{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ExistentialQuantification #-}
module Synthesizer.Causal.Process (
T(Cons),
fromStateMaybe,
fromState,
fromSimpleModifier,
fromInitializedModifier,
id,
map,
first,
second,
compose,
split,
fanout,
loop,
apply,
applyFst,
applySnd,
applySameType,
applyConst,
apply2,
apply3,
applyStorableChunk,
feed,
feedFst,
feedSnd,
feedGenericFst,
feedGenericSnd,
feedConstFst,
feedConstSnd,
crochetL,
mapAccumL,
scanL,
scanL1,
zipWith,
consInit,
chainControlled,
replicateControlled,
feedback,
feedbackControlled,
applyFst',
applySnd',
) where
import qualified Synthesizer.State.Signal as Sig
import qualified Synthesizer.Generic.Signal as SigG
import qualified Synthesizer.Causal.Class as Class
import qualified Synthesizer.Causal.Utility as ArrowUtil
import qualified Synthesizer.Plain.Modifier as Modifier
import qualified Data.StorableVector as SV
import Foreign.Storable (Storable, )
import qualified Control.Category as Cat
import Control.Arrow
(Arrow(..), returnA, (<<<), (>>>), (^>>), ArrowLoop(..),
Kleisli(Kleisli), runKleisli, )
import Control.Monad.Trans.State
(State, runState,
StateT(StateT), runStateT, )
import Control.Monad (liftM, )
import Control.Applicative (Applicative, liftA2, pure, (<*>), )
import Data.Tuple.HT (mapSnd, )
import qualified Algebra.Field as Field
import qualified Algebra.Ring as Ring
import qualified Algebra.Additive as Additive
import qualified Prelude as P
import Prelude hiding (id, map, zipWith, )
data T a b =
forall s.
Cons !(a -> StateT s Maybe b)
!s
{-# INLINE fromStateMaybe #-}
fromStateMaybe :: (a -> StateT s Maybe b) -> s -> T a b
fromStateMaybe = Cons
{-# INLINE fromState #-}
fromState :: (a -> State s b) -> s -> T a b
fromState f =
fromStateMaybe (\x -> StateT (Just . runState (f x)))
{-# INLINE fromSimpleModifier #-}
fromSimpleModifier ::
Modifier.Simple s ctrl a b -> T (ctrl,a) b
fromSimpleModifier (Modifier.Simple s f) =
fromState (uncurry f) s
{-# INLINE fromInitializedModifier #-}
fromInitializedModifier ::
Modifier.Initialized s init ctrl a b -> init -> T (ctrl,a) b
fromInitializedModifier (Modifier.Initialized initF f) initS =
fromState (uncurry f) (initF initS)
instance Cat.Category T where
{-# INLINE id #-}
{-# INLINE (.) #-}
id = fromState return ()
(.) = flip compose
instance Arrow T where
{-# INLINE arr #-}
{-# INLINE first #-}
{-# INLINE second #-}
{-# INLINE (***) #-}
{-# INLINE (&&&) #-}
arr = map
first = liftKleisli first
second = liftKleisli second
(***) = split
(&&&) = fanout
instance ArrowLoop T where
{-# INLINE loop #-}
loop = liftKleisli loop
type instance Class.ProcessOf Sig.T = T
instance Class.C T where
type SignalOf T = Sig.T
toSignal = flip applyConst ()
fromSignal sig = const () ^>> feed sig
instance Functor (T a) where
fmap = ArrowUtil.map
instance Applicative (T a) where
pure = ArrowUtil.pure
(<*>) = ArrowUtil.apply
instance (Additive.C b) => Additive.C (T a b) where
zero = pure Additive.zero
negate = fmap Additive.negate
(+) = liftA2 (Additive.+)
(-) = liftA2 (Additive.-)
instance (Ring.C b) => Ring.C (T a b) where
one = pure Ring.one
(*) = liftA2 (Ring.*)
x^n = fmap (Ring.^ n) x
fromInteger = pure . Ring.fromInteger
instance (Field.C b) => Field.C (T a b) where
(/) = liftA2 (Field./)
recip = fmap Field.recip
fromRational' = pure . Field.fromRational'
instance (P.Num b) => P.Num (T a b) where
(+) = liftA2 (P.+)
(-) = liftA2 (P.-)
(*) = liftA2 (P.*)
negate = fmap P.negate
abs = fmap P.abs
signum = fmap P.signum
fromInteger = pure . P.fromInteger
instance (P.Fractional b) => P.Fractional (T a b) where
(/) = liftA2 (P./)
fromRational = pure . P.fromRational
{-# INLINE extendStateFstT #-}
extendStateFstT :: Monad m => StateT s m a -> StateT (t,s) m a
extendStateFstT st =
StateT (\(t0,s0) -> liftM (mapSnd (\s1 -> (t0,s1))) (runStateT st s0))
{-# INLINE extendStateSndT #-}
extendStateSndT :: Monad m => StateT s m a -> StateT (s,t) m a
extendStateSndT st =
StateT (\(s0,t0) -> liftM (mapSnd (\s1 -> (s1,t0))) (runStateT st s0))
{-# INLINE liftKleisli #-}
liftKleisli ::
(forall s.
Kleisli (StateT s Maybe) a0 a1 ->
Kleisli (StateT s Maybe) b0 b1) ->
T a0 a1 -> T b0 b1
liftKleisli op (Cons f s) =
Cons (runKleisli $ op $ Kleisli f) s
{-# INLINE liftKleisli2 #-}
liftKleisli2 ::
(forall s.
Kleisli (StateT s Maybe) a0 a1 ->
Kleisli (StateT s Maybe) b0 b1 ->
Kleisli (StateT s Maybe) c0 c1) ->
T a0 a1 -> T b0 b1 -> T c0 c1
liftKleisli2 op (Cons f s) (Cons g t) =
Cons
(runKleisli
(Kleisli (extendStateSndT . f) `op`
Kleisli (extendStateFstT . g)))
(s,t)
{-# INLINE id #-}
id :: T a a
id = returnA
{-# INLINE map #-}
map :: (a -> b) -> T a b
map f = fromState (return . f) ()
{-# INLINE compose #-}
compose :: T a b -> T b c -> T a c
compose = liftKleisli2 (>>>)
{-# INLINE split #-}
split :: T a b -> T c d -> T (a,c) (b,d)
split = liftKleisli2 (***)
{-# INLINE fanout #-}
fanout :: T a b -> T a c -> T a (b,c)
fanout = liftKleisli2 (&&&)
{-# INLINE runViewL #-}
runViewL :: (SigG.Read sig a) =>
sig a ->
(forall s. StateT s Maybe a -> s -> x) ->
x
runViewL sig cont =
SigG.runViewL sig (\f s -> cont (StateT f) s)
{-# INLINE apply #-}
apply :: (SigG.Transform sig a, SigG.Transform sig b) =>
T a b -> sig a -> sig b
apply (Cons f s) =
SigG.crochetL (runStateT . f) s
{-# INLINE applySameType #-}
applySameType :: (SigG.Transform sig a) =>
T a a -> sig a -> sig a
applySameType (Cons f s) =
SigG.crochetL (runStateT . f) s
{-# INLINE applyFst #-}
applyFst, applyFst' :: (SigG.Read sig a) =>
T (a,b) c -> sig a -> T b c
applyFst c as =
c <<< feedFst as
applyFst' (Cons f s) as =
runViewL as (\getNext r ->
Cons (\b ->
do a <- extendStateFstT getNext
extendStateSndT (f (a,b)))
(s,r))
{-# INLINE applySnd #-}
applySnd, applySnd' :: (SigG.Read sig b) =>
T (a,b) c -> sig b -> T a c
applySnd c as =
c <<< feedSnd as
applySnd' (Cons f s) bs =
runViewL bs (\getNext r ->
Cons (\a ->
do b <- extendStateFstT getNext
extendStateSndT (f (a,b)))
(s,r))
{-# INLINE applyConst #-}
applyConst :: T a b -> a -> Sig.T b
applyConst (Cons f s) a =
Sig.unfoldR (runStateT (f a)) s
{-# INLINE apply2 #-}
apply2 ::
(SigG.Read sig a, SigG.Transform sig b, SigG.Transform sig c) =>
T (a,b) c -> sig a -> sig b -> sig c
apply2 f x y =
apply (applyFst f x) y
{-# INLINE apply3 #-}
apply3 ::
(SigG.Read sig a, SigG.Read sig b, SigG.Transform sig c, SigG.Transform sig d) =>
T (a,b,c) d -> sig a -> sig b -> sig c -> sig d
apply3 f x y z =
apply2 (applyFst ((\(a,(b,c)) -> (a,b,c)) ^>> f) x) y z
applyStorableChunk ::
(Storable a, Storable b) =>
T a b -> T (SV.Vector a) (SV.Vector b)
applyStorableChunk (Cons next start) = Cons
(\a -> StateT $ \ms ->
flip fmap ms $ \s ->
SV.crochetLResult (runStateT . next) s a)
(Just start)
{-# INLINE feed #-}
feed :: (SigG.Read sig a) =>
sig a -> T () a
feed proc =
runViewL proc (\getNext ->
fromStateMaybe (const getNext))
{-# INLINE feedFst #-}
feedFst :: (SigG.Read sig a) =>
sig a -> T b (a,b)
feedFst proc =
runViewL proc (\getNext ->
fromStateMaybe (\b -> fmap (flip (,) b) getNext))
{-# INLINE feedSnd #-}
feedSnd :: (SigG.Read sig a) =>
sig a -> T b (b,a)
feedSnd proc =
runViewL proc (\getNext ->
fromStateMaybe (\b -> fmap ((,) b) getNext))
{-# INLINE feedConstFst #-}
feedConstFst :: a -> T b (a,b)
feedConstFst a = map (\b -> (a,b))
{-# INLINE feedConstSnd #-}
feedConstSnd :: a -> T b (b,a)
feedConstSnd a = map (\b -> (b,a))
{-# INLINE feedGenericFst #-}
feedGenericFst :: (SigG.Read sig a) =>
sig a -> T b (a,b)
feedGenericFst =
feedFst . SigG.toState
{-# INLINE feedGenericSnd #-}
feedGenericSnd :: (SigG.Read sig a) =>
sig a -> T b (b,a)
feedGenericSnd =
feedSnd . SigG.toState
{-# INLINE crochetL #-}
crochetL :: (x -> acc -> Maybe (y, acc)) -> acc -> T x y
crochetL f s = fromStateMaybe (StateT . f) s
{-# INLINE mapAccumL #-}
mapAccumL :: (x -> acc -> (y, acc)) -> acc -> T x y
mapAccumL next = crochetL (\a s -> Just $ next a s)
{-# INLINE scanL #-}
scanL :: (acc -> x -> acc) -> acc -> T x acc
scanL f = mapAccumL (\x acc -> (acc, f acc x))
{-# INLINE scanL1 #-}
scanL1 :: (x -> x -> x) -> T x x
scanL1 f =
mapAccumL (\x acc -> (x, Just $ maybe x (flip f x) acc)) Nothing
{-# INLINE zipWith #-}
zipWith :: (SigG.Read sig a) =>
(a -> b -> c) -> sig a -> T b c
zipWith f = applyFst (map (uncurry f))
{-# INLINE consInit #-}
consInit :: x -> T x x
consInit = mapAccumL (\x acc -> (acc, x))
{-# INLINE chainControlled #-}
chainControlled :: [T (c,x) x] -> T (c,x) x
chainControlled = Class.chainControlled
{-# INLINE replicateControlled #-}
replicateControlled :: Int -> T (c,x) x -> T (c,x) x
replicateControlled = Class.replicateControlled
{-# INLINE feedback #-}
feedback :: T (a,c) b -> T b c -> T a b
feedback forth back =
loop (forth >>> id &&& back)
{-# INLINE feedbackControlled #-}
feedbackControlled :: T ((ctrl,a),c) b -> T (ctrl,b) c -> T (ctrl,a) b
feedbackControlled forth back =
loop (map (fst.fst) &&& forth >>> map snd &&& back)