) -> m a -> b -> m c
spread' :: forall (m :: * -> *) a b c.
Monad m =>
(a -> b -> m c) -> m a -> b -> m c
spread' a -> b -> m c
f m a
vpat b
pat = m a
vpat forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \a
v -> a -> b -> m c
f a
v b
pat
spreadChoose :: (t -> t1 -> Pattern b) -> [t] -> t1 -> Pattern b
spreadChoose :: forall a t b. (a -> t -> Pattern b) -> [a] -> t -> Pattern b
spreadChoose t -> t1 -> Pattern b
f [t]
vs t1
p = do t
v <- forall a. Time -> Pattern a -> Pattern a
_segment Time
1 (forall a. [a] -> Pattern a
choose [t]
vs)
t -> t1 -> Pattern b
f t
v t1
p
spreadr :: (t -> t1 -> Pattern b) -> [t] -> t1 -> Pattern b
spreadr :: forall a t b. (a -> t -> Pattern b) -> [a] -> t -> Pattern b
spreadr = forall a t b. (a -> t -> Pattern b) -> [a] -> t -> Pattern b
spreadChoose
ifp :: (Int -> Bool) -> (Pattern a -> Pattern a) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
ifp :: forall a.
(Int -> Bool)
-> (Pattern a -> Pattern a)
-> (Pattern a -> Pattern a)
-> Pattern a
-> Pattern a
ifp Int -> Bool
test Pattern a -> Pattern a
f1 Pattern a -> Pattern a
f2 Pattern a
p = forall a. Pattern a -> Pattern a
splitQueries forall a b. (a -> b) -> a -> b
$ Pattern a
p {query :: State -> [Event a]
query = State -> [Event a]
q}
where q :: State -> [Event a]
q State
a | Int -> Bool
test (forall a b. (RealFrac a, Integral b) => a -> b
floor forall a b. (a -> b) -> a -> b
$ forall a. ArcF a -> a
start forall a b. (a -> b) -> a -> b
$ State -> Arc
arc State
a) = forall a. Pattern a -> State -> [Event a]
query (Pattern a -> Pattern a
f1 Pattern a
p) State
a
| Bool
otherwise = forall a. Pattern a -> State -> [Event a]
query (Pattern a -> Pattern a
f2 Pattern a
p) State
a
wedge :: Pattern Time -> Pattern a -> Pattern a -> Pattern a
wedge :: forall a. Pattern Time -> Pattern a -> Pattern a -> Pattern a
wedge Pattern Time
pt Pattern a
pa Pattern a
pb = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Time
t -> forall a. Time -> Pattern a -> Pattern a -> Pattern a
_wedge Time
t Pattern a
pa Pattern a
pb) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Time
pt
_wedge :: Time -> Pattern a -> Pattern a -> Pattern a
_wedge :: forall a. Time -> Pattern a -> Pattern a -> Pattern a
_wedge Time
0 Pattern a
_ Pattern a
p' = Pattern a
p'
_wedge Time
1 Pattern a
p Pattern a
_ = Pattern a
p
_wedge Time
t Pattern a
p Pattern a
p' = forall a. Pattern a -> Pattern a -> Pattern a
overlay (forall a. Time -> Pattern a -> Pattern a
_fastGap (Time
1forall a. Fractional a => a -> a -> a
/Time
t) Pattern a
p) (Time
t forall a. Time -> Pattern a -> Pattern a
`rotR` forall a. Time -> Pattern a -> Pattern a
_fastGap (Time
1forall a. Fractional a => a -> a -> a
/(Time
1forall a. Num a => a -> a -> a
-Time
t)) Pattern a
p')
whenmod :: Pattern Time -> Pattern Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
whenmod :: forall a.
Pattern Time
-> Pattern Time
-> (Pattern a -> Pattern a)
-> Pattern a
-> Pattern a
whenmod Pattern Time
a Pattern Time
b Pattern a -> Pattern a
f Pattern a
pat = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Time
a' Time
b' -> forall a.
Time -> Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_whenmod Time
a' Time
b' Pattern a -> Pattern a
f Pattern a
pat) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Time
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Pattern Time
b
_whenmod :: Time -> Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_whenmod :: forall a.
Time -> Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_whenmod Time
a Time
b = forall a.
(Time -> Bool)
-> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
whenT (\Time
t -> ((Time
t forall a. Real a => a -> a -> a
`mod'` Time
a) forall a. Ord a => a -> a -> Bool
>= Time
b ))
superimpose :: (Pattern a -> Pattern a) -> Pattern a -> Pattern a
superimpose :: forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
superimpose Pattern a -> Pattern a
f Pattern a
p = forall a. [Pattern a] -> Pattern a
stack [Pattern a
p, Pattern a -> Pattern a
f Pattern a
p]
trunc :: Pattern Time -> Pattern a -> Pattern a
trunc :: forall a. Pattern Time -> Pattern a -> Pattern a
trunc = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Time -> Pattern a -> Pattern a
_trunc
_trunc :: Time -> Pattern a -> Pattern a
_trunc :: forall a. Time -> Pattern a -> Pattern a
_trunc Time
t = forall a. (Time, Time) -> Pattern a -> Pattern a
compress (Time
0, Time
t) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Arc -> Pattern a -> Pattern a
zoomArc (forall a. a -> a -> ArcF a
Arc Time
0 Time
t)
linger :: Pattern Time -> Pattern a -> Pattern a
linger :: forall a. Pattern Time -> Pattern a -> Pattern a
linger = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Time -> Pattern a -> Pattern a
_linger
_linger :: Time -> Pattern a -> Pattern a
_linger :: forall a. Time -> Pattern a -> Pattern a
_linger Time
n Pattern a
p | Time
n forall a. Ord a => a -> a -> Bool
< Time
0 = forall a. Time -> Pattern a -> Pattern a
_fast (Time
1forall a. Fractional a => a -> a -> a
/Time
n) forall a b. (a -> b) -> a -> b
$ forall a. Arc -> Pattern a -> Pattern a
zoomArc (forall a. a -> a -> ArcF a
Arc (Time
1 forall a. Num a => a -> a -> a
+ Time
n) Time
1) Pattern a
p
| Bool
otherwise = forall a. Time -> Pattern a -> Pattern a
_fast (Time
1forall a. Fractional a => a -> a -> a
/Time
n) forall a b. (a -> b) -> a -> b
$ forall a. Arc -> Pattern a -> Pattern a
zoomArc (forall a. a -> a -> ArcF a
Arc Time
0 Time
n) Pattern a
p
within :: (Time, Time) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
within :: forall a.
(Time, Time) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
within (Time
s, Time
e) Pattern a -> Pattern a
f Pattern a
p = forall a. [Pattern a] -> Pattern a
stack [forall a. (Time -> Bool) -> Pattern a -> Pattern a
filterWhen (\Time
t -> Time -> Time
cyclePos Time
t forall a. Ord a => a -> a -> Bool
>= Time
s Bool -> Bool -> Bool
&& Time -> Time
cyclePos Time
t forall a. Ord a => a -> a -> Bool
< Time
e) forall a b. (a -> b) -> a -> b
$ Pattern a -> Pattern a
f Pattern a
p,
forall a. (Time -> Bool) -> Pattern a -> Pattern a
filterWhen (\Time
t -> Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ Time -> Time
cyclePos Time
t forall a. Ord a => a -> a -> Bool
>= Time
s Bool -> Bool -> Bool
&& Time -> Time
cyclePos Time
t forall a. Ord a => a -> a -> Bool
< Time
e) Pattern a
p
]
withinArc :: Arc -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
withinArc :: forall a. Arc -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
withinArc (Arc Time
s Time
e) = forall a.
(Time, Time) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
within (Time
s, Time
e)
within' :: (Time, Time) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
within' :: forall a.
(Time, Time) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
within' a :: (Time, Time)
a@(Time
s, Time
e) Pattern a -> Pattern a
f Pattern a
p =
forall a. [Pattern a] -> Pattern a
stack [ forall a. (Time -> Bool) -> Pattern a -> Pattern a
filterWhen (\Time
t -> Time -> Time
cyclePos Time
t forall a. Ord a => a -> a -> Bool
>= Time
s Bool -> Bool -> Bool
&& Time -> Time
cyclePos Time
t forall a. Ord a => a -> a -> Bool
< Time
e) forall a b. (a -> b) -> a -> b
$ forall a. (Time, Time) -> Pattern a -> Pattern a
compress (Time, Time)
a forall a b. (a -> b) -> a -> b
$ Pattern a -> Pattern a
f forall a b. (a -> b) -> a -> b
$ forall a. (Time, Time) -> Pattern a -> Pattern a
zoom (Time, Time)
a Pattern a
p
, forall a. (Time -> Bool) -> Pattern a -> Pattern a
filterWhen (\Time
t -> Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ Time -> Time
cyclePos Time
t forall a. Ord a => a -> a -> Bool
>= Time
s Bool -> Bool -> Bool
&& Time -> Time
cyclePos Time
t forall a. Ord a => a -> a -> Bool
< Time
e) Pattern a
p
]
revArc :: (Time, Time) -> Pattern a -> Pattern a
revArc :: forall a. (Time, Time) -> Pattern a -> Pattern a
revArc (Time, Time)
a = forall a.
(Time, Time) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
within (Time, Time)
a forall a. Pattern a -> Pattern a
rev
euclid :: Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclid :: forall a. Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclid = forall a b c d.
(a -> b -> c -> Pattern d)
-> Pattern a -> Pattern b -> c -> Pattern d
tParam2 forall a. Int -> Int -> Pattern a -> Pattern a
_euclid
_euclid :: Int -> Int -> Pattern a -> Pattern a
_euclid :: forall a. Int -> Int -> Pattern a -> Pattern a
_euclid Int
n Int
k Pattern a
a | Int
n forall a. Ord a => a -> a -> Bool
>= Int
0 = forall a. [Pattern a] -> Pattern a
fastcat forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. a -> a -> Bool -> a
bool forall a. Pattern a
silence Pattern a
a) forall a b. (a -> b) -> a -> b
$ (Int, Int) -> [Bool]
bjorklund (Int
n,Int
k)
| Bool
otherwise = forall a. [Pattern a] -> Pattern a
fastcat forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. a -> a -> Bool -> a
bool Pattern a
a forall a. Pattern a
silence) forall a b. (a -> b) -> a -> b
$ (Int, Int) -> [Bool]
bjorklund (-Int
n,Int
k)
euclidFull :: Pattern Int -> Pattern Int -> Pattern a -> Pattern a -> Pattern a
euclidFull :: forall a.
Pattern Int -> Pattern Int -> Pattern a -> Pattern a -> Pattern a
euclidFull Pattern Int
n Pattern Int
k Pattern a
pa Pattern a
pb = forall a. [Pattern a] -> Pattern a
stack [ forall a. Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclid Pattern Int
n Pattern Int
k Pattern a
pa, forall a. Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclidInv Pattern Int
n Pattern Int
k Pattern a
pb ]
_euclidBool :: Int -> Int -> Pattern Bool
_euclidBool :: Int -> Int -> Pattern Bool
_euclidBool Int
n Int
k = forall a. [a] -> Pattern a
fastFromList forall a b. (a -> b) -> a -> b
$ (Int, Int) -> [Bool]
bjorklund (Int
n,Int
k)
_euclid' :: Int -> Int -> Pattern a -> Pattern a
_euclid' :: forall a. Int -> Int -> Pattern a -> Pattern a
_euclid' Int
n Int
k Pattern a
p = forall a. [Pattern a] -> Pattern a
fastcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\Bool
x -> if Bool
x then Pattern a
p else forall a. Pattern a
silence) ((Int, Int) -> [Bool]
bjorklund (Int
n,Int
k))
euclidOff :: Pattern Int -> Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclidOff :: forall a.
Pattern Int -> Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclidOff = forall a b c d e.
(a -> b -> c -> Pattern d -> Pattern e)
-> Pattern a -> Pattern b -> Pattern c -> Pattern d -> Pattern e
tParam3 forall a. Int -> Int -> Int -> Pattern a -> Pattern a
_euclidOff
eoff :: Pattern Int -> Pattern Int -> Pattern Int -> Pattern a -> Pattern a
eoff :: forall a.
Pattern Int -> Pattern Int -> Pattern Int -> Pattern a -> Pattern a
eoff = forall a.
Pattern Int -> Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclidOff
_euclidOff :: Int -> Int -> Int -> Pattern a -> Pattern a
_euclidOff :: forall a. Int -> Int -> Int -> Pattern a -> Pattern a
_euclidOff Int
_ Int
0 Int
_ Pattern a
_ = forall a. Pattern a
silence
_euclidOff Int
n Int
k Int
s Pattern a
p = (forall a. Time -> Pattern a -> Pattern a
rotL forall a b. (a -> b) -> a -> b
$ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
sforall a. Integral a => a -> a -> Ratio a
%forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
k) (forall a. Int -> Int -> Pattern a -> Pattern a
_euclid Int
n Int
k Pattern a
p)
euclidOffBool :: Pattern Int -> Pattern Int -> Pattern Int -> Pattern Bool -> Pattern Bool
euclidOffBool :: Pattern Int
-> Pattern Int -> Pattern Int -> Pattern Bool -> Pattern Bool
euclidOffBool = forall a b c d e.
(a -> b -> c -> Pattern d -> Pattern e)
-> Pattern a -> Pattern b -> Pattern c -> Pattern d -> Pattern e
tParam3 Int -> Int -> Int -> Pattern Bool -> Pattern Bool
_euclidOffBool
_euclidOffBool :: Int -> Int -> Int -> Pattern Bool -> Pattern Bool
_euclidOffBool :: Int -> Int -> Int -> Pattern Bool -> Pattern Bool
_euclidOffBool Int
_ Int
0 Int
_ Pattern Bool
_ = forall a. Pattern a
silence
_euclidOffBool Int
n Int
k Int
s Pattern Bool
p = ((forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
s forall a. Integral a => a -> a -> Ratio a
% forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
k) forall a. Time -> Pattern a -> Pattern a
`rotL`) ((\Bool
a Bool
b -> if Bool
b then Bool
a else Bool -> Bool
not Bool
a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> Pattern Bool
_euclidBool Int
n Int
k forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Pattern Bool
p)
distrib :: [Pattern Int] -> Pattern a -> Pattern a
distrib :: forall a. [Pattern Int] -> Pattern a -> Pattern a
distrib [Pattern Int]
ps Pattern a
p = do [Int]
p' <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence [Pattern Int]
ps
forall a. [Int] -> Pattern a -> Pattern a
_distrib [Int]
p' Pattern a
p
_distrib :: [Int] -> Pattern a -> Pattern a
_distrib :: forall a. [Int] -> Pattern a -> Pattern a
_distrib [Int]
xs Pattern a
p = forall {b}. [Bool] -> Pattern b -> Pattern b
boolsToPat (forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr [Bool] -> [Bool] -> [Bool]
distrib' (forall a. Int -> a -> [a]
replicate (forall a. [a] -> a
last [Int]
xs) Bool
True) (forall a. [a] -> [a]
reverse forall a b. (a -> b) -> a -> b
$ [Int] -> [[Bool]]
layers [Int]
xs)) Pattern a
p
where
distrib' :: [Bool] -> [Bool] -> [Bool]
distrib' :: [Bool] -> [Bool] -> [Bool]
distrib' [] [Bool]
_ = []
distrib' (Bool
_:[Bool]
a) [] = Bool
False forall a. a -> [a] -> [a]
: [Bool] -> [Bool] -> [Bool]
distrib' [Bool]
a []
distrib' (Bool
True:[Bool]
a) (Bool
x:[Bool]
b) = Bool
x forall a. a -> [a] -> [a]
: [Bool] -> [Bool] -> [Bool]
distrib' [Bool]
a [Bool]
b
distrib' (Bool
False:[Bool]
a) [Bool]
b = Bool
False forall a. a -> [a] -> [a]
: [Bool] -> [Bool] -> [Bool]
distrib' [Bool]
a [Bool]
b
layers :: [Int] -> [[Bool]]
layers = forall a b. (a -> b) -> [a] -> [b]
map (Int, Int) -> [Bool]
bjorklund forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a b. [a] -> [b] -> [(a, b)]
zipforall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*>forall a. [a] -> [a]
tail)
boolsToPat :: [Bool] -> Pattern b -> Pattern b
boolsToPat [Bool]
a Pattern b
b' = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. a -> b -> a
const forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. (a -> Bool) -> Pattern a -> Pattern a
filterValues (forall a. Eq a => a -> a -> Bool
== Bool
True) (forall a. [a] -> Pattern a
fastFromList [Bool]
a) forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
<* Pattern b
b'
euclidInv :: Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclidInv :: forall a. Pattern Int -> Pattern Int -> Pattern a -> Pattern a
euclidInv = forall a b c d.
(a -> b -> c -> Pattern d)
-> Pattern a -> Pattern b -> c -> Pattern d
tParam2 forall a. Int -> Int -> Pattern a -> Pattern a
_euclidInv
_euclidInv :: Int -> Int -> Pattern a -> Pattern a
_euclidInv :: forall a. Int -> Int -> Pattern a -> Pattern a
_euclidInv Int
n Int
k Pattern a
a = forall a. Int -> Int -> Pattern a -> Pattern a
_euclid (-Int
n) Int
k Pattern a
a
index :: Real b => b -> Pattern b -> Pattern c -> Pattern c
index :: forall b c. Real b => b -> Pattern b -> Pattern c -> Pattern c
index b
sz Pattern b
indexpat Pattern c
pat =
forall (m :: * -> *) a b c.
Monad m =>
(a -> b -> m c) -> m a -> b -> m c
spread' (forall a. Time -> Time -> Pattern a -> Pattern a
zoom' forall a b. (a -> b) -> a -> b
$ forall a. Real a => a -> Time
toRational b
sz) (forall a. Real a => a -> Time
toRational forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
*(b
1forall a. Num a => a -> a -> a
-b
sz)) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern b
indexpat) Pattern c
pat
where
zoom' :: Time -> Time -> Pattern a -> Pattern a
zoom' Time
tSz Time
s = forall a. Arc -> Pattern a -> Pattern a
zoomArc (forall a. a -> a -> ArcF a
Arc Time
s (Time
sforall a. Num a => a -> a -> a
+Time
tSz))
rot :: Ord a => Pattern Int -> Pattern a -> Pattern a
rot :: forall a. Ord a => Pattern Int -> Pattern a -> Pattern a
rot = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Ord a => Int -> Pattern a -> Pattern a
_rot
_rot :: Ord a => Int -> Pattern a -> Pattern a
_rot :: forall a. Ord a => Int -> Pattern a -> Pattern a
_rot Int
i Pattern a
pat = forall a. Pattern a -> Pattern a
splitQueries forall a b. (a -> b) -> a -> b
$ Pattern a
pat {query :: State -> [Event a]
query = \State
st -> forall {a}. Ord a => State -> [Event a] -> [Event a]
f State
st (forall a. Pattern a -> State -> [Event a]
query Pattern a
pat (State
st {arc :: Arc
arc = Arc -> Arc
wholeCycle (State -> Arc
arc State
st)}))}
where
f :: State -> [Event a] -> [Event a]
f State
st [Event a]
es = forall a. Arc -> [Event a] -> [Event a]
constrainEvents (State -> Arc
arc State
st) forall a b. (a -> b) -> a -> b
$ forall {a} {b}. [EventF a b] -> [EventF a b]
shiftValues forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [Event a] -> [Event a]
defragParts [Event a]
es
shiftValues :: [EventF a b] -> [EventF a b]
shiftValues [EventF a b]
es | Int
i forall a. Ord a => a -> a -> Bool
>= Int
0 =
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\EventF a b
e b
s -> EventF a b
e {value :: b
value = b
s}) [EventF a b]
es
(forall a. Int -> [a] -> [a]
drop Int
i forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
cycle forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. EventF a b -> b
value [EventF a b]
es)
| Bool
otherwise =
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\EventF a b
e b
s -> EventF a b
e{value :: b
value = b
s}) [EventF a b]
es
(forall a. Int -> [a] -> [a]
drop (forall (t :: * -> *) a. Foldable t => t a -> Int
length [EventF a b]
es forall a. Num a => a -> a -> a
- forall a. Num a => a -> a
abs Int
i) forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
cycle forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. EventF a b -> b
value [EventF a b]
es)
wholeCycle :: Arc -> Arc
wholeCycle (Arc Time
s Time
_) = forall a. a -> a -> ArcF a
Arc (Time -> Time
sam Time
s) (Time -> Time
nextSam Time
s)
constrainEvents :: Arc -> [Event a] -> [Event a]
constrainEvents :: forall a. Arc -> [Event a] -> [Event a]
constrainEvents Arc
a [Event a]
es = forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (forall a. Arc -> Event a -> Maybe (Event a)
constrainEvent Arc
a) [Event a]
es
constrainEvent :: Arc -> Event a -> Maybe (Event a)
constrainEvent :: forall a. Arc -> Event a -> Maybe (Event a)
constrainEvent Arc
a Event a
e =
do
Arc
p' <- Arc -> Arc -> Maybe Arc
subArc (forall a b. EventF a b -> a
part Event a
e) Arc
a
forall (m :: * -> *) a. Monad m => a -> m a
return Event a
e {part :: Arc
part = Arc
p'}
segment :: Pattern Time -> Pattern a -> Pattern a
segment :: forall a. Pattern Time -> Pattern a -> Pattern a
segment = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Time -> Pattern a -> Pattern a
_segment
_segment :: Time -> Pattern a -> Pattern a
_segment :: forall a. Time -> Pattern a -> Pattern a
_segment Time
n Pattern a
p = forall a. Time -> Pattern a -> Pattern a
_fast Time
n (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. a -> a
id) forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
<* Pattern a
p
discretise :: Pattern Time -> Pattern a -> Pattern a
discretise :: forall a. Pattern Time -> Pattern a -> Pattern a
discretise = forall a. Pattern Time -> Pattern a -> Pattern a
segment
randcat :: [Pattern a] -> Pattern a
randcat :: forall a. [Pattern a] -> Pattern a
randcat [Pattern a]
ps = forall (m :: * -> *) a b c.
Monad m =>
(a -> b -> m c) -> m a -> b -> m c
spread' forall a. Time -> Pattern a -> Pattern a
rotL (forall a. Time -> Pattern a -> Pattern a
_segment Time
1 forall a b. (a -> b) -> a -> b
$ (forall a. Integral a => a -> a -> Ratio a
% Integer
1) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall a. Num a => Int -> Pattern a
_irand (forall (t :: * -> *) a. Foldable t => t a -> Int
length [Pattern a]
ps) :: Pattern Int)) (forall a. [Pattern a] -> Pattern a
slowcat [Pattern a]
ps)
wrandcat :: [(Pattern a, Double)] -> Pattern a
wrandcat :: forall a. [(Pattern a, Double)] -> Pattern a
wrandcat [(Pattern a, Double)]
ps = forall a. Pattern (Pattern a) -> Pattern a
unwrap forall a b. (a -> b) -> a -> b
$ forall a. Pattern Double -> [(a, Double)] -> Pattern a
wchooseBy (forall a. Pattern Time -> Pattern a -> Pattern a
segment Pattern Time
1 forall a. Fractional a => Pattern a
rand) [(Pattern a, Double)]
ps
_fit :: Int -> [a] -> Pattern Int -> Pattern a
_fit :: forall a. Int -> [a] -> Pattern Int -> Pattern a
_fit Int
perCycle [a]
xs Pattern Int
p = ([a]
xs forall a. [a] -> Int -> a
!!!) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Pattern Int
p {query :: State -> [Event Int]
query = forall a b. (a -> b) -> [a] -> [b]
map (\Event Int
e -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. Num a => a -> a -> a
+ forall {a} {b}. RealFrac a => EventF (ArcF a) b -> Int
pos Event Int
e) Event Int
e) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Pattern a -> State -> [Event a]
query Pattern Int
p})
where pos :: EventF (ArcF a) b -> Int
pos EventF (ArcF a) b
e = Int
perCycle forall a. Num a => a -> a -> a
* forall a b. (RealFrac a, Integral b) => a -> b
floor (forall a. ArcF a -> a
start forall a b. (a -> b) -> a -> b
$ forall a b. EventF a b -> a
part EventF (ArcF a) b
e)
fit :: Pattern Int -> [a] -> Pattern Int -> Pattern a
fit :: forall a. Pattern Int -> [a] -> Pattern Int -> Pattern a
fit Pattern Int
pint [a]
xs Pattern Int
p = (forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall {a}. Int -> ([a], Pattern Int) -> Pattern a
func) Pattern Int
pint ([a]
xs,Pattern Int
p)
where func :: Int -> ([a], Pattern Int) -> Pattern a
func Int
i ([a]
xs',Pattern Int
p') = forall a. Int -> [a] -> Pattern Int -> Pattern a
_fit Int
i [a]
xs' Pattern Int
p'
permstep :: RealFrac b => Int -> [a] -> Pattern b -> Pattern a
permstep :: forall b a. RealFrac b => Int -> [a] -> Pattern b -> Pattern a
permstep Int
nSteps [a]
things Pattern b
p = forall a. Pattern (Pattern a) -> Pattern a
unwrap forall a b. (a -> b) -> a -> b
$ (\b
n -> forall a. [a] -> Pattern a
fastFromList forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(Int, a)
x -> forall a. Int -> a -> [a]
replicate (forall a b. (a, b) -> a
fst (Int, a)
x) (forall a b. (a, b) -> b
snd (Int, a)
x)) forall a b. (a -> b) -> a -> b
$ forall a b. [a] -> [b] -> [(a, b)]
zip ([[Int]]
ps forall a. [a] -> Int -> a
!! forall a b. (RealFrac a, Integral b) => a -> b
floor (b
n forall a. Num a => a -> a -> a
* forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall (t :: * -> *) a. Foldable t => t a -> Int
length [[Int]]
ps forall a. Num a => a -> a -> a
- Int
1))) [a]
things) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Time -> Pattern a -> Pattern a
_segment Time
1 Pattern b
p
where ps :: [[Int]]
ps = forall {a}. Integral a => a -> a -> [[a]]
permsort (forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
things) Int
nSteps
deviance :: a -> [a] -> a
deviance a
avg [a]
xs = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall a. Num a => a -> a
abs forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a
avgforall a. Num a => a -> a -> a
-) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) [a]
xs
permsort :: a -> a -> [[a]]
permsort a
n a
total = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall b a. Ord b => (a -> b) -> [a] -> [a]
sortOn forall a b. (a, b) -> b
snd forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\[a]
x -> ([a]
x,forall {a} {a}. (Integral a, Num a) => a -> [a] -> a
deviance (forall a b. (Integral a, Num b) => a -> b
fromIntegral a
total forall a. Fractional a => a -> a -> a
/ (forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n :: Double)) [a]
x)) forall a b. (a -> b) -> a -> b
$ forall {t}. (Eq t, Num t, Enum t) => t -> t -> [[t]]
perms a
n a
total
perms :: t -> t -> [[t]]
perms t
0 t
_ = []
perms t
1 t
n = [[t
n]]
perms t
n t
total = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\t
x -> forall a b. (a -> b) -> [a] -> [b]
map (t
xforall a. a -> [a] -> [a]
:) forall a b. (a -> b) -> a -> b
$ t -> t -> [[t]]
perms (t
nforall a. Num a => a -> a -> a
-t
1) (t
totalforall a. Num a => a -> a -> a
-t
x)) [t
1 .. (t
totalforall a. Num a => a -> a -> a
-(t
nforall a. Num a => a -> a -> a
-t
1))]
struct :: Pattern Bool -> Pattern a -> Pattern a
struct :: forall a. Pattern Bool -> Pattern a -> Pattern a
struct Pattern Bool
ps Pattern a
pv = forall a. Pattern (Maybe a) -> Pattern a
filterJust forall a b. (a -> b) -> a -> b
$ (\Bool
a a
b -> if Bool
a then forall a. a -> Maybe a
Just a
b else forall a. Maybe a
Nothing ) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Bool
ps forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
<* Pattern a
pv
substruct :: Pattern Bool -> Pattern b -> Pattern b
substruct :: forall a. Pattern Bool -> Pattern a -> Pattern a
substruct Pattern Bool
s Pattern b
p = Pattern b
p {query :: State -> [Event b]
query = State -> [Event b]
f}
where f :: State -> [Event b]
f State
st =
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap ((\Arc
a' -> forall a. Pattern a -> Arc -> [Event a]
queryArc (forall a. Arc -> Pattern a -> Pattern a
compressArcTo Arc
a' Pattern b
p) Arc
a') forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Event a -> Arc
wholeOrPart) forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> [a] -> [a]
filter forall a b. EventF a b -> b
value forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> State -> [Event a]
query Pattern Bool
s State
st
randArcs :: Int -> Pattern [Arc]
randArcs :: Int -> Pattern [Arc]
randArcs Int
n =
do [Int]
rs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\Int
x -> forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall a. Real a => a -> Time
toRational Int
x forall a. Fractional a => a -> a -> a
/ forall a. Real a => a -> Time
toRational Int
n) forall a. Pattern Time -> Pattern a -> Pattern a
<~ forall a. [a] -> Pattern a
choose [Int
1 :: Int,Int
2,Int
3]) [Int
0 .. (Int
nforall a. Num a => a -> a -> a
-Int
1)]
let rats :: [Time]
rats = forall a b. (a -> b) -> [a] -> [b]
map forall a. Real a => a -> Time
toRational [Int]
rs
total :: Time
total = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Time]
rats
pairs :: [Arc]
pairs = forall {a}. Num a => [a] -> [ArcF a]
pairUp forall a b. (a -> b) -> a -> b
$ forall t. Num t => [t] -> [t]
accumulate forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall a. Fractional a => a -> a -> a
/Time
total) [Time]
rats
forall (m :: * -> *) a. Monad m => a -> m a
return [Arc]
pairs
where pairUp :: [a] -> [ArcF a]
pairUp [] = []
pairUp [a]
xs = forall a. a -> a -> ArcF a
Arc a
0 (forall a. [a] -> a
head [a]
xs) forall a. a -> [a] -> [a]
: forall {a}. Num a => [a] -> [ArcF a]
pairUp' [a]
xs
pairUp' :: [a] -> [ArcF a]
pairUp' [] = []
pairUp' [a
_] = []
pairUp' [a
a, a
_] = [forall a. a -> a -> ArcF a
Arc a
a a
1]
pairUp' (a
a:a
b:[a]
xs) = forall a. a -> a -> ArcF a
Arc a
a a
bforall a. a -> [a] -> [a]
: [a] -> [ArcF a]
pairUp' (a
bforall a. a -> [a] -> [a]
:[a]
xs)
randStruct :: Int -> Pattern Int
randStruct :: Int -> Pattern Int
randStruct Int
n = forall a. Pattern a -> Pattern a
splitQueries forall a b. (a -> b) -> a -> b
$ Pattern {query :: State -> [Event Int]
query = State -> [Event Int]
f}
where f :: State -> [Event Int]
f State
st = forall a b. (a -> b) -> [a] -> [b]
map (\(Arc
a,Maybe Arc
b,Int
c) -> forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event ([((Int, Int), (Int, Int))] -> Context
Context []) (forall a. a -> Maybe a
Just Arc
a) (forall a. HasCallStack => Maybe a -> a
fromJust Maybe Arc
b) Int
c) forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> [a] -> [a]
filter (\(Arc
_,Maybe Arc
x,Int
_) -> forall a. Maybe a -> Bool
isJust Maybe Arc
x) [(Arc, Maybe Arc, Int)]
as
where as :: [(Arc, Maybe Arc, Int)]
as = forall a b. (a -> b) -> [a] -> [b]
map (\(Int
i, Arc Time
s' Time
e') ->
(forall a. a -> a -> ArcF a
Arc (Time
s' forall a. Num a => a -> a -> a
+ Time -> Time
sam Time
s) (Time
e' forall a. Num a => a -> a -> a
+ Time -> Time
sam Time
s),
Arc -> Arc -> Maybe Arc
subArc (forall a. a -> a -> ArcF a
Arc Time
s Time
e) (forall a. a -> a -> ArcF a
Arc (Time
s' forall a. Num a => a -> a -> a
+ Time -> Time
sam Time
s) (Time
e' forall a. Num a => a -> a -> a
+ Time -> Time
sam Time
s)), Int
i)) forall a b. (a -> b) -> a -> b
$
forall a. [a] -> [(Int, a)]
enumerate forall a b. (a -> b) -> a -> b
$ forall a b. EventF a b -> b
value forall a b. (a -> b) -> a -> b
$ forall a. [a] -> a
head forall a b. (a -> b) -> a -> b
$
forall a. Pattern a -> Arc -> [Event a]
queryArc (Int -> Pattern [Arc]
randArcs Int
n) (forall a. a -> a -> ArcF a
Arc (Time -> Time
sam Time
s) (Time -> Time
nextSam Time
s))
(Arc Time
s Time
e) = State -> Arc
arc State
st
substruct' :: Pattern Int -> Pattern a -> Pattern a
substruct' :: forall c. Pattern Int -> Pattern c -> Pattern c
substruct' Pattern Int
s Pattern a
p = Pattern a
p {query :: State -> [Event a]
query = \State
st -> forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (forall {a}. Real a => State -> EventF Arc a -> [Event a]
f State
st) (forall a. Pattern a -> State -> [Event a]
query Pattern Int
s State
st)}
where f :: State -> EventF Arc a -> [Event a]
f State
st (Event Context
c (Just Arc
a') Arc
_ a
i) = forall a b. (a -> b) -> [a] -> [b]
map (\Event a
e -> Event a
e {context :: Context
context = [Context] -> Context
combineContexts [Context
c, forall a b. EventF a b -> Context
context Event a
e]}) forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> Arc -> [Event a]
queryArc (forall a. Arc -> Pattern a -> Pattern a
compressArcTo Arc
a' (forall a1 a.
Pattern Time
-> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
inside (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ Time
1forall a. Fractional a => a -> a -> a
/forall a. Real a => a -> Time
toRational(forall (t :: * -> *) a. Foldable t => t a -> Int
length (forall a. Pattern a -> Arc -> [Event a]
queryArc Pattern Int
s (forall a. a -> a -> ArcF a
Arc (Time -> Time
sam (forall a. ArcF a -> a
start forall a b. (a -> b) -> a -> b
$ State -> Arc
arc State
st)) (Time -> Time
nextSam (forall a. ArcF a -> a
start forall a b. (a -> b) -> a -> b
$ State -> Arc
arc State
st)))))) (forall a. Time -> Pattern a -> Pattern a
rotR (forall a. Real a => a -> Time
toRational a
i)) Pattern a
p)) Arc
a'
f State
_ EventF Arc a
_ = []
stripe :: Pattern Int -> Pattern a -> Pattern a
stripe :: forall c. Pattern Int -> Pattern c -> Pattern c
stripe = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Int -> Pattern a -> Pattern a
_stripe
_stripe :: Int -> Pattern a -> Pattern a
_stripe :: forall a. Int -> Pattern a -> Pattern a
_stripe = forall c. Pattern Int -> Pattern c -> Pattern c
substruct' forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Pattern Int
randStruct
slowstripe :: Pattern Int -> Pattern a -> Pattern a
slowstripe :: forall c. Pattern Int -> Pattern c -> Pattern c
slowstripe Pattern Int
n = forall a. Pattern Time -> Pattern a -> Pattern a
slow (forall a. Real a => a -> Time
toRational forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
n) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall c. Pattern Int -> Pattern c -> Pattern c
stripe Pattern Int
n
parseLMRule :: String -> [(String,String)]
parseLMRule :: [Char] -> [([Char], [Char])]
parseLMRule [Char]
s = forall a b. (a -> b) -> [a] -> [b]
map (forall {a}. Eq a => a -> [a] -> ([a], [a])
splitOn Char
':') [[Char]]
commaSplit
where splitOn :: a -> [a] -> ([a], [a])
splitOn a
sep [a]
str = forall a. Int -> [a] -> ([a], [a])
splitAt (forall a. HasCallStack => Maybe a -> a
fromJust forall a b. (a -> b) -> a -> b
$ forall a. Eq a => a -> [a] -> Maybe Int
elemIndex a
sep [a]
str)
forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> [a] -> [a]
filter (forall a. Eq a => a -> a -> Bool
/= a
sep) [a]
str
commaSplit :: [[Char]]
commaSplit = forall a b. (a -> b) -> [a] -> [b]
map Text -> [Char]
T.unpack forall a b. (a -> b) -> a -> b
$ Text -> Text -> [Text]
T.splitOn ([Char] -> Text
T.pack [Char]
",") forall a b. (a -> b) -> a -> b
$ [Char] -> Text
T.pack [Char]
s
parseLMRule' :: String -> [(Char, String)]
parseLMRule' :: [Char] -> [(Char, [Char])]
parseLMRule' [Char]
str = forall a b. (a -> b) -> [a] -> [b]
map forall {a} {b}. ([a], b) -> (a, b)
fixer forall a b. (a -> b) -> a -> b
$ [Char] -> [([Char], [Char])]
parseLMRule [Char]
str
where fixer :: ([a], b) -> (a, b)
fixer ([a]
c,b
r) = (forall a. [a] -> a
head [a]
c, b
r)
lindenmayer :: Int -> String -> String -> String
lindenmayer :: Int -> [Char] -> [Char] -> [Char]
lindenmayer Int
_ [Char]
_ [] = []
lindenmayer Int
1 [Char]
r (Char
c:[Char]
cs) = forall a. a -> Maybe a -> a
fromMaybe [Char
c] (forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup Char
c forall a b. (a -> b) -> a -> b
$ [Char] -> [(Char, [Char])]
parseLMRule' [Char]
r)
forall a. [a] -> [a] -> [a]
++ Int -> [Char] -> [Char] -> [Char]
lindenmayer Int
1 [Char]
r [Char]
cs
lindenmayer Int
n [Char]
r [Char]
s = forall a. (a -> a) -> a -> [a]
iterate (Int -> [Char] -> [Char] -> [Char]
lindenmayer Int
1 [Char]
r) [Char]
s forall a. [a] -> Int -> a
!! Int
n
lindenmayerI :: Num b => Int -> String -> String -> [b]
lindenmayerI :: forall b. Num b => Int -> [Char] -> [Char] -> [b]
lindenmayerI Int
n [Char]
r [Char]
s = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Int
digitToInt) forall a b. (a -> b) -> a -> b
$ Int -> [Char] -> [Char] -> [Char]
lindenmayer Int
n [Char]
r [Char]
s
runMarkov :: Int -> [[Double]] -> Int -> Time -> [Int]
runMarkov :: Int -> [[Double]] -> Int -> Time -> [Int]
runMarkov Int
n [[Double]]
tp Int
xi Time
seed = forall a. [a] -> [a]
reverse forall a b. (a -> b) -> a -> b
$ (forall a. (a -> a) -> a -> [a]
iterate (forall {a}. (Ord a, Fractional a) => [[a]] -> [Int] -> [Int]
markovStep forall a b. (a -> b) -> a -> b
$ [[Double]]
renorm) [Int
xi])forall a. [a] -> Int -> a
!! (Int
nforall a. Num a => a -> a -> a
-Int
1) where
markovStep :: [[a]] -> [Int] -> [Int]
markovStep [[a]]
tp' [Int]
xs = (forall a. HasCallStack => Maybe a -> a
fromJust forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> [a] -> Maybe Int
findIndex (a
r forall a. Ord a => a -> a -> Bool
<=) forall a b. (a -> b) -> a -> b
$ forall a. (a -> a -> a) -> [a] -> [a]
scanl1 forall a. Num a => a -> a -> a
(+) ([[a]]
tp'forall a. [a] -> Int -> a
!!(forall a. [a] -> a
head [Int]
xs))) forall a. a -> [a] -> [a]
: [Int]
xs where
r :: a
r = forall a b. (RealFrac a, Fractional b) => a -> b
timeToRand forall a b. (a -> b) -> a -> b
$ Time
seed forall a. Num a => a -> a -> a
+ (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable t => t a -> Int
length) [Int]
xs forall a. Fractional a => a -> a -> a
/ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n
renorm :: [[Double]]
renorm = [ forall a b. (a -> b) -> [a] -> [b]
map (forall a. Fractional a => a -> a -> a
/ forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Double]
x) [Double]
x | [Double]
x <- [[Double]]
tp ]
markovPat :: Pattern Int -> Pattern Int -> [[Double]] -> Pattern Int
markovPat :: Pattern Int -> Pattern Int -> [[Double]] -> Pattern Int
markovPat = forall a b c d.
(a -> b -> c -> Pattern d)
-> Pattern a -> Pattern b -> c -> Pattern d
tParam2 Int -> Int -> [[Double]] -> Pattern Int
_markovPat
_markovPat :: Int -> Int -> [[Double]] -> Pattern Int
_markovPat :: Int -> Int -> [[Double]] -> Pattern Int
_markovPat Int
n Int
xi [[Double]]
tp = forall a. Pattern a -> Pattern a
splitQueries forall a b. (a -> b) -> a -> b
$ forall a. (State -> [Event a]) -> Pattern a
Pattern (\(State a :: Arc
a@(Arc Time
s Time
_) ValueMap
_) ->
forall a. Pattern a -> Arc -> [Event a]
queryArc (forall a. [a] -> Pattern a
listToPat forall a b. (a -> b) -> a -> b
$ Int -> [[Double]] -> Int -> Time -> [Int]
runMarkov Int
n [[Double]]
tp Int
xi (Time -> Time
sam Time
s)) Arc
a)
mask :: Pattern Bool -> Pattern a -> Pattern a
mask :: forall a. Pattern Bool -> Pattern a -> Pattern a
mask Pattern Bool
b Pattern a
p = forall a b. a -> b -> a
const forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a
p forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
<* (forall a. (a -> Bool) -> Pattern a -> Pattern a
filterValues forall a. a -> a
id Pattern Bool
b)
enclosingArc :: [Arc] -> Arc
enclosingArc :: [Arc] -> Arc
enclosingArc [] = forall a. a -> a -> ArcF a
Arc Time
0 Time
1
enclosingArc [Arc]
as = forall a. a -> a -> ArcF a
Arc (forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum (forall a b. (a -> b) -> [a] -> [b]
map forall a. ArcF a -> a
start [Arc]
as)) (forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum (forall a b. (a -> b) -> [a] -> [b]
map forall a. ArcF a -> a
stop [Arc]
as))
stretch :: Pattern a -> Pattern a
stretch :: forall a. Pattern a -> Pattern a
stretch Pattern a
p = forall a. Pattern a -> Pattern a
splitQueries forall a b. (a -> b) -> a -> b
$ Pattern a
p {query :: State -> [Event a]
query = State -> [Event a]
q}
where q :: State -> [Event a]
q State
st = forall a. Pattern a -> State -> [Event a]
query (forall a. Arc -> Pattern a -> Pattern a
zoomArc (Arc -> Arc
cycleArc forall a b. (a -> b) -> a -> b
$ [Arc] -> Arc
enclosingArc forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a. Event a -> Arc
wholeOrPart forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> State -> [Event a]
query Pattern a
p (State
st {arc :: Arc
arc = forall a. a -> a -> ArcF a
Arc (Time -> Time
sam Time
s) (Time -> Time
nextSam Time
s)})) Pattern a
p) State
st
where s :: Time
s = forall a. ArcF a -> a
start forall a b. (a -> b) -> a -> b
$ State -> Arc
arc State
st
fit' :: Pattern Time -> Int -> Pattern Int -> Pattern Int -> Pattern a -> Pattern a
fit' :: forall a.
Pattern Time
-> Int -> Pattern Int -> Pattern Int -> Pattern a -> Pattern a
fit' Pattern Time
cyc Int
n Pattern Int
from Pattern Int
to Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
squeezeJoin forall a b. (a -> b) -> a -> b
$ forall a. Int -> [a] -> Pattern Int -> Pattern a
_fit Int
n [Pattern a]
mapMasks Pattern Int
to
where mapMasks :: [Pattern a]
mapMasks = [forall a. Pattern a -> Pattern a
stretch forall a b. (a -> b) -> a -> b
$ forall a. Pattern Bool -> Pattern a -> Pattern a
mask (forall a b. a -> b -> a
const Bool
True forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. (a -> Bool) -> Pattern a -> Pattern a
filterValues (forall a. Eq a => a -> a -> Bool
== Int
i) Pattern Int
from') Pattern a
p'
| Int
i <- [Int
0..Int
nforall a. Num a => a -> a -> a
-Int
1]]
p' :: Pattern a
p' = forall a. Pattern Time -> Pattern a -> Pattern a
density Pattern Time
cyc Pattern a
p
from' :: Pattern Int
from' = forall a. Pattern Time -> Pattern a -> Pattern a
density Pattern Time
cyc Pattern Int
from
chunk :: Pattern Int -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
chunk :: forall b.
Pattern Int -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
chunk Pattern Int
npat Pattern b -> Pattern b
f Pattern b
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Int
n -> forall a b.
Integral a =>
a -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
_chunk Int
n Pattern b -> Pattern b
f Pattern b
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
npat
_chunk :: Integral a => a -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
_chunk :: forall a b.
Integral a =>
a -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
_chunk a
n Pattern b -> Pattern b
f Pattern b
p | a
n forall a. Ord a => a -> a -> Bool
>= a
0 = forall a. [Pattern a] -> Pattern a
cat [forall a. Arc -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
withinArc (forall a. a -> a -> ArcF a
Arc (Integer
i forall a. Integral a => a -> a -> Ratio a
% forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n) ((Integer
iforall a. Num a => a -> a -> a
+Integer
1) forall a. Integral a => a -> a -> Ratio a
% forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n)) Pattern b -> Pattern b
f Pattern b
p | Integer
i <- [Integer
0 .. forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n forall a. Num a => a -> a -> a
- Integer
1]]
| Bool
otherwise = do Integer
i <- forall a. Time -> Pattern a -> Pattern a
_slow (forall a. Real a => a -> Time
toRational (-a
n)) forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> Pattern a
rev forall a b. (a -> b) -> a -> b
$ forall a. (Enum a, Num a) => Pattern a -> Pattern a
run (forall a b. (Integral a, Num b) => a -> b
fromIntegral (-a
n))
forall a. Arc -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
withinArc (forall a. a -> a -> ArcF a
Arc (Integer
i forall a. Integral a => a -> a -> Ratio a
% forall a b. (Integral a, Num b) => a -> b
fromIntegral (-a
n)) ((Integer
iforall a. Num a => a -> a -> a
+Integer
1) forall a. Integral a => a -> a -> Ratio a
% forall a b. (Integral a, Num b) => a -> b
fromIntegral (-a
n))) Pattern b -> Pattern b
f Pattern b
p
chunk' :: Integral a1 => Pattern a1 -> (Pattern a2 -> Pattern a2) -> Pattern a2 -> Pattern a2
chunk' :: forall a1 a2.
Integral a1 =>
Pattern a1
-> (Pattern a2 -> Pattern a2) -> Pattern a2 -> Pattern a2
chunk' Pattern a1
npat Pattern a2 -> Pattern a2
f Pattern a2
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\a1
n -> forall a b.
Integral a =>
a -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
_chunk' a1
n Pattern a2 -> Pattern a2
f Pattern a2
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a1
npat
_chunk' :: Integral a => a -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
_chunk' :: forall a b.
Integral a =>
a -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
_chunk' a
n Pattern b -> Pattern b
f Pattern b
p = forall a b.
Integral a =>
a -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
_chunk (-a
n) Pattern b -> Pattern b
f Pattern b
p
_inside :: Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
_inside :: forall a1 a.
Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
_inside Time
n Pattern a1 -> Pattern a
f Pattern a1
p = forall a. Time -> Pattern a -> Pattern a
_fast Time
n forall a b. (a -> b) -> a -> b
$ Pattern a1 -> Pattern a
f (forall a. Time -> Pattern a -> Pattern a
_slow Time
n Pattern a1
p)
inside :: Pattern Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
inside :: forall a1 a.
Pattern Time
-> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
inside Pattern Time
np Pattern a1 -> Pattern a
f Pattern a1
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Time
n -> forall a1 a.
Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
_inside Time
n Pattern a1 -> Pattern a
f Pattern a1
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Time
np
_outside :: Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
_outside :: forall a1 a.
Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
_outside Time
n = forall a1 a.
Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
_inside (Time
1forall a. Fractional a => a -> a -> a
/Time
n)
outside :: Pattern Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
outside :: forall a1 a.
Pattern Time
-> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
outside Pattern Time
np Pattern a1 -> Pattern a
f Pattern a1
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Time
n -> forall a1 a.
Time -> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
_outside Time
n Pattern a1 -> Pattern a
f Pattern a1
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Time
np
loopFirst :: Pattern a -> Pattern a
loopFirst :: forall a. Pattern a -> Pattern a
loopFirst Pattern a
p = forall a. Pattern a -> Pattern a
splitQueries forall a b. (a -> b) -> a -> b
$ Pattern a
p {query :: State -> [Event a]
query = State -> [Event a]
f}
where f :: State -> [Event a]
f State
st = forall a b. (a -> b) -> [a] -> [b]
map
(\(Event Context
c Maybe Arc
w Arc
p' a
v) ->
forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event Context
c (Arc -> Arc
plus forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe Arc
w) (Arc -> Arc
plus Arc
p') a
v) forall a b. (a -> b) -> a -> b
$
forall a. Pattern a -> State -> [Event a]
query Pattern a
p (State
st {arc :: Arc
arc = Arc -> Arc
minus forall a b. (a -> b) -> a -> b
$ State -> Arc
arc State
st})
where minus :: Arc -> Arc
minus = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. Num a => a -> a -> a
subtract (Time -> Time
sam Time
s))
plus :: Arc -> Arc
plus = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. Num a => a -> a -> a
+ Time -> Time
sam Time
s)
s :: Time
s = forall a. ArcF a -> a
start forall a b. (a -> b) -> a -> b
$ State -> Arc
arc State
st
timeLoop :: Pattern Time -> Pattern a -> Pattern a
timeLoop :: forall a. Pattern Time -> Pattern a -> Pattern a
timeLoop Pattern Time
n = forall a1 a.
Pattern Time
-> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
outside Pattern Time
n forall a. Pattern a -> Pattern a
loopFirst
seqPLoop :: [(Time, Time, Pattern a)] -> Pattern a
seqPLoop :: forall a. [(Time, Time, Pattern a)] -> Pattern a
seqPLoop [(Time, Time, Pattern a)]
ps = forall a. Pattern Time -> Pattern a -> Pattern a
timeLoop (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ Time
maxT forall a. Num a => a -> a -> a
- Time
minT) forall a b. (a -> b) -> a -> b
$ Time
minT forall a. Time -> Pattern a -> Pattern a
`rotL` forall a. [(Time, Time, Pattern a)] -> Pattern a
seqP [(Time, Time, Pattern a)]
ps
where minT :: Time
minT = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\(Time
x,Time
_,Pattern a
_) -> Time
x) [(Time, Time, Pattern a)]
ps
maxT :: Time
maxT = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\(Time
_,Time
x,Pattern a
_) -> Time
x) [(Time, Time, Pattern a)]
ps
toScale' :: Num a => Int -> [a] -> Pattern Int -> Pattern a
toScale' :: forall a. Num a => Int -> [a] -> Pattern Int -> Pattern a
toScale' Int
_ [] = forall a b. a -> b -> a
const forall a. Pattern a
silence
toScale' Int
o [a]
s = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> a
noteInScale
where octave :: Int -> Int
octave Int
x = Int
x forall a. Integral a => a -> a -> a
`div` forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
s
noteInScale :: Int -> a
noteInScale Int
x = ([a]
s forall a. [a] -> Int -> a
!!! Int
x) forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int
o forall a. Num a => a -> a -> a
* Int -> Int
octave Int
x)
toScale :: Num a => [a] -> Pattern Int -> Pattern a
toScale :: forall a. Num a => [a] -> Pattern Int -> Pattern a
toScale = forall a. Num a => Int -> [a] -> Pattern Int -> Pattern a
toScale' Int
12
swingBy :: Pattern Time -> Pattern Time -> Pattern a -> Pattern a
swingBy :: forall a. Pattern Time -> Pattern Time -> Pattern a -> Pattern a
swingBy Pattern Time
x Pattern Time
n = forall a1 a.
Pattern Time
-> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
inside Pattern Time
n (forall a. Arc -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
withinArc (forall a. a -> a -> ArcF a
Arc Time
0.5 Time
1) (Pattern Time
x forall a. Pattern Time -> Pattern a -> Pattern a
~>))
swing :: Pattern Time -> Pattern a -> Pattern a
swing :: forall a. Pattern Time -> Pattern a -> Pattern a
swing = forall a. Pattern Time -> Pattern Time -> Pattern a -> Pattern a
swingBy (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ Integer
1forall a. Integral a => a -> a -> Ratio a
%Integer
3)
cycleChoose :: [a] -> Pattern a
cycleChoose :: forall a. [a] -> Pattern a
cycleChoose = forall a. Pattern Time -> Pattern a -> Pattern a
segment Pattern Time
1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. [a] -> Pattern a
choose
_rearrangeWith :: Pattern Int -> Int -> Pattern a -> Pattern a
_rearrangeWith :: forall a. Pattern Int -> Int -> Pattern a -> Pattern a
_rearrangeWith Pattern Int
ipat Int
n Pattern a
pat = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Int
i -> forall a. Time -> Pattern a -> Pattern a
_fast Time
nT forall a b. (a -> b) -> a -> b
$ forall a. Int -> Pattern a -> Pattern a
_repeatCycles Int
n forall a b. (a -> b) -> a -> b
$ [Pattern a]
pats forall a. [a] -> Int -> a
!! Int
i) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
ipat
where
pats :: [Pattern a]
pats = forall a b. (a -> b) -> [a] -> [b]
map (\Int
i -> forall a. (Time, Time) -> Pattern a -> Pattern a
zoom (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i forall a. Fractional a => a -> a -> a
/ Time
nT, forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int
iforall a. Num a => a -> a -> a
+Int
1) forall a. Fractional a => a -> a -> a
/ Time
nT) Pattern a
pat) [Int
0 .. (Int
nforall a. Num a => a -> a -> a
-Int
1)]
nT :: Time
nT :: Time
nT = forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n
shuffle :: Pattern Int -> Pattern a -> Pattern a
shuffle :: forall c. Pattern Int -> Pattern c -> Pattern c
shuffle = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Int -> Pattern a -> Pattern a
_shuffle
_shuffle :: Int -> Pattern a -> Pattern a
_shuffle :: forall a. Int -> Pattern a -> Pattern a
_shuffle Int
n = forall a. Pattern Int -> Int -> Pattern a -> Pattern a
_rearrangeWith (Int -> Pattern Int
randrun Int
n) Int
n
scramble :: Pattern Int -> Pattern a -> Pattern a
scramble :: forall c. Pattern Int -> Pattern c -> Pattern c
scramble = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Int -> Pattern a -> Pattern a
_scramble
_scramble :: Int -> Pattern a -> Pattern a
_scramble :: forall a. Int -> Pattern a -> Pattern a
_scramble Int
n = forall a. Pattern Int -> Int -> Pattern a -> Pattern a
_rearrangeWith (forall a. Time -> Pattern a -> Pattern a
_segment (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n) forall a b. (a -> b) -> a -> b
$ forall a. Num a => Int -> Pattern a
_irand Int
n) Int
n
randrun :: Int -> Pattern Int
randrun :: Int -> Pattern Int
randrun Int
0 = forall a. Pattern a
silence
randrun Int
n' =
forall a. Pattern a -> Pattern a
splitQueries forall a b. (a -> b) -> a -> b
$ forall a. (State -> [Event a]) -> Pattern a
Pattern (\(State a :: Arc
a@(Arc Time
s Time
_) ValueMap
_) -> forall {p}. RealFrac p => Arc -> p -> [Event Int]
events Arc
a forall a b. (a -> b) -> a -> b
$ Time -> Time
sam Time
s)
where events :: Arc -> p -> [Event Int]
events Arc
a p
seed = forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe forall {b}. (Arc, b) -> Maybe (EventF Arc b)
toEv forall a b. (a -> b) -> a -> b
$ forall a b. [a] -> [b] -> [(a, b)]
zip [Arc]
arcs [Int]
shuffled
where shuffled :: [Int]
shuffled = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd forall a b. (a -> b) -> a -> b
$ forall b a. Ord b => (a -> b) -> [a] -> [a]
sortOn forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall a b. [a] -> [b] -> [(a, b)]
zip [Double]
rs [Int
0 .. (Int
n'forall a. Num a => a -> a -> a
-Int
1)]
rs :: [Double]
rs = forall a b. (RealFrac a, Fractional b) => a -> Int -> [b]
timeToRands p
seed Int
n' :: [Double]
arcs :: [Arc]
arcs = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith forall a. a -> a -> ArcF a
Arc [Time]
fractions (forall a. [a] -> [a]
tail [Time]
fractions)
fractions :: [Time]
fractions = forall a b. (a -> b) -> [a] -> [b]
map (forall a. Num a => a -> a -> a
+ (Time -> Time
sam forall a b. (a -> b) -> a -> b
$ forall a. ArcF a -> a
start Arc
a)) [Time
0, Time
1 forall a. Fractional a => a -> a -> a
/ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n' .. Time
1]
toEv :: (Arc, b) -> Maybe (EventF Arc b)
toEv (Arc
a',b
v) = do Arc
a'' <- Arc -> Arc -> Maybe Arc
subArc Arc
a Arc
a'
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event ([((Int, Int), (Int, Int))] -> Context
Context []) (forall a. a -> Maybe a
Just Arc
a') Arc
a'' b
v
ur :: Time -> Pattern String -> [(String, Pattern a)] -> [(String, Pattern a -> Pattern a)] -> Pattern a
ur :: forall a.
Time
-> Pattern [Char]
-> [([Char], Pattern a)]
-> [([Char], Pattern a -> Pattern a)]
-> Pattern a
ur Time
t Pattern [Char]
outer_p [([Char], Pattern a)]
ps [([Char], Pattern a -> Pattern a)]
fs = forall a. Time -> Pattern a -> Pattern a
_slow Time
t forall a b. (a -> b) -> a -> b
$ forall a. Pattern (Pattern a) -> Pattern a
unwrap forall a b. (a -> b) -> a -> b
$ forall {t} {t} {t}. (t, (t, t -> t -> t)) -> t
adjust forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {b}. Pattern b -> Pattern (Arc, b)
timedValues ([[Char]] -> (Pattern a, Arc -> Pattern a -> Pattern a)
getPat forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [[Char]]
split forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern [Char]
outer_p)
where split :: [Char] -> [[Char]]
split = forall a. (a -> Bool) -> [a] -> [[a]]
wordsBy (forall a. Eq a => a -> a -> Bool
==Char
':')
getPat :: [[Char]] -> (Pattern a, Arc -> Pattern a -> Pattern a)
getPat ([Char]
s:[[Char]]
xs) = ([Char] -> Pattern a
match [Char]
s, [[Char]] -> Arc -> Pattern a -> Pattern a
transform [[Char]]
xs)
getPat [[Char]]
_ = forall a. HasCallStack => [Char] -> a
error [Char]
"can't happen?"
match :: [Char] -> Pattern a
match [Char]
s = forall a. a -> Maybe a -> a
fromMaybe forall a. Pattern a
silence forall a b. (a -> b) -> a -> b
$ forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup [Char]
s [([Char], Pattern a)]
ps'
ps' :: [([Char], Pattern a)]
ps' = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. Time -> Pattern a -> Pattern a
_fast Time
t)) [([Char], Pattern a)]
ps
adjust :: (t, (t, t -> t -> t)) -> t
adjust (t
a, (t
p, t -> t -> t
f)) = t -> t -> t
f t
a t
p
transform :: [[Char]] -> Arc -> Pattern a -> Pattern a
transform ([Char]
x:[[Char]]
_) Arc
a = [Char] -> Arc -> Pattern a -> Pattern a
transform' [Char]
x Arc
a
transform [[Char]]
_ Arc
_ = forall a. a -> a
id
transform' :: [Char] -> Arc -> Pattern a -> Pattern a
transform' [Char]
str (Arc Time
s Time
e) Pattern a
p = Time
s forall a. Time -> Pattern a -> Pattern a
`rotR` forall a1 a.
Pattern Time
-> (Pattern a1 -> Pattern a) -> Pattern a1 -> Pattern a
inside (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ Time
1forall a. Fractional a => a -> a -> a
/(Time
eforall a. Num a => a -> a -> a
-Time
s)) ([Char] -> Pattern a -> Pattern a
matchF [Char]
str) Pattern a
p
matchF :: [Char] -> Pattern a -> Pattern a
matchF [Char]
str = forall a. a -> Maybe a -> a
fromMaybe forall a. a -> a
id forall a b. (a -> b) -> a -> b
$ forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup [Char]
str [([Char], Pattern a -> Pattern a)]
fs
timedValues :: Pattern b -> Pattern (Arc, b)
timedValues = forall a b. (Event a -> Event b) -> Pattern a -> Pattern b
withEvent (\(Event Context
c (Just Arc
a) Arc
a' b
v) -> forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event Context
c (forall a. a -> Maybe a
Just Arc
a) Arc
a' (Arc
a,b
v)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Pattern a -> Pattern a
filterDigital
inhabit :: [(String, Pattern a)] -> Pattern String -> Pattern a
inhabit :: forall a. [([Char], Pattern a)] -> Pattern [Char] -> Pattern a
inhabit [([Char], Pattern a)]
ps Pattern [Char]
p = forall a. Pattern (Pattern a) -> Pattern a
squeezeJoin forall a b. (a -> b) -> a -> b
$ (\[Char]
s -> forall a. a -> Maybe a -> a
fromMaybe forall a. Pattern a
silence forall a b. (a -> b) -> a -> b
$ forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup [Char]
s [([Char], Pattern a)]
ps) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern [Char]
p
spaceOut :: [Time] -> Pattern a -> Pattern a
spaceOut :: forall a. [Time] -> Pattern a -> Pattern a
spaceOut [Time]
xs Pattern a
p = forall a. Time -> Pattern a -> Pattern a
_slow (forall a. Real a => a -> Time
toRational forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Time]
xs) forall a b. (a -> b) -> a -> b
$ forall a. [Pattern a] -> Pattern a
stack forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall a. Arc -> Pattern a -> Pattern a
`compressArc` Pattern a
p) [Arc]
spaceArcs
where markOut :: Time -> [Time] -> [Arc]
markOut :: Time -> [Time] -> [Arc]
markOut Time
_ [] = []
markOut Time
offset (Time
x:[Time]
xs') = forall a. a -> a -> ArcF a
Arc Time
offset (Time
offsetforall a. Num a => a -> a -> a
+Time
x)forall a. a -> [a] -> [a]
:Time -> [Time] -> [Arc]
markOut (Time
offsetforall a. Num a => a -> a -> a
+Time
x) [Time]
xs'
spaceArcs :: [Arc]
spaceArcs = forall a b. (a -> b) -> [a] -> [b]
map (\(Arc Time
a Time
b) -> forall a. a -> a -> ArcF a
Arc (Time
aforall a. Fractional a => a -> a -> a
/Time
s) (Time
bforall a. Fractional a => a -> a -> a
/Time
s)) forall a b. (a -> b) -> a -> b
$ Time -> [Time] -> [Arc]
markOut Time
0 [Time]
xs
s :: Time
s = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Time]
xs
flatpat :: Pattern [a] -> Pattern a
flatpat :: forall a. Pattern [a] -> Pattern a
flatpat Pattern [a]
p = Pattern [a]
p {query :: State -> [Event a]
query = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(Event Context
c Maybe Arc
b Arc
b' [a]
xs) -> forall a b. (a -> b) -> [a] -> [b]
map (forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event Context
c Maybe Arc
b Arc
b') [a]
xs) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Pattern a -> State -> [Event a]
query Pattern [a]
p}
layer :: [a -> Pattern b] -> a -> Pattern b
layer :: forall a b. [a -> Pattern b] -> a -> Pattern b
layer [a -> Pattern b]
fs a
p = forall a. [Pattern a] -> Pattern a
stack forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall a b. (a -> b) -> a -> b
$ a
p) [a -> Pattern b]
fs
arpeggiate :: Pattern a -> Pattern a
arpeggiate :: forall a. Pattern a -> Pattern a
arpeggiate = forall a b.
([EventF Arc a] -> [EventF Arc b]) -> Pattern a -> Pattern b
arpWith forall a. a -> a
id
arpg :: Pattern a -> Pattern a
arpg :: forall a. Pattern a -> Pattern a
arpg = forall a. Pattern a -> Pattern a
arpeggiate
arpWith :: ([EventF (ArcF Time) a] -> [EventF (ArcF Time) b]) -> Pattern a -> Pattern b
arpWith :: forall a b.
([EventF Arc a] -> [EventF Arc b]) -> Pattern a -> Pattern b
arpWith [EventF Arc a] -> [EventF Arc b]
f Pattern a
p = forall a b.
([EventF Arc a] -> [EventF Arc b]) -> Pattern a -> Pattern b
withEvents [EventF Arc a] -> [EventF Arc b]
munge Pattern a
p
where munge :: [EventF Arc a] -> [EventF Arc b]
munge [EventF Arc a]
es = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (forall {b}. [EventF Arc b] -> [EventF Arc b]
spreadOut forall b c a. (b -> c) -> (a -> b) -> a -> c
. [EventF Arc a] -> [EventF Arc b]
f) (forall a. (a -> a -> Bool) -> [a] -> [[a]]
groupBy (\EventF Arc a
a EventF Arc a
b -> forall a b. EventF a b -> Maybe a
whole EventF Arc a
a forall a. Eq a => a -> a -> Bool
== forall a b. EventF a b -> Maybe a
whole EventF Arc a
b) forall a b. (a -> b) -> a -> b
$ forall b a. Ord b => (a -> b) -> [a] -> [a]
sortOn forall a b. EventF a b -> Maybe a
whole [EventF Arc a]
es)
spreadOut :: [EventF Arc b] -> [EventF Arc b]
spreadOut [EventF Arc b]
xs = forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (\(Int
n, EventF Arc b
x) -> forall {p} {p} {b}.
(Integral p, Integral p) =>
p -> p -> EventF Arc b -> Maybe (EventF Arc b)
shiftIt Int
n (forall (t :: * -> *) a. Foldable t => t a -> Int
length [EventF Arc b]
xs) EventF Arc b
x) forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [(Int, a)]
enumerate [EventF Arc b]
xs
shiftIt :: p -> p -> EventF Arc b -> Maybe (EventF Arc b)
shiftIt p
n p
d (Event Context
c (Just (Arc Time
s Time
e)) Arc
a' b
v) =
do
Arc
a'' <- Arc -> Arc -> Maybe Arc
subArc (forall a. a -> a -> ArcF a
Arc Time
newS Time
newE) Arc
a'
forall (m :: * -> *) a. Monad m => a -> m a
return (forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event Context
c (forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a. a -> a -> ArcF a
Arc Time
newS Time
newE) Arc
a'' b
v)
where newS :: Time
newS = Time
s forall a. Num a => a -> a -> a
+ (Time
dur forall a. Num a => a -> a -> a
* forall a b. (Integral a, Num b) => a -> b
fromIntegral p
n)
newE :: Time
newE = Time
newS forall a. Num a => a -> a -> a
+ Time
dur
dur :: Time
dur = (Time
e forall a. Num a => a -> a -> a
- Time
s) forall a. Fractional a => a -> a -> a
/ forall a b. (Integral a, Num b) => a -> b
fromIntegral p
d
shiftIt p
_ p
_ EventF Arc b
_ = forall a. Maybe a
Nothing
arp :: Pattern String -> Pattern a -> Pattern a
arp :: forall a. Pattern [Char] -> Pattern a -> Pattern a
arp = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. [Char] -> Pattern a -> Pattern a
_arp
_arp :: String -> Pattern a -> Pattern a
_arp :: forall a. [Char] -> Pattern a -> Pattern a
_arp [Char]
name Pattern a
p = forall a b.
([EventF Arc a] -> [EventF Arc b]) -> Pattern a -> Pattern b
arpWith forall a. [a] -> [a]
f Pattern a
p
where f :: [a] -> [a]
f = forall a. a -> Maybe a -> a
fromMaybe forall a. a -> a
id forall a b. (a -> b) -> a -> b
$ forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup [Char]
name forall a. [([Char], [a] -> [a])]
arps
arps :: [(String, [a] -> [a])]
arps :: forall a. [([Char], [a] -> [a])]
arps = [([Char]
"up", forall a. a -> a
id),
([Char]
"down", forall a. [a] -> [a]
reverse),
([Char]
"updown", \[a]
x -> forall a. [a] -> [a]
init [a]
x forall a. [a] -> [a] -> [a]
++ forall a. [a] -> [a]
init (forall a. [a] -> [a]
reverse [a]
x)),
([Char]
"downup", \[a]
x -> forall a. [a] -> [a]
init (forall a. [a] -> [a]
reverse [a]
x) forall a. [a] -> [a] -> [a]
++ forall a. [a] -> [a]
init [a]
x),
([Char]
"up&down", \[a]
x -> [a]
x forall a. [a] -> [a] -> [a]
++ forall a. [a] -> [a]
reverse [a]
x),
([Char]
"down&up", \[a]
x -> forall a. [a] -> [a]
reverse [a]
x forall a. [a] -> [a] -> [a]
++ [a]
x),
([Char]
"converge", forall a. [a] -> [a]
converge),
([Char]
"diverge", forall a. [a] -> [a]
reverse forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. [a] -> [a]
converge),
([Char]
"disconverge", \[a]
x -> forall a. [a] -> [a]
converge [a]
x forall a. [a] -> [a] -> [a]
++ forall a. [a] -> [a]
tail (forall a. [a] -> [a]
reverse forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
converge [a]
x)),
([Char]
"pinkyup", forall a. [a] -> [a]
pinkyup),
([Char]
"pinkyupdown", \[a]
x -> forall a. [a] -> [a]
init (forall a. [a] -> [a]
pinkyup [a]
x) forall a. [a] -> [a] -> [a]
++ forall a. [a] -> [a]
init (forall a. [a] -> [a]
reverse forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
pinkyup [a]
x)),
([Char]
"thumbup", forall a. [a] -> [a]
thumbup),
([Char]
"thumbupdown", \[a]
x -> forall a. [a] -> [a]
init (forall a. [a] -> [a]
thumbup [a]
x) forall a. [a] -> [a] -> [a]
++ forall a. [a] -> [a]
init (forall a. [a] -> [a]
reverse forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
thumbup [a]
x))
]
converge :: [a] -> [a]
converge [] = []
converge (a
x:[a]
xs) = a
x forall a. a -> [a] -> [a]
: [a] -> [a]
converge' [a]
xs
converge' :: [a] -> [a]
converge' [] = []
converge' [a]
xs = forall a. [a] -> a
last [a]
xs forall a. a -> [a] -> [a]
: [a] -> [a]
converge (forall a. [a] -> [a]
init [a]
xs)
pinkyup :: [b] -> [b]
pinkyup [b]
xs = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (forall a. a -> [a] -> [a]
:[b
pinky]) forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
init [b]
xs
where pinky :: b
pinky = forall a. [a] -> a
last [b]
xs
thumbup :: [b] -> [b]
thumbup [b]
xs = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\b
x -> [b
thumb,b
x]) forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
tail [b]
xs
where thumb :: b
thumb = forall a. [a] -> a
head [b]
xs
rolledWith :: Ratio Integer -> Pattern a -> Pattern a
rolledWith :: forall a. Time -> Pattern a -> Pattern a
rolledWith Time
t = forall a b.
([EventF Arc a] -> [EventF Arc b]) -> Pattern a -> Pattern b
withEvents forall {b}. [EventF Arc b] -> [EventF Arc b]
aux
where aux :: [EventF Arc b] -> [EventF Arc b]
aux [EventF Arc b]
es = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (forall {b}. [EventF Arc b] -> [EventF Arc b]
steppityIn) (forall a. (a -> a -> Bool) -> [a] -> [[a]]
groupBy (\EventF Arc b
a EventF Arc b
b -> forall a b. EventF a b -> Maybe a
whole EventF Arc b
a forall a. Eq a => a -> a -> Bool
== forall a b. EventF a b -> Maybe a
whole EventF Arc b
b) forall a b. (a -> b) -> a -> b
$ ((forall {a} {a}. (Ord a, Num a) => a -> [a] -> [a]
isRev Time
t) [EventF Arc b]
es))
isRev :: a -> [a] -> [a]
isRev a
b = (\a
x -> if a
x forall a. Ord a => a -> a -> Bool
> a
0 then forall a. a -> a
id else forall a. [a] -> [a]
reverse ) a
b
steppityIn :: [EventF Arc b] -> [EventF Arc b]
steppityIn [EventF Arc b]
xs = forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (\(Int
n, EventF Arc b
ev) -> (forall {p} {t :: * -> *} {a} {a} {b}.
(Integral p, Foldable t, Num a, Eq a) =>
p -> t a -> EventF Arc b -> a -> Maybe (EventF Arc b)
timeguard Int
n [EventF Arc b]
xs EventF Arc b
ev Time
t)) forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [(Int, a)]
enumerate [EventF Arc b]
xs
timeguard :: p -> t a -> EventF Arc b -> a -> Maybe (EventF Arc b)
timeguard p
_ t a
_ EventF Arc b
ev a
0 = forall (m :: * -> *) a. Monad m => a -> m a
return EventF Arc b
ev
timeguard p
n t a
xs EventF Arc b
ev a
_ = (forall {p} {p} {b}.
(Integral p, Integral p) =>
p -> p -> EventF Arc b -> Maybe (EventF Arc b)
shiftIt p
n (forall (t :: * -> *) a. Foldable t => t a -> Int
length t a
xs) EventF Arc b
ev)
shiftIt :: p -> p -> EventF Arc b -> Maybe (EventF Arc b)
shiftIt p
n p
d (Event Context
c (Just (Arc Time
s Time
e)) Arc
a' b
v) = do
Arc
a'' <- Arc -> Arc -> Maybe Arc
subArc (forall a. a -> a -> ArcF a
Arc Time
newS Time
e) Arc
a'
forall (m :: * -> *) a. Monad m => a -> m a
return (forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event Context
c (forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a. a -> a -> ArcF a
Arc Time
newS Time
e) Arc
a'' b
v)
where newS :: Time
newS = Time
s forall a. Num a => a -> a -> a
+ (Time
dur forall a. Num a => a -> a -> a
* forall a b. (Integral a, Num b) => a -> b
fromIntegral p
n)
dur :: Time
dur = ((Time
e forall a. Num a => a -> a -> a
- Time
s)) forall a. Fractional a => a -> a -> a
/ ((Time
1forall a. Fractional a => a -> a -> a
/ (forall a. Num a => a -> a
abs Time
t))forall a. Num a => a -> a -> a
*forall a b. (Integral a, Num b) => a -> b
fromIntegral p
d)
shiftIt p
_ p
_ EventF Arc b
ev = forall (m :: * -> *) a. Monad m => a -> m a
return EventF Arc b
ev
rolledBy :: Pattern (Ratio Integer) -> Pattern a -> Pattern a
rolledBy :: forall a. Pattern Time -> Pattern a -> Pattern a
rolledBy Pattern Time
pt = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Time -> Pattern a -> Pattern a
rolledWith (forall a. Pattern Time -> Pattern a -> Pattern a
segment Pattern Time
1 forall a b. (a -> b) -> a -> b
$ Pattern Time
pt)
rolled :: Pattern a -> Pattern a
rolled :: forall a. Pattern a -> Pattern a
rolled = forall a. Pattern Time -> Pattern a -> Pattern a
rolledBy (Pattern Time
1forall a. Fractional a => a -> a -> a
/Pattern Time
4)
ply :: Pattern Rational -> Pattern a -> Pattern a
ply :: forall a. Pattern Time -> Pattern a -> Pattern a
ply = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Time -> Pattern a -> Pattern a
_ply
_ply :: Rational -> Pattern a -> Pattern a
_ply :: forall a. Time -> Pattern a -> Pattern a
_ply Time
n Pattern a
pat = forall a. Pattern (Pattern a) -> Pattern a
squeezeJoin forall a b. (a -> b) -> a -> b
$ (forall a. Time -> Pattern a -> Pattern a
_fast Time
n forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Applicative f => a -> f a
pure) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a
pat
plyWith :: (Ord t, Num t) => Pattern t -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
plyWith :: forall t a.
(Ord t, Num t) =>
Pattern t -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
plyWith Pattern t
np Pattern a -> Pattern a
f Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\t
n -> forall t a.
(Ord t, Num t) =>
t -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_plyWith t
n Pattern a -> Pattern a
f Pattern a
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern t
np
_plyWith :: (Ord t, Num t) => t -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_plyWith :: forall t a.
(Ord t, Num t) =>
t -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_plyWith t
numPat Pattern a -> Pattern a
f Pattern a
p = forall a. Pattern a -> Pattern a
arpeggiate forall a b. (a -> b) -> a -> b
$ forall {a}. (Ord a, Num a) => a -> Pattern a
compound t
numPat
where compound :: a -> Pattern a
compound a
n | a
n forall a. Ord a => a -> a -> Bool
<= a
1 = Pattern a
p
| Bool
otherwise = forall a. Pattern a -> Pattern a -> Pattern a
overlay Pattern a
p (Pattern a -> Pattern a
f forall a b. (a -> b) -> a -> b
$ a -> Pattern a
compound forall a b. (a -> b) -> a -> b
$ a
nforall a. Num a => a -> a -> a
-a
1)
press :: Pattern a -> Pattern a
press :: forall a. Pattern a -> Pattern a
press = forall a. Time -> Pattern a -> Pattern a
_pressBy Time
0.5
pressBy :: Pattern Time -> Pattern a -> Pattern a
pressBy :: forall a. Pattern Time -> Pattern a -> Pattern a
pressBy = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Time -> Pattern a -> Pattern a
_pressBy
_pressBy :: Time -> Pattern a -> Pattern a
_pressBy :: forall a. Time -> Pattern a -> Pattern a
_pressBy Time
r Pattern a
pat = forall a. Pattern (Pattern a) -> Pattern a
squeezeJoin forall a b. (a -> b) -> a -> b
$ (forall a. (Time, Time) -> Pattern a -> Pattern a
compressTo (Time
r,Time
1) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Applicative f => a -> f a
pure) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a
pat
sew :: Pattern Bool -> Pattern a -> Pattern a -> Pattern a
sew :: forall a. Pattern Bool -> Pattern a -> Pattern a -> Pattern a
sew Pattern Bool
pb Pattern a
a Pattern a
b = forall a. Pattern a -> Pattern a -> Pattern a
overlay (forall a. Pattern Bool -> Pattern a -> Pattern a
mask Pattern Bool
pb Pattern a
a) (forall a. Pattern Bool -> Pattern a -> Pattern a
mask (forall (f :: * -> *). Functor f => f Bool -> f Bool
inv Pattern Bool
pb) Pattern a
b)
stitch :: Pattern Bool -> Pattern a -> Pattern a -> Pattern a
stitch :: forall a. Pattern Bool -> Pattern a -> Pattern a -> Pattern a
stitch Pattern Bool
pb Pattern a
a Pattern a
b = forall a. Pattern a -> Pattern a -> Pattern a
overlay (forall a. Pattern Bool -> Pattern a -> Pattern a
struct Pattern Bool
pb Pattern a
a) (forall a. Pattern Bool -> Pattern a -> Pattern a
struct (forall (f :: * -> *). Functor f => f Bool -> f Bool
inv Pattern Bool
pb) Pattern a
b)
while :: Pattern Bool -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
while :: forall a.
Pattern Bool -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
while Pattern Bool
b Pattern a -> Pattern a
f Pattern a
pat = forall a. Pattern Bool -> Pattern a -> Pattern a -> Pattern a
sew Pattern Bool
b (Pattern a -> Pattern a
f Pattern a
pat) Pattern a
pat
stutter :: Integral i => i -> Time -> Pattern a -> Pattern a
stutter :: forall i a. Integral i => i -> Time -> Pattern a -> Pattern a
stutter i
n Time
t Pattern a
p = forall a. [Pattern a] -> Pattern a
stack forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\i
i -> (Time
t forall a. Num a => a -> a -> a
* forall a b. (Integral a, Num b) => a -> b
fromIntegral i
i) forall a. Time -> Pattern a -> Pattern a
`rotR` Pattern a
p) [i
0 .. (i
nforall a. Num a => a -> a -> a
-i
1)]
jux
:: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap -> Pattern ValueMap
jux :: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap -> Pattern ValueMap
jux = Pattern Double
-> (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap
-> Pattern ValueMap
juxBy Pattern Double
1
juxcut
:: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap -> Pattern ValueMap
juxcut :: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap -> Pattern ValueMap
juxcut Pattern ValueMap -> Pattern ValueMap
f Pattern ValueMap
p = forall a. [Pattern a] -> Pattern a
stack [Pattern ValueMap
p forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# Pattern Double -> Pattern ValueMap
P.pan (forall (f :: * -> *) a. Applicative f => a -> f a
pure Double
0) forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# Pattern Int -> Pattern ValueMap
P.cut (forall (f :: * -> *) a. Applicative f => a -> f a
pure (-Int
1)),
Pattern ValueMap -> Pattern ValueMap
f forall a b. (a -> b) -> a -> b
$ Pattern ValueMap
p forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# Pattern Double -> Pattern ValueMap
P.pan (forall (f :: * -> *) a. Applicative f => a -> f a
pure Double
1) forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# Pattern Int -> Pattern ValueMap
P.cut (forall (f :: * -> *) a. Applicative f => a -> f a
pure (-Int
2))
]
juxcut' :: [t -> Pattern ValueMap] -> t -> Pattern ValueMap
juxcut' :: forall t. [t -> Pattern ValueMap] -> t -> Pattern ValueMap
juxcut' [t -> Pattern ValueMap]
fs t
p = forall a. [Pattern a] -> Pattern a
stack forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\Int
n -> (([t -> Pattern ValueMap]
fs forall a. [a] -> Int -> a
!! Int
n) t
p forall a. Num a => Pattern a -> Pattern a -> Pattern a
|+ Pattern Int -> Pattern ValueMap
P.cut (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ Int
1forall a. Num a => a -> a -> a
-Int
n)) forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# Pattern Double -> Pattern ValueMap
P.pan (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n forall a. Fractional a => a -> a -> a
/ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
l)) [Int
0 .. Int
lforall a. Num a => a -> a -> a
-Int
1]
where l :: Int
l = forall (t :: * -> *) a. Foldable t => t a -> Int
length [t -> Pattern ValueMap]
fs
jux' :: [t -> Pattern ValueMap] -> t -> Pattern ValueMap
jux' :: forall t. [t -> Pattern ValueMap] -> t -> Pattern ValueMap
jux' [t -> Pattern ValueMap]
fs t
p = forall a. [Pattern a] -> Pattern a
stack forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\Int
n -> ([t -> Pattern ValueMap]
fs forall a. [a] -> Int -> a
!! Int
n) t
p forall a. Num a => Pattern a -> Pattern a -> Pattern a
|+ Pattern Double -> Pattern ValueMap
P.pan (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n forall a. Fractional a => a -> a -> a
/ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
l)) [Int
0 .. Int
lforall a. Num a => a -> a -> a
-Int
1]
where l :: Int
l = forall (t :: * -> *) a. Foldable t => t a -> Int
length [t -> Pattern ValueMap]
fs
jux4
:: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap -> Pattern ValueMap
jux4 :: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap -> Pattern ValueMap
jux4 Pattern ValueMap -> Pattern ValueMap
f Pattern ValueMap
p = forall a. [Pattern a] -> Pattern a
stack [Pattern ValueMap
p forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# Pattern Double -> Pattern ValueMap
P.pan (forall (f :: * -> *) a. Applicative f => a -> f a
pure (Double
5forall a. Fractional a => a -> a -> a
/Double
8)), Pattern ValueMap -> Pattern ValueMap
f forall a b. (a -> b) -> a -> b
$ Pattern ValueMap
p forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# Pattern Double -> Pattern ValueMap
P.pan (forall (f :: * -> *) a. Applicative f => a -> f a
pure (Double
1forall a. Fractional a => a -> a -> a
/Double
8))]
juxBy
:: Pattern Double
-> (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap
-> Pattern ValueMap
juxBy :: Pattern Double
-> (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap
-> Pattern ValueMap
juxBy Pattern Double
n Pattern ValueMap -> Pattern ValueMap
f Pattern ValueMap
p = forall a. [Pattern a] -> Pattern a
stack [Pattern ValueMap
p forall a. Num a => Pattern a -> Pattern a -> Pattern a
|+ Pattern Double -> Pattern ValueMap
P.pan Pattern Double
0.5 forall a. Num a => Pattern a -> Pattern a -> Pattern a
|- Pattern Double -> Pattern ValueMap
P.pan (Pattern Double
nforall a. Fractional a => a -> a -> a
/Pattern Double
2), Pattern ValueMap -> Pattern ValueMap
f forall a b. (a -> b) -> a -> b
$ Pattern ValueMap
p forall a. Num a => Pattern a -> Pattern a -> Pattern a
|+ Pattern Double -> Pattern ValueMap
P.pan Pattern Double
0.5 forall a. Num a => Pattern a -> Pattern a -> Pattern a
|+ Pattern Double -> Pattern ValueMap
P.pan (Pattern Double
nforall a. Fractional a => a -> a -> a
/Pattern Double
2)]
pick :: String -> Int -> String
pick :: [Char] -> Int -> [Char]
pick [Char]
name Int
n = [Char]
name forall a. [a] -> [a] -> [a]
++ [Char]
":" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> [Char]
show Int
n
samples :: Applicative f => f String -> f Int -> f String
samples :: forall (f :: * -> *).
Applicative f =>
f [Char] -> f Int -> f [Char]
samples f [Char]
p f Int
p' = [Char] -> Int -> [Char]
pick forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f [Char]
p forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f Int
p'
samples' :: Applicative f => f String -> f Int -> f String
samples' :: forall (f :: * -> *).
Applicative f =>
f [Char] -> f Int -> f [Char]
samples' f [Char]
p f Int
p' = forall a b c. (a -> b -> c) -> b -> a -> c
flip [Char] -> Int -> [Char]
pick forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f Int
p' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f [Char]
p
spreadf :: [a -> Pattern b] -> a -> Pattern b
spreadf :: forall a b. [a -> Pattern b] -> a -> Pattern b
spreadf = forall a t b. (a -> t -> Pattern b) -> [a] -> t -> Pattern b
spread forall a b. (a -> b) -> a -> b
($)
stackwith :: Unionable a => Pattern a -> [Pattern a] -> Pattern a
stackwith :: forall a. Unionable a => Pattern a -> [Pattern a] -> Pattern a
stackwith Pattern a
p [Pattern a]
ps | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Pattern a]
ps = forall a. Pattern a
silence
| Bool
otherwise = forall a. [Pattern a] -> Pattern a
stack forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\(Int
i, Pattern a
p') -> Pattern a
p' forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# ((forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i forall a. Integral a => a -> a -> Ratio a
% Integer
l) forall a. Time -> Pattern a -> Pattern a
`rotL` Pattern a
p)) (forall a b. [a] -> [b] -> [(a, b)]
zip [Int
0::Int ..] [Pattern a]
ps)
where l :: Integer
l = forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => t a -> Int
length [Pattern a]
ps
range :: Num a => Pattern a -> Pattern a -> Pattern a -> Pattern a
range :: forall a. Num a => Pattern a -> Pattern a -> Pattern a -> Pattern a
range Pattern a
fromP Pattern a
toP Pattern a
p = (\a
from a
to a
v -> ((a
v forall a. Num a => a -> a -> a
* (a
toforall a. Num a => a -> a -> a
-a
from)) forall a. Num a => a -> a -> a
+ a
from)) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a
fromP forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
*> Pattern a
toP forall a b. Pattern (a -> b) -> Pattern a -> Pattern b
*> Pattern a
p
_range :: (Functor f, Num b) => b -> b -> f b -> f b
_range :: forall (f :: * -> *) b. (Functor f, Num b) => b -> b -> f b -> f b
_range b
from b
to f b
p = (forall a. Num a => a -> a -> a
+ b
from) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
* (b
toforall a. Num a => a -> a -> a
-b
from)) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f b
p
rangex :: (Functor f, Floating b) => b -> b -> f b -> f b
rangex :: forall (f :: * -> *) b.
(Functor f, Floating b) =>
b -> b -> f b -> f b
rangex b
from b
to f b
p = forall {a}. Floating a => a -> a
exp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (f :: * -> *) b. (Functor f, Num b) => b -> b -> f b -> f b
_range (forall {a}. Floating a => a -> a
log b
from) (forall {a}. Floating a => a -> a
log b
to) f b
p
off :: Pattern Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
off :: forall a.
Pattern Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
off Pattern Time
tp Pattern a -> Pattern a
f Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Time
tv -> forall a.
Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_off Time
tv Pattern a -> Pattern a
f Pattern a
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Time
tp
_off :: Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_off :: forall a.
Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_off Time
t Pattern a -> Pattern a
f Pattern a
p = forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
superimpose (Pattern a -> Pattern a
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Time
t forall a. Time -> Pattern a -> Pattern a
`rotR`)) Pattern a
p
offadd :: Num a => Pattern Time -> Pattern a -> Pattern a -> Pattern a
offadd :: forall a.
Num a =>
Pattern Time -> Pattern a -> Pattern a -> Pattern a
offadd Pattern Time
tp Pattern a
pn Pattern a
p = forall a.
Pattern Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
off Pattern Time
tp (forall a. Num a => a -> a -> a
+Pattern a
pn) Pattern a
p
step :: String -> String -> Pattern String
step :: [Char] -> [Char] -> Pattern [Char]
step [Char]
s [Char]
cs = forall a. [Pattern a] -> Pattern a
fastcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map Char -> Pattern [Char]
f [Char]
cs
where f :: Char -> Pattern [Char]
f Char
c | Char
c forall a. Eq a => a -> a -> Bool
== Char
'x' = forall (f :: * -> *) a. Applicative f => a -> f a
pure [Char]
s
| Char -> Bool
isDigit Char
c = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ [Char]
s forall a. [a] -> [a] -> [a]
++ [Char]
":" forall a. [a] -> [a] -> [a]
++ [Char
c]
| Bool
otherwise = forall a. Pattern a
silence
steps :: [(String, String)] -> Pattern String
steps :: [([Char], [Char])] -> Pattern [Char]
steps = forall a. [Pattern a] -> Pattern a
stack forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map (forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry [Char] -> [Char] -> Pattern [Char]
step)
step' :: [String] -> String -> Pattern String
step' :: [[Char]] -> [Char] -> Pattern [Char]
step' [[Char]]
ss [Char]
cs = forall a. [Pattern a] -> Pattern a
fastcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map Char -> Pattern [Char]
f [Char]
cs
where f :: Char -> Pattern [Char]
f Char
c | Char
c forall a. Eq a => a -> a -> Bool
== Char
'x' = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. [a] -> a
head [[Char]]
ss
| Char -> Bool
isDigit Char
c = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ [[Char]]
ss forall a. [a] -> Int -> a
!! Char -> Int
digitToInt Char
c
| Bool
otherwise = forall a. Pattern a
silence
ghost'' :: Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
ghost'' :: forall a.
Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
ghost'' = forall a.
Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
ghostWith
ghostWith :: Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
ghostWith :: forall a.
Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
ghostWith Time
a Pattern a -> Pattern a
f Pattern a
p = forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
superimpose (((Time
aforall a. Num a => a -> a -> a
*Time
2.5) forall a. Time -> Pattern a -> Pattern a
`rotR`) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Pattern a -> Pattern a
f) forall a b. (a -> b) -> a -> b
$ forall a. (Pattern a -> Pattern a) -> Pattern a -> Pattern a
superimpose (((Time
aforall a. Num a => a -> a -> a
*Time
1.5) forall a. Time -> Pattern a -> Pattern a
`rotR`) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Pattern a -> Pattern a
f) Pattern a
p
ghost' :: Time -> Pattern ValueMap -> Pattern ValueMap
ghost' :: Time -> Pattern ValueMap -> Pattern ValueMap
ghost' Time
a Pattern ValueMap
p = forall a.
Time -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
ghostWith Time
a ((forall (a :: * -> *) b. (Applicative a, Num b) => a b -> a b -> a b
|*| Pattern Double -> Pattern ValueMap
P.gain (forall (f :: * -> *) a. Applicative f => a -> f a
pure Double
0.7)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
|> Pattern Double -> Pattern ValueMap
P.end (forall (f :: * -> *) a. Applicative f => a -> f a
pure Double
0.2)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall (a :: * -> *) b. (Applicative a, Num b) => a b -> a b -> a b
|*| Pattern Double -> Pattern ValueMap
P.speed (forall (f :: * -> *) a. Applicative f => a -> f a
pure Double
1.25))) Pattern ValueMap
p
ghost :: Pattern ValueMap -> Pattern ValueMap
ghost :: Pattern ValueMap -> Pattern ValueMap
ghost = Time -> Pattern ValueMap -> Pattern ValueMap
ghost' Time
0.125
tabby :: Int -> Pattern a -> Pattern a -> Pattern a
tabby :: forall a. Int -> Pattern a -> Pattern a -> Pattern a
tabby Int
nInt Pattern a
p Pattern a
p' = forall a. [Pattern a] -> Pattern a
stack [Pattern a
maskedWarp,
Pattern a
maskedWeft
]
where
n :: Integer
n = forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
nInt
weft :: [[Integer]]
weft = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (forall a b. a -> b -> a
const [[Integer
0..Integer
nforall a. Num a => a -> a -> a
-Integer
1], forall a. [a] -> [a]
reverse [Integer
0..Integer
nforall a. Num a => a -> a -> a
-Integer
1]]) [Integer
0 .. (Integer
n forall a. Integral a => a -> a -> a
`div` Integer
2) forall a. Num a => a -> a -> a
- Integer
1]
warp :: [[Integer]]
warp = forall a. [[a]] -> [[a]]
transpose [[Integer]]
weft
thread :: t [Integer] -> Pattern a -> Pattern a
thread t [Integer]
xs Pattern a
p'' = forall a. Time -> Pattern a -> Pattern a
_slow (Integer
nforall a. Integral a => a -> a -> Ratio a
%Integer
1) forall a b. (a -> b) -> a -> b
$ forall a. [Pattern a] -> Pattern a
fastcat forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (\Integer
i -> forall a. Arc -> Pattern a -> Pattern a
zoomArc (forall a. a -> a -> ArcF a
Arc (Integer
iforall a. Integral a => a -> a -> Ratio a
%Integer
n) ((Integer
iforall a. Num a => a -> a -> a
+Integer
1)forall a. Integral a => a -> a -> Ratio a
%Integer
n)) Pattern a
p'') (forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat t [Integer]
xs)
weftP :: Pattern a
weftP = forall {t :: * -> *} {a}.
Foldable t =>
t [Integer] -> Pattern a -> Pattern a
thread [[Integer]]
weft Pattern a
p'
warpP :: Pattern a
warpP = forall {t :: * -> *} {a}.
Foldable t =>
t [Integer] -> Pattern a -> Pattern a
thread [[Integer]]
warp Pattern a
p
maskedWeft :: Pattern a
maskedWeft = forall a. Pattern Bool -> Pattern a -> Pattern a
mask (forall b.
Pattern Int -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
every Pattern Int
2 forall a. Pattern a -> Pattern a
rev forall a b. (a -> b) -> a -> b
$ forall a. Time -> Pattern a -> Pattern a
_fast (Integer
n forall a. Integral a => a -> a -> Ratio a
% Integer
2) forall a b. (a -> b) -> a -> b
$ forall a. [Pattern a] -> Pattern a
fastCat [forall a. Pattern a
silence, forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
True]) Pattern a
weftP
maskedWarp :: Pattern a
maskedWarp = forall a. Pattern Bool -> Pattern a -> Pattern a
mask (forall b.
Pattern Int -> (Pattern b -> Pattern b) -> Pattern b -> Pattern b
every Pattern Int
2 forall a. Pattern a -> Pattern a
rev forall a b. (a -> b) -> a -> b
$ forall a. Time -> Pattern a -> Pattern a
_fast (Integer
n forall a. Integral a => a -> a -> Ratio a
% Integer
2) forall a b. (a -> b) -> a -> b
$ forall a. [Pattern a] -> Pattern a
fastCat [forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
True, forall a. Pattern a
silence]) Pattern a
warpP
select :: Pattern Double -> [Pattern a] -> Pattern a
select :: forall a. Pattern Double -> [Pattern a] -> Pattern a
select = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam forall a. Double -> [Pattern a] -> Pattern a
_select
_select :: Double -> [Pattern a] -> Pattern a
_select :: forall a. Double -> [Pattern a] -> Pattern a
_select Double
f [Pattern a]
ps = [Pattern a]
ps forall a. [a] -> Int -> a
!! forall a b. (RealFrac a, Integral b) => a -> b
floor (forall a. Ord a => a -> a -> a
max Double
0 (forall a. Ord a => a -> a -> a
min Double
1 Double
f) forall a. Num a => a -> a -> a
* forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall (t :: * -> *) a. Foldable t => t a -> Int
length [Pattern a]
ps forall a. Num a => a -> a -> a
- Int
1))
selectF :: Pattern Double -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
selectF :: forall a.
Pattern Double
-> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
selectF Pattern Double
pf [Pattern a -> Pattern a]
ps Pattern a
p = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Double
f -> forall a.
Double -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
_selectF Double
f [Pattern a -> Pattern a]
ps Pattern a
p) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Double
pf
_selectF :: Double -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
_selectF :: forall a.
Double -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
_selectF Double
f [Pattern a -> Pattern a]
ps Pattern a
p = ([Pattern a -> Pattern a]
ps forall a. [a] -> Int -> a
!! forall a b. (RealFrac a, Integral b) => a -> b
floor (forall a. Ord a => a -> a -> a
max Double
0 (forall a. Ord a => a -> a -> a
min Double
0.999999 Double
f) forall a. Num a => a -> a -> a
* forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall (t :: * -> *) a. Foldable t => t a -> Int
length [Pattern a -> Pattern a]
ps))) Pattern a
p
pickF :: Pattern Int -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
pickF :: forall a.
Pattern Int -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
pickF Pattern Int
pInt [Pattern a -> Pattern a]
fs Pattern a
pat = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Int
i -> forall a. Int -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
_pickF Int
i [Pattern a -> Pattern a]
fs Pattern a
pat) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
pInt
_pickF :: Int -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
_pickF :: forall a. Int -> [Pattern a -> Pattern a] -> Pattern a -> Pattern a
_pickF Int
i [Pattern a -> Pattern a]
fs Pattern a
p = ([Pattern a -> Pattern a]
fs forall a. [a] -> Int -> a
!!! Int
i) Pattern a
p
contrast :: (ControlPattern -> ControlPattern) -> (ControlPattern -> ControlPattern)
-> ControlPattern -> ControlPattern -> ControlPattern
contrast :: (Pattern ValueMap -> Pattern ValueMap)
-> (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap
-> Pattern ValueMap
-> Pattern ValueMap
contrast = forall a b.
(a -> Value -> Bool)
-> (Pattern ValueMap -> Pattern b)
-> (Pattern ValueMap -> Pattern b)
-> Pattern (Map [Char] a)
-> Pattern ValueMap
-> Pattern b
contrastBy forall a. Eq a => a -> a -> Bool
(==)
contrastBy :: (a -> Value -> Bool)
-> (ControlPattern -> Pattern b)
-> (ControlPattern -> Pattern b)
-> Pattern (Map.Map String a)
-> Pattern (Map.Map String Value)
-> Pattern b
contrastBy :: forall a b.
(a -> Value -> Bool)
-> (Pattern ValueMap -> Pattern b)
-> (Pattern ValueMap -> Pattern b)
-> Pattern (Map [Char] a)
-> Pattern ValueMap
-> Pattern b
contrastBy a -> Value -> Bool
comp Pattern ValueMap -> Pattern b
f Pattern ValueMap -> Pattern b
f' Pattern (Map [Char] a)
p Pattern ValueMap
p' = forall a. Pattern a -> Pattern a -> Pattern a
overlay (Pattern ValueMap -> Pattern b
f Pattern ValueMap
matched) (Pattern ValueMap -> Pattern b
f' Pattern ValueMap
unmatched)
where matches :: Pattern (Bool, ValueMap)
matches = forall b a.
(b -> a -> Bool) -> Pattern a -> Pattern b -> Pattern (Bool, b)
matchManyToOne (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. (a -> b) -> a -> b
$ forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
Map.isSubmapOfBy a -> Value -> Bool
comp) Pattern (Map [Char] a)
p Pattern ValueMap
p'
matched :: ControlPattern
matched :: Pattern ValueMap
matched = forall a. Pattern (Maybe a) -> Pattern a
filterJust forall a b. (a -> b) -> a -> b
$ (\(Bool
t, ValueMap
a) -> if Bool
t then forall a. a -> Maybe a
Just ValueMap
a else forall a. Maybe a
Nothing) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern (Bool, ValueMap)
matches
unmatched :: ControlPattern
unmatched :: Pattern ValueMap
unmatched = forall a. Pattern (Maybe a) -> Pattern a
filterJust forall a b. (a -> b) -> a -> b
$ (\(Bool
t, ValueMap
a) -> if Bool -> Bool
not Bool
t then forall a. a -> Maybe a
Just ValueMap
a else forall a. Maybe a
Nothing) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern (Bool, ValueMap)
matches
contrastRange
:: (ControlPattern -> Pattern a)
-> (ControlPattern -> Pattern a)
-> Pattern (Map.Map String (Value, Value))
-> ControlPattern
-> Pattern a
contrastRange :: forall a.
(Pattern ValueMap -> Pattern a)
-> (Pattern ValueMap -> Pattern a)
-> Pattern (Map [Char] (Value, Value))
-> Pattern ValueMap
-> Pattern a
contrastRange = forall a b.
(a -> Value -> Bool)
-> (Pattern ValueMap -> Pattern b)
-> (Pattern ValueMap -> Pattern b)
-> Pattern (Map [Char] a)
-> Pattern ValueMap
-> Pattern b
contrastBy (Value, Value) -> Value -> Bool
f
where f :: (Value, Value) -> Value -> Bool
f (VI Int
s, VI Int
e) (VI Int
v) = Int
v forall a. Ord a => a -> a -> Bool
>= Int
s Bool -> Bool -> Bool
&& Int
v forall a. Ord a => a -> a -> Bool
<= Int
e
f (VF Double
s, VF Double
e) (VF Double
v) = Double
v forall a. Ord a => a -> a -> Bool
>= Double
s Bool -> Bool -> Bool
&& Double
v forall a. Ord a => a -> a -> Bool
<= Double
e
f (VN Note
s, VN Note
e) (VN Note
v) = Note
v forall a. Ord a => a -> a -> Bool
>= Note
s Bool -> Bool -> Bool
&& Note
v forall a. Ord a => a -> a -> Bool
<= Note
e
f (VS [Char]
s, VS [Char]
e) (VS [Char]
v) = [Char]
v forall a. Eq a => a -> a -> Bool
== [Char]
s Bool -> Bool -> Bool
&& [Char]
v forall a. Eq a => a -> a -> Bool
== [Char]
e
f (Value, Value)
_ Value
_ = Bool
False
fix :: (ControlPattern -> ControlPattern) -> ControlPattern -> ControlPattern -> ControlPattern
fix :: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap -> Pattern ValueMap -> Pattern ValueMap
fix Pattern ValueMap -> Pattern ValueMap
f = (Pattern ValueMap -> Pattern ValueMap)
-> (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap
-> Pattern ValueMap
-> Pattern ValueMap
contrast Pattern ValueMap -> Pattern ValueMap
f forall a. a -> a
id
unfix :: (ControlPattern -> ControlPattern) -> ControlPattern -> ControlPattern -> ControlPattern
unfix :: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap -> Pattern ValueMap -> Pattern ValueMap
unfix = (Pattern ValueMap -> Pattern ValueMap)
-> (Pattern ValueMap -> Pattern ValueMap)
-> Pattern ValueMap
-> Pattern ValueMap
-> Pattern ValueMap
contrast forall a. a -> a
id
fixRange :: (ControlPattern -> Pattern ValueMap)
-> Pattern (Map.Map String (Value, Value))
-> ControlPattern
-> ControlPattern
fixRange :: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern (Map [Char] (Value, Value))
-> Pattern ValueMap
-> Pattern ValueMap
fixRange Pattern ValueMap -> Pattern ValueMap
f = forall a.
(Pattern ValueMap -> Pattern a)
-> (Pattern ValueMap -> Pattern a)
-> Pattern (Map [Char] (Value, Value))
-> Pattern ValueMap
-> Pattern a
contrastRange Pattern ValueMap -> Pattern ValueMap
f forall a. a -> a
id
unfixRange :: (ControlPattern -> Pattern ValueMap)
-> Pattern (Map.Map String (Value, Value))
-> ControlPattern
-> ControlPattern
unfixRange :: (Pattern ValueMap -> Pattern ValueMap)
-> Pattern (Map [Char] (Value, Value))
-> Pattern ValueMap
-> Pattern ValueMap
unfixRange = forall a.
(Pattern ValueMap -> Pattern a)
-> (Pattern ValueMap -> Pattern a)
-> Pattern (Map [Char] (Value, Value))
-> Pattern ValueMap
-> Pattern a
contrastRange forall a. a -> a
id
quantise :: (Functor f, RealFrac b) => b -> f b -> f b
quantise :: forall (f :: * -> *) b. (Functor f, RealFrac b) => b -> f b -> f b
quantise b
n = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((forall a. Fractional a => a -> a -> a
/b
n) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a b. (Integral a, Num b) => a -> b
fromIntegral :: RealFrac b => Int -> b) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
round forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
*b
n))
qfloor :: (Functor f, RealFrac b) => b -> f b -> f b
qfloor :: forall (f :: * -> *) b. (Functor f, RealFrac b) => b -> f b -> f b
qfloor b
n = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((forall a. Fractional a => a -> a -> a
/b
n) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a b. (Integral a, Num b) => a -> b
fromIntegral :: RealFrac b => Int -> b) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
floor forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
*b
n))
qceiling :: (Functor f, RealFrac b) => b -> f b -> f b
qceiling :: forall (f :: * -> *) b. (Functor f, RealFrac b) => b -> f b -> f b
qceiling b
n = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((forall a. Fractional a => a -> a -> a
/b
n) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a b. (Integral a, Num b) => a -> b
fromIntegral :: RealFrac b => Int -> b) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (RealFrac a, Integral b) => a -> b
ceiling forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. Num a => a -> a -> a
*b
n))
qround :: (Functor f, RealFrac b) => b -> f b -> f b
qround :: forall (f :: * -> *) b. (Functor f, RealFrac b) => b -> f b -> f b
qround = forall (f :: * -> *) b. (Functor f, RealFrac b) => b -> f b -> f b
quantise
inv :: Functor f => f Bool -> f Bool
inv :: forall (f :: * -> *). Functor f => f Bool -> f Bool
inv = (Bool -> Bool
not forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>)
mono :: Pattern a -> Pattern a
mono :: forall a. Pattern a -> Pattern a
mono Pattern a
p = forall a. (State -> [Event a]) -> Pattern a
Pattern forall a b. (a -> b) -> a -> b
$ \(State Arc
a ValueMap
cm) -> forall {b}. [EventF Arc b] -> [EventF Arc b]
flatten forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> State -> [Event a]
query Pattern a
p (Arc -> ValueMap -> State
State Arc
a ValueMap
cm) where
flatten :: [Event a] -> [Event a]
flatten :: forall {b}. [EventF Arc b] -> [EventF Arc b]
flatten = forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe forall a. Event a -> Maybe (Event a)
constrainPart forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {b}. [EventF Arc b] -> [EventF Arc b]
truncateOverlaps forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b a. Ord b => (a -> b) -> [a] -> [a]
sortOn forall a b. EventF a b -> Maybe a
whole
truncateOverlaps :: [Event a] -> [Event a]
truncateOverlaps [] = []
truncateOverlaps (Event a
e:[Event a]
es) = Event a
e forall a. a -> [a] -> [a]
: [Event a] -> [Event a]
truncateOverlaps (forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (forall {a} {a}. Event a -> Event a -> Maybe (Event a)
snip Event a
e) [Event a]
es)
snip :: Event a -> Event a -> Maybe (Event a)
snip Event a
a Event a
b | forall a. ArcF a -> a
start (forall a. Event a -> Arc
wholeOrPart Event a
b) forall a. Ord a => a -> a -> Bool
>= forall a. ArcF a -> a
stop (forall a. Event a -> Arc
wholeOrPart Event a
a) = forall a. a -> Maybe a
Just Event a
b
| forall a. ArcF a -> a
stop (forall a. Event a -> Arc
wholeOrPart Event a
b) forall a. Ord a => a -> a -> Bool
<= forall a. ArcF a -> a
stop (forall a. Event a -> Arc
wholeOrPart Event a
a) = forall a. Maybe a
Nothing
| Bool
otherwise = forall a. a -> Maybe a
Just Event a
b {whole :: Maybe Arc
whole = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a. a -> a -> ArcF a
Arc (forall a. ArcF a -> a
stop forall a b. (a -> b) -> a -> b
$ forall a. Event a -> Arc
wholeOrPart Event a
a) (forall a. ArcF a -> a
stop forall a b. (a -> b) -> a -> b
$ forall a. Event a -> Arc
wholeOrPart Event a
b)}
constrainPart :: Event a -> Maybe (Event a)
constrainPart :: forall a. Event a -> Maybe (Event a)
constrainPart Event a
e = do Arc
a <- Arc -> Arc -> Maybe Arc
subArc (forall a. Event a -> Arc
wholeOrPart Event a
e) (forall a b. EventF a b -> a
part Event a
e)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Event a
e {part :: Arc
part = Arc
a}
smooth :: Fractional a => Pattern a -> Pattern a
smooth :: forall a. Fractional a => Pattern a -> Pattern a
smooth Pattern a
p = forall a. (State -> [Event a]) -> Pattern a
Pattern forall a b. (a -> b) -> a -> b
$ \st :: State
st@(State Arc
a ValueMap
cm) -> forall {a}. State -> a -> [Event a] -> [EventF a a]
tween State
st Arc
a forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> State -> [Event a]
query Pattern a
monoP (Arc -> ValueMap -> State
State (forall {a}. Fractional a => ArcF a -> ArcF a
midArc Arc
a) ValueMap
cm)
where
midArc :: ArcF a -> ArcF a
midArc ArcF a
a = forall a. a -> a -> ArcF a
Arc (forall a. Fractional a => (a, a) -> a
mid (forall a. ArcF a -> a
start ArcF a
a, forall a. ArcF a -> a
stop ArcF a
a)) (forall a. Fractional a => (a, a) -> a
mid (forall a. ArcF a -> a
start ArcF a
a, forall a. ArcF a -> a
stop ArcF a
a))
tween :: State -> a -> [Event a] -> [EventF a a]
tween State
_ a
_ [] = []
tween State
st a
queryA (Event a
e:[Event a]
_) = forall b a. b -> (a -> b) -> Maybe a -> b
maybe [Event a
e {whole :: Maybe a
whole = forall a. a -> Maybe a
Just a
queryA, part :: a
part = a
queryA}] (forall {a}. a -> a -> [EventF a a]
tween' a
queryA) (State -> Maybe a
nextV State
st)
where aStop :: Arc
aStop = forall a. a -> a -> ArcF a
Arc (forall a. Event a -> Time
wholeStop Event a
e) (forall a. Event a -> Time
wholeStop Event a
e)
nextEs :: State -> [Event a]
nextEs State
st' = forall a. Pattern a -> State -> [Event a]
query Pattern a
monoP (State
st' {arc :: Arc
arc = Arc
aStop})
nextV :: State -> Maybe a
nextV State
st' | forall (t :: * -> *) a. Foldable t => t a -> Bool
null (State -> [Event a]
nextEs State
st') = forall a. Maybe a
Nothing
| Bool
otherwise = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a b. EventF a b -> b
value (forall a. [a] -> a
head (State -> [Event a]
nextEs State
st'))
tween' :: a -> a -> [EventF a a]
tween' a
queryA' a
v =
[ Event
{ context :: Context
context = forall a b. EventF a b -> Context
context Event a
e,
whole :: Maybe a
whole = forall a. a -> Maybe a
Just a
queryA'
, part :: a
part = a
queryA'
, value :: a
value = forall a b. EventF a b -> b
value Event a
e forall a. Num a => a -> a -> a
+ ((a
v forall a. Num a => a -> a -> a
- forall a b. EventF a b -> b
value Event a
e) forall a. Num a => a -> a -> a
* a
pc)}
]
pc :: a
pc | forall {a}. Num a => ArcF a -> a
delta' (forall a. Event a -> Arc
wholeOrPart Event a
e) forall a. Eq a => a -> a -> Bool
== Time
0 = a
0
| Bool
otherwise = forall a. Fractional a => Time -> a
fromRational forall a b. (a -> b) -> a -> b
$ (forall a. Event a -> Time
eventPartStart Event a
e forall a. Num a => a -> a -> a
- forall a. Event a -> Time
wholeStart Event a
e) forall a. Fractional a => a -> a -> a
/ forall {a}. Num a => ArcF a -> a
delta' (forall a. Event a -> Arc
wholeOrPart Event a
e)
delta' :: ArcF a -> a
delta' ArcF a
a = forall a. ArcF a -> a
stop ArcF a
a forall a. Num a => a -> a -> a
- forall a. ArcF a -> a
start ArcF a
a
monoP :: Pattern a
monoP = forall a. Pattern a -> Pattern a
mono Pattern a
p
swap :: Eq a => [(a, b)] -> Pattern a -> Pattern b
swap :: forall a b. Eq a => [(a, b)] -> Pattern a -> Pattern b
swap [(a, b)]
things Pattern a
p = forall a. Pattern (Maybe a) -> Pattern a
filterJust forall a b. (a -> b) -> a -> b
$ (forall a b. Eq a => a -> [(a, b)] -> Maybe b
`lookup` [(a, b)]
things) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern a
p
snowball :: Int -> (Pattern a -> Pattern a -> Pattern a) -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
snowball :: forall a.
Int
-> (Pattern a -> Pattern a -> Pattern a)
-> (Pattern a -> Pattern a)
-> Pattern a
-> Pattern a
snowball Int
depth Pattern a -> Pattern a -> Pattern a
combinationFunction Pattern a -> Pattern a
f Pattern a
pattern = forall a. [Pattern a] -> Pattern a
cat forall a b. (a -> b) -> a -> b
$ forall a. Int -> [a] -> [a]
take Int
depth forall a b. (a -> b) -> a -> b
$ forall b a. (b -> a -> b) -> b -> [a] -> [b]
scanl Pattern a -> Pattern a -> Pattern a
combinationFunction Pattern a
pattern forall a b. (a -> b) -> a -> b
$ forall a. Int -> [a] -> [a]
drop Int
1 forall a b. (a -> b) -> a -> b
$ forall a. (a -> a) -> a -> [a]
iterate Pattern a -> Pattern a
f Pattern a
pattern
soak :: Int -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
soak :: forall a. Int -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
soak Int
depth Pattern a -> Pattern a
f Pattern a
pattern = forall a. [Pattern a] -> Pattern a
cat forall a b. (a -> b) -> a -> b
$ forall a. Int -> [a] -> [a]
take Int
depth forall a b. (a -> b) -> a -> b
$ forall a. (a -> a) -> a -> [a]
iterate Pattern a -> Pattern a
f Pattern a
pattern
deconstruct :: Int -> Pattern String -> String
deconstruct :: Int -> Pattern [Char] -> [Char]
deconstruct Int
n Pattern [Char]
p = forall a. [a] -> [[a]] -> [a]
intercalate [Char]
" " forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map [[Char]] -> [Char]
showStep forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> [[a]]
toList Pattern [Char]
p
where
showStep :: [String] -> String
showStep :: [[Char]] -> [Char]
showStep [] = [Char]
"~"
showStep [[Char]
x] = [Char]
x
showStep [[Char]]
xs = [Char]
"[" forall a. [a] -> [a] -> [a]
++ (forall a. [a] -> [[a]] -> [a]
intercalate [Char]
", " [[Char]]
xs) forall a. [a] -> [a] -> [a]
++ [Char]
"]"
toList :: Pattern a -> [[a]]
toList :: forall a. Pattern a -> [[a]]
toList Pattern a
pat = forall a b. (a -> b) -> [a] -> [b]
map (\(Time
s,Time
e) -> forall a b. (a -> b) -> [a] -> [b]
map forall a b. EventF a b -> b
value forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> Arc -> [Event a]
queryArc (forall a. Time -> Pattern a -> Pattern a
_segment Time
n' Pattern a
pat) (forall a. a -> a -> ArcF a
Arc Time
s Time
e)) [(Time, Time)]
arcs
where breaks :: [Time]
breaks = [Time
0, (Time
1forall a. Fractional a => a -> a -> a
/Time
n') ..]
arcs :: [(Time, Time)]
arcs = forall a b. [a] -> [b] -> [(a, b)]
zip (forall a. Int -> [a] -> [a]
take Int
n [Time]
breaks) (forall a. Int -> [a] -> [a]
drop Int
1 [Time]
breaks)
n' :: Time
n' = forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n
bite :: Pattern Int -> Pattern Int -> Pattern a -> Pattern a
bite :: forall a. Pattern Int -> Pattern Int -> Pattern a -> Pattern a
bite Pattern Int
npat Pattern Int
ipat Pattern a
pat = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Int
n -> forall a. Int -> Pattern Int -> Pattern a -> Pattern a
_bite Int
n Pattern Int
ipat Pattern a
pat) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
npat
_bite :: Int -> Pattern Int -> Pattern a -> Pattern a
_bite :: forall a. Int -> Pattern Int -> Pattern a -> Pattern a
_bite Int
n Pattern Int
ipat Pattern a
pat = forall a. Pattern (Pattern a) -> Pattern a
squeezeJoin forall a b. (a -> b) -> a -> b
$ Int -> Pattern a
zoompat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
ipat
where zoompat :: Int -> Pattern a
zoompat Int
i = forall a. (Time, Time) -> Pattern a -> Pattern a
zoom (Time
i'forall a. Fractional a => a -> a -> a
/(forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n), (Time
i'forall a. Num a => a -> a -> a
+Time
1)forall a. Fractional a => a -> a -> a
/(forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)) Pattern a
pat
where i' :: Time
i' = forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ Int
i forall a. Integral a => a -> a -> a
`mod` Int
n
squeeze :: Pattern Int -> [Pattern a] -> Pattern a
squeeze :: forall a. Pattern Int -> [Pattern a] -> Pattern a
squeeze Pattern Int
_ [] = forall a. Pattern a
silence
squeeze Pattern Int
ipat [Pattern a]
pats = forall a. Pattern (Pattern a) -> Pattern a
squeezeJoin forall a b. (a -> b) -> a -> b
$ ([Pattern a]
pats forall a. [a] -> Int -> a
!!!) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
ipat
squeezeJoinUp :: Pattern (ControlPattern) -> ControlPattern
squeezeJoinUp :: Pattern (Pattern ValueMap) -> Pattern ValueMap
squeezeJoinUp Pattern (Pattern ValueMap)
pp = Pattern (Pattern ValueMap)
pp {query :: State -> [Event ValueMap]
query = State -> [Event ValueMap]
q}
where q :: State -> [Event ValueMap]
q State
st = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (State -> EventF Arc (Pattern ValueMap) -> [Event ValueMap]
f State
st) (forall a. Pattern a -> State -> [Event a]
query (forall a. Pattern a -> Pattern a
filterDigital Pattern (Pattern ValueMap)
pp) State
st)
f :: State -> EventF Arc (Pattern ValueMap) -> [Event ValueMap]
f State
st (Event Context
c (Just Arc
w) Arc
p Pattern ValueMap
v) =
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (forall {b}.
Context -> Arc -> Arc -> EventF Arc b -> Maybe (EventF Arc b)
munge Context
c Arc
w Arc
p) forall a b. (a -> b) -> a -> b
$ forall a. Pattern a -> State -> [Event a]
query (forall a. Arc -> Pattern a -> Pattern a
compressArc (Arc -> Arc
cycleArc Arc
w) (Pattern ValueMap
v forall a. Num a => Pattern a -> Pattern a -> Pattern a
|* Pattern Double -> Pattern ValueMap
P.speed (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. Fractional a => Time -> a
fromRational forall a b. (a -> b) -> a -> b
$ Time
1forall a. Fractional a => a -> a -> a
/(forall a. ArcF a -> a
stop Arc
w forall a. Num a => a -> a -> a
- forall a. ArcF a -> a
start Arc
w)))) State
st {arc :: Arc
arc = Arc
p}
f State
_ EventF Arc (Pattern ValueMap)
_ = []
munge :: Context -> Arc -> Arc -> EventF Arc b -> Maybe (EventF Arc b)
munge Context
co Arc
oWhole Arc
oPart (Event Context
ci (Just Arc
iWhole) Arc
iPart b
v) =
do Arc
w' <- Arc -> Arc -> Maybe Arc
subArc Arc
oWhole Arc
iWhole
Arc
p' <- Arc -> Arc -> Maybe Arc
subArc Arc
oPart Arc
iPart
forall (m :: * -> *) a. Monad m => a -> m a
return (forall a b. Context -> Maybe a -> a -> b -> EventF a b
Event ([Context] -> Context
combineContexts [Context
ci,Context
co]) (forall a. a -> Maybe a
Just Arc
w') Arc
p' b
v)
munge Context
_ Arc
_ Arc
_ EventF Arc b
_ = forall a. Maybe a
Nothing
_chew :: Int -> Pattern Int -> ControlPattern -> ControlPattern
_chew :: Int -> Pattern Int -> Pattern ValueMap -> Pattern ValueMap
_chew Int
n Pattern Int
ipat Pattern ValueMap
pat = (Pattern (Pattern ValueMap) -> Pattern ValueMap
squeezeJoinUp forall a b. (a -> b) -> a -> b
$ Int -> Pattern ValueMap
zoompat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
ipat) forall a. Fractional a => Pattern a -> Pattern a -> Pattern a
|/ Pattern Double -> Pattern ValueMap
P.speed (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
where zoompat :: Int -> Pattern ValueMap
zoompat Int
i = forall a. (Time, Time) -> Pattern a -> Pattern a
zoom (Time
i'forall a. Fractional a => a -> a -> a
/(forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n), (Time
i'forall a. Num a => a -> a -> a
+Time
1)forall a. Fractional a => a -> a -> a
/(forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)) (Pattern ValueMap
pat)
where i' :: Time
i' = forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ Int
i forall a. Integral a => a -> a -> a
`mod` Int
n
chew :: Pattern Int -> Pattern Int -> ControlPattern -> ControlPattern
chew :: Pattern Int -> Pattern Int -> Pattern ValueMap -> Pattern ValueMap
chew Pattern Int
npat Pattern Int
ipat Pattern ValueMap
pat = forall a. Pattern (Pattern a) -> Pattern a
innerJoin forall a b. (a -> b) -> a -> b
$ (\Int
n -> Int -> Pattern Int -> Pattern ValueMap -> Pattern ValueMap
_chew Int
n Pattern Int
ipat Pattern ValueMap
pat) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
npat
__binary :: Data.Bits.Bits b => Int -> b -> [Bool]
__binary :: forall b. Bits b => Int -> b -> [Bool]
__binary Int
n b
num = forall a b. (a -> b) -> [a] -> [b]
map (forall a. Bits a => a -> Int -> Bool
testBit b
num) forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
reverse [Int
0 .. Int
nforall a. Num a => a -> a -> a
-Int
1]
_binary :: Data.Bits.Bits b => Int -> b -> Pattern Bool
_binary :: forall b. Bits b => Int -> b -> Pattern Bool
_binary Int
n b
num = forall a. [a] -> Pattern a
listToPat forall a b. (a -> b) -> a -> b
$ forall b. Bits b => Int -> b -> [Bool]
__binary Int
n b
num
_binaryN :: Int -> Pattern Int -> Pattern Bool
_binaryN :: Int -> Pattern Int -> Pattern Bool
_binaryN Int
n Pattern Int
p = forall a. Pattern (Pattern a) -> Pattern a
squeezeJoin forall a b. (a -> b) -> a -> b
$ forall b. Bits b => Int -> b -> Pattern Bool
_binary Int
n forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern Int
p
binaryN :: Pattern Int -> Pattern Int -> Pattern Bool
binaryN :: Pattern Int -> Pattern Int -> Pattern Bool
binaryN Pattern Int
n Pattern Int
p = forall t1 t2 a.
(t1 -> t2 -> Pattern a) -> Pattern t1 -> t2 -> Pattern a
tParam Int -> Pattern Int -> Pattern Bool
_binaryN Pattern Int
n Pattern Int
p
binary :: Pattern Int -> Pattern Bool
binary :: Pattern Int -> Pattern Bool
binary = Pattern Int -> Pattern Int -> Pattern Bool
binaryN Pattern Int
8
ascii :: Pattern String -> Pattern Bool
ascii :: Pattern [Char] -> Pattern Bool
ascii Pattern [Char]
p = forall a. Pattern (Pattern a) -> Pattern a
squeezeJoin forall a b. (a -> b) -> a -> b
$ (forall a. [a] -> Pattern a
listToPat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (forall b. Bits b => Int -> b -> [Bool]
__binary Int
8 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Int
ord)) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Pattern [Char]
p
grain :: Pattern Double -> Pattern Double -> ControlPattern
grain :: Pattern Double -> Pattern Double -> Pattern ValueMap
grain Pattern Double
s Pattern Double
w = Pattern Double -> Pattern ValueMap
P.begin Pattern Double
b forall b. Unionable b => Pattern b -> Pattern b -> Pattern b
# Pattern Double -> Pattern ValueMap
P.end Pattern Double
e
where b :: Pattern Double
b = Pattern Double
s
e :: Pattern Double
e = Pattern Double
s forall a. Num a => a -> a -> a
+ Pattern Double
w
necklace :: Rational -> [Int] -> Pattern Bool
necklace :: Time -> [Int] -> Pattern Bool
necklace Time
perCycle [Int]
xs = forall a. Time -> Pattern a -> Pattern a
_slow ((forall a. Real a => a -> Time
toRational forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Int]
xs) forall a. Fractional a => a -> a -> a
/ Time
perCycle) forall a b. (a -> b) -> a -> b
$ forall a. [a] -> Pattern a
listToPat forall a b. (a -> b) -> a -> b
$ [Int] -> [Bool]
list [Int]
xs
where list :: [Int] -> [Bool]
list :: [Int] -> [Bool]
list [] = []
list (Int
x:[Int]
xs') = (Bool
Trueforall a. a -> [a] -> [a]
:(forall a. Int -> a -> [a]
replicate (Int
xforall a. Num a => a -> a -> a
-Int
1) Bool
False)) forall a. [a] -> [a] -> [a]
++ [Int] -> [Bool]
list [Int]
xs'