{-# LANGUAGE BangPatterns, CPP, MagicHash, UnboxedTuples #-}
module Data.Text.Format.Int
(
decimal
, hexadecimal
, minus
) where
import Data.Int (Int8, Int16, Int32, Int64)
import Data.Monoid (mempty)
import Data.Semigroup ((<>))
import Data.Text.Format.Functions (i2d)
import Data.Text.Lazy.Builder
import Data.Word (Word, Word8, Word16, Word32, Word64)
import GHC.Base (quotInt, remInt)
import GHC.Num (quotRemInteger)
import GHC.Types (Int(..))
#ifdef __GLASGOW_HASKELL__
# if __GLASGOW_HASKELL__ < 611
import GHC.Integer.Internals
# else
import GHC.Integer.GMP.Internals
# endif
#endif
#ifdef INTEGER_GMP
# define PAIR(a,b) (# a,b #)
#else
# define PAIR(a,b) (a,b)
#endif
decimal :: Integral a => a -> Builder
{-# SPECIALIZE decimal :: Int -> Builder #-}
{-# SPECIALIZE decimal :: Int8 -> Builder #-}
{-# SPECIALIZE decimal :: Int16 -> Builder #-}
{-# SPECIALIZE decimal :: Int32 -> Builder #-}
{-# SPECIALIZE decimal :: Int64 -> Builder #-}
{-# SPECIALIZE decimal :: Word -> Builder #-}
{-# SPECIALIZE decimal :: Word8 -> Builder #-}
{-# SPECIALIZE decimal :: Word16 -> Builder #-}
{-# SPECIALIZE decimal :: Word32 -> Builder #-}
{-# SPECIALIZE decimal :: Word64 -> Builder #-}
{-# RULES "decimal/Integer" decimal = integer 10 :: Integer -> Builder #-}
decimal i
| i < 0 = minus <> go (-i)
| otherwise = go i
where
go n | n < 10 = digit n
| otherwise = go (n `quot` 10) <> digit (n `rem` 10)
{-# NOINLINE[0] decimal #-}
hexadecimal :: Integral a => a -> Builder
{-# SPECIALIZE hexadecimal :: Int -> Builder #-}
{-# SPECIALIZE hexadecimal :: Int8 -> Builder #-}
{-# SPECIALIZE hexadecimal :: Int16 -> Builder #-}
{-# SPECIALIZE hexadecimal :: Int32 -> Builder #-}
{-# SPECIALIZE hexadecimal :: Int64 -> Builder #-}
{-# SPECIALIZE hexadecimal :: Word -> Builder #-}
{-# SPECIALIZE hexadecimal :: Word8 -> Builder #-}
{-# SPECIALIZE hexadecimal :: Word16 -> Builder #-}
{-# SPECIALIZE hexadecimal :: Word32 -> Builder #-}
{-# SPECIALIZE hexadecimal :: Word64 -> Builder #-}
{-# RULES "hexadecimal/Integer" hexadecimal = integer 16 :: Integer -> Builder #-}
hexadecimal i
| i < 0 = minus <> go (-i)
| otherwise = go i
where
go n | n < 16 = hexDigit n
| otherwise = go (n `quot` 16) <> hexDigit (n `rem` 16)
{-# NOINLINE[0] hexadecimal #-}
digit :: Integral a => a -> Builder
digit n = singleton $! i2d (fromIntegral n)
{-# INLINE digit #-}
hexDigit :: Integral a => a -> Builder
hexDigit n
| n <= 9 = singleton $! i2d (fromIntegral n)
| otherwise = singleton $! toEnum (fromIntegral n + 87)
{-# INLINE hexDigit #-}
minus :: Builder
minus = singleton '-'
int :: Int -> Builder
int = decimal
{-# INLINE int #-}
data T = T !Integer !Int
integer :: Int -> Integer -> Builder
integer 10 (S# i#) = decimal (I# i#)
integer 16 (S# i#) = hexadecimal (I# i#)
integer base i
| i < 0 = minus <> go (-i)
| otherwise = go i
where
go n | n < maxInt = int (fromInteger n)
| otherwise = putH (splitf (maxInt * maxInt) n)
splitf p n
| p > n = [n]
| otherwise = splith p (splitf (p*p) n)
splith p (n:ns) = case n `quotRemInteger` p of
PAIR(q,r) | q > 0 -> q : r : splitb p ns
| otherwise -> r : splitb p ns
splith _ _ = error "splith: the impossible happened."
splitb p (n:ns) = case n `quotRemInteger` p of
PAIR(q,r) -> q : r : splitb p ns
splitb _ _ = []
T maxInt10 maxDigits10 =
until ((>mi) . (*10) . fstT) (\(T n d) -> T (n*10) (d+1)) (T 10 1)
where mi = fromIntegral (maxBound :: Int)
T maxInt16 maxDigits16 =
until ((>mi) . (*16) . fstT) (\(T n d) -> T (n*16) (d+1)) (T 16 1)
where mi = fromIntegral (maxBound :: Int)
fstT (T a _) = a
maxInt | base == 10 = maxInt10
| otherwise = maxInt16
maxDigits | base == 10 = maxDigits10
| otherwise = maxDigits16
putH (n:ns) = case n `quotRemInteger` maxInt of
PAIR(x,y)
| q > 0 -> int q <> pblock r <> putB ns
| otherwise -> int r <> putB ns
where q = fromInteger x
r = fromInteger y
putH _ = error "putH: the impossible happened"
putB (n:ns) = case n `quotRemInteger` maxInt of
PAIR(x,y) -> pblock q <> pblock r <> putB ns
where q = fromInteger x
r = fromInteger y
putB _ = mempty
pblock = loop maxDigits
where
loop !d !n
| d == 1 = digit n
| otherwise = loop (d-1) q <> digit r
where q = n `quotInt` base
r = n `remInt` base