{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE PatternGuards #-}
#if defined(__GLASGOW_HASKELL__)
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
#endif
#define USE_MAGIC_PROXY 1
#ifdef USE_MAGIC_PROXY
{-# LANGUAGE MagicHash #-}
#endif
{-# OPTIONS_HADDOCK not-home #-}
#include "containers.h"
#if !(WORD_SIZE_IN_BITS >= 61)
#define DEFINE_ALTERF_FALLBACK 1
#endif
module Data.Strict.Map.Autogen.Internal (
Map(..)
, Size
, (!), (!?), (\\)
, null
, size
, member
, notMember
, lookup
, findWithDefault
, lookupLT
, lookupGT
, lookupLE
, lookupGE
, empty
, singleton
, insert
, insertWith
, insertWithKey
, insertLookupWithKey
, delete
, adjust
, adjustWithKey
, update
, updateWithKey
, updateLookupWithKey
, alter
, alterF
, union
, unionWith
, unionWithKey
, unions
, unionsWith
, difference
, differenceWith
, differenceWithKey
, intersection
, intersectionWith
, intersectionWithKey
, disjoint
, compose
, SimpleWhenMissing
, SimpleWhenMatched
, runWhenMatched
, runWhenMissing
, merge
, zipWithMaybeMatched
, zipWithMatched
, mapMaybeMissing
, dropMissing
, preserveMissing
, preserveMissing'
, mapMissing
, filterMissing
, WhenMissing (..)
, WhenMatched (..)
, mergeA
, zipWithMaybeAMatched
, zipWithAMatched
, traverseMaybeMissing
, traverseMissing
, filterAMissing
, mergeWithKey
, map
, mapWithKey
, traverseWithKey
, traverseMaybeWithKey
, mapAccum
, mapAccumWithKey
, mapAccumRWithKey
, mapKeys
, mapKeysWith
, mapKeysMonotonic
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
, elems
, keys
, assocs
, keysSet
, argSet
, fromSet
, fromArgSet
, toList
, fromList
, fromListWith
, fromListWithKey
, toAscList
, toDescList
, fromAscList
, fromAscListWith
, fromAscListWithKey
, fromDistinctAscList
, fromDescList
, fromDescListWith
, fromDescListWithKey
, fromDistinctDescList
, filter
, filterWithKey
, takeWhileAntitone
, dropWhileAntitone
, spanAntitone
, restrictKeys
, withoutKeys
, partition
, partitionWithKey
, mapMaybe
, mapMaybeWithKey
, mapEither
, mapEitherWithKey
, split
, splitLookup
, splitRoot
, isSubmapOf, isSubmapOfBy
, isProperSubmapOf, isProperSubmapOfBy
, lookupIndex
, findIndex
, elemAt
, updateAt
, deleteAt
, take
, drop
, splitAt
, lookupMin
, lookupMax
, findMin
, findMax
, deleteMin
, deleteMax
, deleteFindMin
, deleteFindMax
, updateMin
, updateMax
, updateMinWithKey
, updateMaxWithKey
, minView
, maxView
, minViewWithKey
, maxViewWithKey
, AreWeStrict (..)
, atKeyImpl
#ifdef __GLASGOW_HASKELL__
, atKeyPlain
#endif
, bin
, balance
, balanceL
, balanceR
, delta
, insertMax
, link
, link2
, glue
, MaybeS(..)
, Identity(..)
, mapWhenMissing
, mapWhenMatched
, lmapWhenMissing
, contramapFirstWhenMatched
, contramapSecondWhenMatched
, mapGentlyWhenMissing
, mapGentlyWhenMatched
) where
import Data.Functor.Identity (Identity (..))
import Control.Applicative (liftA3)
import Data.Functor.Classes
import Data.Semigroup (stimesIdempotentMonoid)
import Data.Semigroup (Arg(..), Semigroup(stimes))
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup (Semigroup((<>)))
#endif
import Control.Applicative (Const (..))
import Control.DeepSeq (NFData(rnf))
import Data.Bits (shiftL, shiftR)
import qualified Data.Foldable as Foldable
#if MIN_VERSION_base(4,10,0)
import Data.Bifoldable
#endif
import Prelude hiding (lookup, map, filter, foldr, foldl, null, splitAt, take, drop)
import qualified Data.Set.Internal as Set
import Data.Set.Internal (Set)
import Data.Strict.ContainersUtils.Autogen.PtrEquality (ptrEq)
import Data.Strict.ContainersUtils.Autogen.StrictPair
import Data.Strict.ContainersUtils.Autogen.StrictMaybe
import Data.Strict.ContainersUtils.Autogen.BitQueue
#ifdef DEFINE_ALTERF_FALLBACK
import Data.Strict.ContainersUtils.Autogen.BitUtil (wordSize)
#endif
#if __GLASGOW_HASKELL__
import GHC.Exts (build, lazy)
import Language.Haskell.TH.Syntax (Lift)
# ifdef USE_MAGIC_PROXY
import GHC.Exts (Proxy#, proxy# )
# endif
import qualified GHC.Exts as GHCExts
import Text.Read hiding (lift)
import Data.Data
import qualified Control.Category as Category
import Data.Coerce
#endif
infixl 9 !,!?,\\
(!) :: Ord k => Map k a -> k -> a
! :: forall k a. Ord k => Map k a -> k -> a
(!) Map k a
m k
k = forall k a. Ord k => k -> Map k a -> a
find k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINE (!) #-}
#endif
(!?) :: Ord k => Map k a -> k -> Maybe a
!? :: forall k a. Ord k => Map k a -> k -> Maybe a
(!?) Map k a
m k
k = forall k a. Ord k => k -> Map k a -> Maybe a
lookup k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINE (!?) #-}
#endif
(\\) :: Ord k => Map k a -> Map k b -> Map k a
Map k a
m1 \\ :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
\\ Map k b
m2 = forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
m1 Map k b
m2
#if __GLASGOW_HASKELL__
{-# INLINE (\\) #-}
#endif
data Map k a = Bin {-# UNPACK #-} !Size !k !a !(Map k a) !(Map k a)
| Tip
type Size = Int
#ifdef __GLASGOW_HASKELL__
type role Map nominal representational
#endif
#ifdef __GLASGOW_HASKELL__
deriving instance (Lift k, Lift a) => Lift (Map k a)
#endif
instance (Ord k) => Monoid (Map k v) where
mempty :: Map k v
mempty = forall k a. Map k a
empty
mconcat :: [Map k v] -> Map k v
mconcat = forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
f (Map k a) -> Map k a
unions
mappend :: Map k v -> Map k v -> Map k v
mappend = forall a. Semigroup a => a -> a -> a
(<>)
instance (Ord k) => Semigroup (Map k v) where
<> :: Map k v -> Map k v -> Map k v
(<>) = forall k v. Ord k => Map k v -> Map k v -> Map k v
union
stimes :: forall b. Integral b => b -> Map k v -> Map k v
stimes = forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid
#if __GLASGOW_HASKELL__
instance (Data k, Data a, Ord k) => Data (Map k a) where
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Map k a -> c (Map k a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z Map k a
m = forall g. g -> c g
z forall k a. Ord k => [(k, a)] -> Map k a
fromList forall d b. Data d => c (d -> b) -> d -> c b
`f` forall k a. Map k a -> [(k, a)]
toList Map k a
m
toConstr :: Map k a -> Constr
toConstr Map k a
_ = Constr
fromListConstr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Map k a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Size
constrIndex Constr
c of
Size
1 -> forall b r. Data b => c (b -> r) -> c r
k (forall r. r -> c r
z forall k a. Ord k => [(k, a)] -> Map k a
fromList)
Size
_ -> forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
dataTypeOf :: Map k a -> DataType
dataTypeOf Map k a
_ = DataType
mapDataType
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a))
dataCast2 forall d e. (Data d, Data e) => c (t d e)
f = forall {k1} {k2} {k3} (c :: k1 -> *) (t :: k2 -> k3 -> k1)
(t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3).
(Typeable t, Typeable t') =>
c (t a b) -> Maybe (c (t' a b))
gcast2 forall d e. (Data d, Data e) => c (t d e)
f
fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
mapDataType [Char]
"fromList" [] Fixity
Prefix
mapDataType :: DataType
mapDataType :: DataType
mapDataType = [Char] -> [Constr] -> DataType
mkDataType [Char]
"Data.Strict.Map.Autogen.Internal.Map" [Constr
fromListConstr]
#endif
null :: Map k a -> Bool
null :: forall k a. Map k a -> Bool
null Map k a
Tip = Bool
True
null (Bin {}) = Bool
False
{-# INLINE null #-}
size :: Map k a -> Int
size :: forall k a. Map k a -> Size
size Map k a
Tip = Size
0
size (Bin Size
sz k
_ a
_ Map k a
_ Map k a
_) = Size
sz
{-# INLINE size #-}
lookup :: Ord k => k -> Map k a -> Maybe a
lookup :: forall k a. Ord k => k -> Map k a -> Maybe a
lookup = forall k a. Ord k => k -> Map k a -> Maybe a
go
where
go :: t -> Map t a -> Maybe a
go !t
_ Map t a
Tip = forall a. Maybe a
Nothing
go t
k (Bin Size
_ t
kx a
x Map t a
l Map t a
r) = case forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
Ordering
LT -> t -> Map t a -> Maybe a
go t
k Map t a
l
Ordering
GT -> t -> Map t a -> Maybe a
go t
k Map t a
r
Ordering
EQ -> forall a. a -> Maybe a
Just a
x
#if __GLASGOW_HASKELL__
{-# INLINABLE lookup #-}
#else
{-# INLINE lookup #-}
#endif
member :: Ord k => k -> Map k a -> Bool
member :: forall k a. Ord k => k -> Map k a -> Bool
member = forall k a. Ord k => k -> Map k a -> Bool
go
where
go :: t -> Map t a -> Bool
go !t
_ Map t a
Tip = Bool
False
go t
k (Bin Size
_ t
kx a
_ Map t a
l Map t a
r) = case forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
Ordering
LT -> t -> Map t a -> Bool
go t
k Map t a
l
Ordering
GT -> t -> Map t a -> Bool
go t
k Map t a
r
Ordering
EQ -> Bool
True
#if __GLASGOW_HASKELL__
{-# INLINABLE member #-}
#else
{-# INLINE member #-}
#endif
notMember :: Ord k => k -> Map k a -> Bool
notMember :: forall k a. Ord k => k -> Map k a -> Bool
notMember k
k Map k a
m = Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ forall k a. Ord k => k -> Map k a -> Bool
member k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINABLE notMember #-}
#else
{-# INLINE notMember #-}
#endif
find :: Ord k => k -> Map k a -> a
find :: forall k a. Ord k => k -> Map k a -> a
find = forall k a. Ord k => k -> Map k a -> a
go
where
go :: t -> Map t a -> a
go !t
_ Map t a
Tip = forall a. HasCallStack => [Char] -> a
error [Char]
"Map.!: given key is not an element in the map"
go t
k (Bin Size
_ t
kx a
x Map t a
l Map t a
r) = case forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
Ordering
LT -> t -> Map t a -> a
go t
k Map t a
l
Ordering
GT -> t -> Map t a -> a
go t
k Map t a
r
Ordering
EQ -> a
x
#if __GLASGOW_HASKELL__
{-# INLINABLE find #-}
#else
{-# INLINE find #-}
#endif
findWithDefault :: Ord k => a -> k -> Map k a -> a
findWithDefault :: forall k a. Ord k => a -> k -> Map k a -> a
findWithDefault = forall k a. Ord k => a -> k -> Map k a -> a
go
where
go :: t -> t -> Map t t -> t
go t
def !t
_ Map t t
Tip = t
def
go t
def t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) = case forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
Ordering
LT -> t -> t -> Map t t -> t
go t
def t
k Map t t
l
Ordering
GT -> t -> t -> Map t t -> t
go t
def t
k Map t t
r
Ordering
EQ -> t
x
#if __GLASGOW_HASKELL__
{-# INLINABLE findWithDefault #-}
#else
{-# INLINE findWithDefault #-}
#endif
lookupLT :: Ord k => k -> Map k v -> Maybe (k, v)
lookupLT :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupLT = forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
where
goNothing :: t -> Map t t -> Maybe (t, t)
goNothing !t
_ Map t t
Tip = forall a. Maybe a
Nothing
goNothing t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k forall a. Ord a => a -> a -> Bool
<= t
kx = t -> Map t t -> Maybe (t, t)
goNothing t
k Map t t
l
| Bool
otherwise = forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r
goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = forall a. a -> Maybe a
Just (t
kx', t
x')
goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k forall a. Ord a => a -> a -> Bool
<= t
kx = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
l
| Bool
otherwise = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupLT #-}
#else
{-# INLINE lookupLT #-}
#endif
lookupGT :: Ord k => k -> Map k v -> Maybe (k, v)
lookupGT :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupGT = forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
where
goNothing :: t -> Map t t -> Maybe (t, t)
goNothing !t
_ Map t t
Tip = forall a. Maybe a
Nothing
goNothing t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k forall a. Ord a => a -> a -> Bool
< t
kx = forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
l
| Bool
otherwise = t -> Map t t -> Maybe (t, t)
goNothing t
k Map t t
r
goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = forall a. a -> Maybe a
Just (t
kx', t
x')
goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k forall a. Ord a => a -> a -> Bool
< t
kx = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
l
| Bool
otherwise = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupGT #-}
#else
{-# INLINE lookupGT #-}
#endif
lookupLE :: Ord k => k -> Map k v -> Maybe (k, v)
lookupLE :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupLE = forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
where
goNothing :: a -> Map a b -> Maybe (a, b)
goNothing !a
_ Map a b
Tip = forall a. Maybe a
Nothing
goNothing a
k (Bin Size
_ a
kx b
x Map a b
l Map a b
r) = case forall a. Ord a => a -> a -> Ordering
compare a
k a
kx of Ordering
LT -> a -> Map a b -> Maybe (a, b)
goNothing a
k Map a b
l
Ordering
EQ -> forall a. a -> Maybe a
Just (a
kx, b
x)
Ordering
GT -> forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust a
k a
kx b
x Map a b
r
goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = forall a. a -> Maybe a
Just (t
kx', t
x')
goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) = case forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of Ordering
LT -> t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
l
Ordering
EQ -> forall a. a -> Maybe a
Just (t
kx, t
x)
Ordering
GT -> t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupLE #-}
#else
{-# INLINE lookupLE #-}
#endif
lookupGE :: Ord k => k -> Map k v -> Maybe (k, v)
lookupGE :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupGE = forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
where
goNothing :: t -> Map t b -> Maybe (t, b)
goNothing !t
_ Map t b
Tip = forall a. Maybe a
Nothing
goNothing t
k (Bin Size
_ t
kx b
x Map t b
l Map t b
r) = case forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of Ordering
LT -> forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx b
x Map t b
l
Ordering
EQ -> forall a. a -> Maybe a
Just (t
kx, b
x)
Ordering
GT -> t -> Map t b -> Maybe (t, b)
goNothing t
k Map t b
r
goJust :: a -> a -> b -> Map a b -> Maybe (a, b)
goJust !a
_ a
kx' b
x' Map a b
Tip = forall a. a -> Maybe a
Just (a
kx', b
x')
goJust a
k a
kx' b
x' (Bin Size
_ a
kx b
x Map a b
l Map a b
r) = case forall a. Ord a => a -> a -> Ordering
compare a
k a
kx of Ordering
LT -> a -> a -> b -> Map a b -> Maybe (a, b)
goJust a
k a
kx b
x Map a b
l
Ordering
EQ -> forall a. a -> Maybe a
Just (a
kx, b
x)
Ordering
GT -> a -> a -> b -> Map a b -> Maybe (a, b)
goJust a
k a
kx' b
x' Map a b
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupGE #-}
#else
{-# INLINE lookupGE #-}
#endif
empty :: Map k a
empty :: forall k a. Map k a
empty = forall k a. Map k a
Tip
{-# INLINE empty #-}
singleton :: k -> a -> Map k a
singleton :: forall k a. k -> a -> Map k a
singleton k
k a
x = forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip
{-# INLINE singleton #-}
insert :: Ord k => k -> a -> Map k a -> Map k a
insert :: forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
kx0 = forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
kx0 k
kx0
where
go :: Ord k => k -> k -> a -> Map k a -> Map k a
go :: forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig !k
_ a
x Map k a
Tip = forall k a. k -> a -> Map k a
singleton (forall a. a -> a
lazy k
orig) a
x
go k
orig !k
kx a
x t :: Map k a
t@(Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT | Map k a
l' forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
| Bool
otherwise -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
where !l' :: Map k a
l' = forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
l
Ordering
GT | Map k a
r' forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
| Bool
otherwise -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
where !r' :: Map k a
r' = forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
r
Ordering
EQ | a
x forall a. a -> a -> Bool
`ptrEq` a
y Bool -> Bool -> Bool
&& (forall a. a -> a
lazy k
orig seq :: forall a b. a -> b -> b
`seq` (k
orig forall a. a -> a -> Bool
`ptrEq` k
ky)) -> Map k a
t
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz (forall a. a -> a
lazy k
orig) a
x Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insert #-}
#else
{-# INLINE insert #-}
#endif
#ifndef __GLASGOW_HASKELL__
lazy :: a -> a
lazy a = a
#endif
insertR :: Ord k => k -> a -> Map k a -> Map k a
insertR :: forall k a. Ord k => k -> a -> Map k a -> Map k a
insertR k
kx0 = forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
kx0 k
kx0
where
go :: Ord k => k -> k -> a -> Map k a -> Map k a
go :: forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig !k
_ a
x Map k a
Tip = forall k a. k -> a -> Map k a
singleton (forall a. a -> a
lazy k
orig) a
x
go k
orig !k
kx a
x t :: Map k a
t@(Bin Size
_ k
ky a
y Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT | Map k a
l' forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
| Bool
otherwise -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
where !l' :: Map k a
l' = forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
l
Ordering
GT | Map k a
r' forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
| Bool
otherwise -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
where !r' :: Map k a
r' = forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
r
Ordering
EQ -> Map k a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE insertR #-}
#else
{-# INLINE insertR #-}
#endif
insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith = forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
_ !k
kx a
x Map k a
Tip = forall k a. k -> a -> Map k a
singleton k
kx a
x
go a -> a -> a
f !k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (a -> a -> a
f a
x a
y) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWith #-}
#else
{-# INLINE insertWith #-}
#endif
insertWithR :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR = forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
_ !k
kx a
x Map k a
Tip = forall k a. k -> a -> Map k a
singleton k
kx a
x
go a -> a -> a
f !k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
ky (a -> a -> a
f a
y a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithR #-}
#else
{-# INLINE insertWithR #-}
#endif
insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey = forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = forall k a. k -> a -> Map k a
singleton k
kx a
x
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (k -> a -> a -> a
f k
kx a
x a
y) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithKey #-}
#else
{-# INLINE insertWithKey #-}
#endif
insertWithKeyR :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR = forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = forall k a. k -> a -> Map k a
singleton k
kx a
x
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
ky (k -> a -> a -> a
f k
ky a
y a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithKeyR #-}
#else
{-# INLINE insertWithKeyR #-}
#endif
insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a
-> (Maybe a, Map k a)
insertLookupWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a)
insertLookupWithKey k -> a -> a -> a
f0 k
k0 a
x0 = forall a b. StrictPair a b -> (a, b)
toPair forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f0 k
k0 a
x0
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go :: forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = (forall a. Maybe a
Nothing forall a b. a -> b -> StrictPair a b
:*: forall k a. k -> a -> Map k a
singleton k
kx a
x)
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> let !(Maybe a
found :*: Map k a
l') = forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f k
kx a
x Map k a
l
!t' :: Map k a
t' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
in (Maybe a
found forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
Ordering
GT -> let !(Maybe a
found :*: Map k a
r') = forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f k
kx a
x Map k a
r
!t' :: Map k a
t' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
in (Maybe a
found forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
Ordering
EQ -> (forall a. a -> Maybe a
Just a
y forall a b. a -> b -> StrictPair a b
:*: forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (k -> a -> a -> a
f k
kx a
x a
y) Map k a
l Map k a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE insertLookupWithKey #-}
#else
{-# INLINE insertLookupWithKey #-}
#endif
delete :: Ord k => k -> Map k a -> Map k a
delete :: forall k a. Ord k => k -> Map k a -> Map k a
delete = forall k a. Ord k => k -> Map k a -> Map k a
go
where
go :: Ord k => k -> Map k a -> Map k a
go :: forall k a. Ord k => k -> Map k a -> Map k a
go !k
_ Map k a
Tip = forall k a. Map k a
Tip
go k
k t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT | Map k a
l' forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
| Bool
otherwise -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
where !l' :: Map k a
l' = forall k a. Ord k => k -> Map k a -> Map k a
go k
k Map k a
l
Ordering
GT | Map k a
r' forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
| Bool
otherwise -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
where !r' :: Map k a
r' = forall k a. Ord k => k -> Map k a -> Map k a
go k
k Map k a
r
Ordering
EQ -> forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE delete #-}
#else
{-# INLINE delete #-}
#endif
adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a
adjust :: forall k a. Ord k => (a -> a) -> k -> Map k a -> Map k a
adjust a -> a
f = forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey (\k
_ a
x -> a -> a
f a
x)
#if __GLASGOW_HASKELL__
{-# INLINABLE adjust #-}
#else
{-# INLINE adjust #-}
#endif
adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey :: forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey = forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go :: forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
_ !k
_ Map k a
Tip = forall k a. Map k a
Tip
go k -> a -> a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x (forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
f k
k Map k a
l) Map k a
r
Ordering
GT -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l (forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
f k
k Map k a
r)
Ordering
EQ -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx (k -> a -> a
f k
kx a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE adjustWithKey #-}
#else
{-# INLINE adjustWithKey #-}
#endif
update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update :: forall k a. Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update a -> Maybe a
f = forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey (\k
_ a
x -> a -> Maybe a
f a
x)
#if __GLASGOW_HASKELL__
{-# INLINABLE update #-}
#else
{-# INLINE update #-}
#endif
updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey :: forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey = forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go :: forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
_ !k
_ Map k a
Tip = forall k a. Map k a
Tip
go k -> a -> Maybe a
f k
k(Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
f k
k Map k a
l) Map k a
r
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
f k
k Map k a
r)
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE updateWithKey #-}
#else
{-# INLINE updateWithKey #-}
#endif
updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a)
updateLookupWithKey :: forall k a.
Ord k =>
(k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map k a)
updateLookupWithKey k -> a -> Maybe a
f0 k
k0 = forall a b. StrictPair a b -> (a, b)
toPair forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f0 k
k0
where
go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go :: forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
_ !k
_ Map k a
Tip = (forall a. Maybe a
Nothing forall a b. a -> b -> StrictPair a b
:*: forall k a. Map k a
Tip)
go k -> a -> Maybe a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let !(Maybe a
found :*: Map k a
l') = forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f k
k Map k a
l
!t' :: Map k a
t' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
in (Maybe a
found forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
Ordering
GT -> let !(Maybe a
found :*: Map k a
r') = forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f k
k Map k a
r
!t' :: Map k a
t' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
in (Maybe a
found forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> (forall a. a -> Maybe a
Just a
x' forall a b. a -> b -> StrictPair a b
:*: forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r)
Maybe a
Nothing -> let !glued :: Map k a
glued = forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
in (forall a. a -> Maybe a
Just a
x forall a b. a -> b -> StrictPair a b
:*: Map k a
glued)
#if __GLASGOW_HASKELL__
{-# INLINABLE updateLookupWithKey #-}
#else
{-# INLINE updateLookupWithKey #-}
#endif
alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter :: forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter = forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go :: forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f !k
k Map k a
Tip = case Maybe a -> Maybe a
f forall a. Maybe a
Nothing of
Maybe a
Nothing -> forall k a. Map k a
Tip
Just a
x -> forall k a. k -> a -> Map k a
singleton k
k a
x
go Maybe a -> Maybe a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
kx a
x (forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f k
k Map k a
l) Map k a
r
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
kx a
x Map k a
l (forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f k
k Map k a
r)
Ordering
EQ -> case Maybe a -> Maybe a
f (forall a. a -> Maybe a
Just a
x) of
Just a
x' -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE alter #-}
#else
{-# INLINE alter #-}
#endif
data AreWeStrict = Strict | Lazy
alterF :: (Functor f, Ord k)
=> (Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
alterF :: forall (f :: * -> *) k a.
(Functor f, Ord k) =>
(Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
alterF Maybe a -> f (Maybe a)
f k
k Map k a
m = forall (f :: * -> *) k a.
(Functor f, Ord k) =>
AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
atKeyImpl AreWeStrict
Lazy k
k Maybe a -> f (Maybe a)
f Map k a
m
#ifndef __GLASGOW_HASKELL__
{-# INLINE alterF #-}
#else
{-# INLINABLE [2] alterF #-}
{-# RULES
"alterF/Const" forall k (f :: Maybe a -> Const b (Maybe a)) . alterF f k = \m -> Const . getConst . f $ lookup k m
#-}
{-# RULES
"alterF/Identity" forall k f . alterF f k = atKeyIdentity k f
#-}
#endif
atKeyImpl :: (Functor f, Ord k) =>
AreWeStrict -> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
#ifdef DEFINE_ALTERF_FALLBACK
atKeyImpl strict !k f m
| wordSize < 61 && size m >= alterFCutoff = alterFFallback strict k f m
#endif
atKeyImpl :: forall (f :: * -> *) k a.
(Functor f, Ord k) =>
AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
atKeyImpl AreWeStrict
strict !k
k Maybe a -> f (Maybe a)
f Map k a
m = case forall k a. Ord k => k -> Map k a -> TraceResult a
lookupTrace k
k Map k a
m of
TraceResult Maybe a
mv BitQueue
q -> (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe a -> f (Maybe a)
f Maybe a
mv) forall a b. (a -> b) -> a -> b
$ \ Maybe a
fres ->
case Maybe a
fres of
Maybe a
Nothing -> case Maybe a
mv of
Maybe a
Nothing -> Map k a
m
Just a
old -> forall any k a. any -> BitQueue -> Map k a -> Map k a
deleteAlong a
old BitQueue
q Map k a
m
Just a
new -> case AreWeStrict
strict of
AreWeStrict
Strict -> a
new seq :: forall a b. a -> b -> b
`seq` case Maybe a
mv of
Maybe a
Nothing -> forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
q k
k a
new Map k a
m
Just a
_ -> forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
q a
new Map k a
m
AreWeStrict
Lazy -> case Maybe a
mv of
Maybe a
Nothing -> forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
q k
k a
new Map k a
m
Just a
_ -> forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
q a
new Map k a
m
{-# INLINE atKeyImpl #-}
#ifdef DEFINE_ALTERF_FALLBACK
alterFCutoff :: Int
#if WORD_SIZE_IN_BITS == 32
alterFCutoff = 55744454
#else
alterFCutoff = case wordSize of
30 -> 17637893
31 -> 31356255
32 -> 55744454
x -> (4^(x*2-2)) `quot` (3^(x*2-2))
#endif
#endif
data TraceResult a = TraceResult (Maybe a) {-# UNPACK #-} !BitQueue
lookupTrace :: Ord k => k -> Map k a -> TraceResult a
lookupTrace :: forall k a. Ord k => k -> Map k a -> TraceResult a
lookupTrace = forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go BitQueueB
emptyQB
where
go :: Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go :: forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go !BitQueueB
q !k
_ Map k a
Tip = forall a. Maybe a -> BitQueue -> TraceResult a
TraceResult forall a. Maybe a
Nothing (BitQueueB -> BitQueue
buildQ BitQueueB
q)
go BitQueueB
q k
k (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> (forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go forall a b. (a -> b) -> a -> b
$! BitQueueB
q BitQueueB -> Bool -> BitQueueB
`snocQB` Bool
False) k
k Map k a
l
Ordering
GT -> (forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go forall a b. (a -> b) -> a -> b
$! BitQueueB
q BitQueueB -> Bool -> BitQueueB
`snocQB` Bool
True) k
k Map k a
r
Ordering
EQ -> forall a. Maybe a -> BitQueue -> TraceResult a
TraceResult (forall a. a -> Maybe a
Just a
x) (BitQueueB -> BitQueue
buildQ BitQueueB
q)
#ifdef __GLASGOW_HASKELL__
{-# INLINABLE lookupTrace #-}
#else
{-# INLINE lookupTrace #-}
#endif
insertAlong :: BitQueue -> k -> a -> Map k a -> Map k a
insertAlong :: forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong !BitQueue
_ k
kx a
x Map k a
Tip = forall k a. k -> a -> Map k a
singleton k
kx a
x
insertAlong BitQueue
q k
kx a
x (Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
Just (Bool
False, BitQueue
tl) -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
tl k
kx a
x Map k a
l) Map k a
r
Just (Bool
True,BitQueue
tl) -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
tl k
kx a
x Map k a
r)
Maybe (Bool, BitQueue)
Nothing -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
kx a
x Map k a
l Map k a
r
deleteAlong :: any -> BitQueue -> Map k a -> Map k a
deleteAlong :: forall any k a. any -> BitQueue -> Map k a -> Map k a
deleteAlong any
old !BitQueue
q0 !Map k a
m = forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go (forall a. a -> Proxy# ()
bogus any
old) BitQueue
q0 Map k a
m where
#ifdef USE_MAGIC_PROXY
go :: Proxy# () -> BitQueue -> Map k a -> Map k a
#else
go :: any -> BitQueue -> Map k a -> Map k a
#endif
go :: forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go !Proxy# ()
_ !BitQueue
_ Map k a
Tip = forall k a. Map k a
Tip
go Proxy# ()
foom BitQueue
q (Bin Size
_ k
ky a
y Map k a
l Map k a
r) =
case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
Just (Bool
False, BitQueue
tl) -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y (forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go Proxy# ()
foom BitQueue
tl Map k a
l) Map k a
r
Just (Bool
True, BitQueue
tl) -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l (forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go Proxy# ()
foom BitQueue
tl Map k a
r)
Maybe (Bool, BitQueue)
Nothing -> forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#ifdef USE_MAGIC_PROXY
{-# NOINLINE bogus #-}
bogus :: a -> Proxy# ()
bogus :: forall a. a -> Proxy# ()
bogus a
_ = forall {k} (a :: k). Proxy# a
proxy#
#else
{-# INLINE bogus #-}
bogus :: a -> a
bogus a = a
#endif
replaceAlong :: BitQueue -> a -> Map k a -> Map k a
replaceAlong :: forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong !BitQueue
_ a
_ Map k a
Tip = forall k a. Map k a
Tip
replaceAlong BitQueue
q a
x (Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
Just (Bool
False, BitQueue
tl) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
y (forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
tl a
x Map k a
l) Map k a
r
Just (Bool
True,BitQueue
tl) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
y Map k a
l (forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
tl a
x Map k a
r)
Maybe (Bool, BitQueue)
Nothing -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
x Map k a
l Map k a
r
#ifdef __GLASGOW_HASKELL__
atKeyIdentity :: Ord k => k -> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a)
atKeyIdentity :: forall k a.
Ord k =>
k
-> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a)
atKeyIdentity k
k Maybe a -> Identity (Maybe a)
f Map k a
t = forall a. a -> Identity a
Identity forall a b. (a -> b) -> a -> b
$ forall k a.
Ord k =>
AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain AreWeStrict
Lazy k
k (coerce :: forall a b. Coercible a b => a -> b
coerce Maybe a -> Identity (Maybe a)
f) Map k a
t
{-# INLINABLE atKeyIdentity #-}
atKeyPlain :: Ord k => AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain :: forall k a.
Ord k =>
AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain AreWeStrict
strict k
k0 Maybe a -> Maybe a
f0 Map k a
t = case forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k0 Maybe a -> Maybe a
f0 Map k a
t of
AltSmaller Map k a
t' -> Map k a
t'
AltBigger Map k a
t' -> Map k a
t'
AltAdj Map k a
t' -> Map k a
t'
Altered k a
AltSame -> Map k a
t
where
go :: Ord k => k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go :: forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go !k
k Maybe a -> Maybe a
f Map k a
Tip = case Maybe a -> Maybe a
f forall a. Maybe a
Nothing of
Maybe a
Nothing -> forall k a. Altered k a
AltSame
Just a
x -> case AreWeStrict
strict of
AreWeStrict
Lazy -> forall k a. Map k a -> Altered k a
AltBigger forall a b. (a -> b) -> a -> b
$ forall k a. k -> a -> Map k a
singleton k
k a
x
AreWeStrict
Strict -> a
x seq :: forall a b. a -> b -> b
`seq` (forall k a. Map k a -> Altered k a
AltBigger forall a b. (a -> b) -> a -> b
$ forall k a. k -> a -> Map k a
singleton k
k a
x)
go k
k Maybe a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> case forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k Maybe a -> Maybe a
f Map k a
l of
AltSmaller Map k a
l' -> forall k a. Map k a -> Altered k a
AltSmaller forall a b. (a -> b) -> a -> b
$ forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
AltBigger Map k a
l' -> forall k a. Map k a -> Altered k a
AltBigger forall a b. (a -> b) -> a -> b
$ forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l' Map k a
r
AltAdj Map k a
l' -> forall k a. Map k a -> Altered k a
AltAdj forall a b. (a -> b) -> a -> b
$ forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l' Map k a
r
Altered k a
AltSame -> forall k a. Altered k a
AltSame
Ordering
GT -> case forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k Maybe a -> Maybe a
f Map k a
r of
AltSmaller Map k a
r' -> forall k a. Map k a -> Altered k a
AltSmaller forall a b. (a -> b) -> a -> b
$ forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
AltBigger Map k a
r' -> forall k a. Map k a -> Altered k a
AltBigger forall a b. (a -> b) -> a -> b
$ forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l Map k a
r'
AltAdj Map k a
r' -> forall k a. Map k a -> Altered k a
AltAdj forall a b. (a -> b) -> a -> b
$ forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l Map k a
r'
Altered k a
AltSame -> forall k a. Altered k a
AltSame
Ordering
EQ -> case Maybe a -> Maybe a
f (forall a. a -> Maybe a
Just a
x) of
Just a
x' -> case AreWeStrict
strict of
AreWeStrict
Lazy -> forall k a. Map k a -> Altered k a
AltAdj forall a b. (a -> b) -> a -> b
$ forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
AreWeStrict
Strict -> a
x' seq :: forall a b. a -> b -> b
`seq` (forall k a. Map k a -> Altered k a
AltAdj forall a b. (a -> b) -> a -> b
$ forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r)
Maybe a
Nothing -> forall k a. Map k a -> Altered k a
AltSmaller forall a b. (a -> b) -> a -> b
$ forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
{-# INLINE atKeyPlain #-}
data Altered k a = AltSmaller !(Map k a) | AltBigger !(Map k a) | AltAdj !(Map k a) | AltSame
#endif
#ifdef DEFINE_ALTERF_FALLBACK
alterFFallback :: (Functor f, Ord k)
=> AreWeStrict -> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
alterFFallback Lazy k f t = alterFYoneda k (\m q -> q <$> f m) t id
alterFFallback Strict k f t = alterFYoneda k (\m q -> q . forceMaybe <$> f m) t id
where
forceMaybe Nothing = Nothing
forceMaybe may@(Just !_) = may
{-# NOINLINE alterFFallback #-}
alterFYoneda :: Ord k =>
k -> (Maybe a -> (Maybe a -> b) -> f b) -> Map k a -> (Map k a -> b) -> f b
alterFYoneda = go
where
go :: Ord k =>
k -> (Maybe a -> (Maybe a -> b) -> f b) -> Map k a -> (Map k a -> b) -> f b
go !k f Tip g = f Nothing $ \ mx -> case mx of
Nothing -> g Tip
Just x -> g (singleton k x)
go k f (Bin sx kx x l r) g = case compare k kx of
LT -> go k f l (\m -> g (balance kx x m r))
GT -> go k f r (\m -> g (balance kx x l m))
EQ -> f (Just x) $ \ mx' -> case mx' of
Just x' -> g (Bin sx kx x' l r)
Nothing -> g (glue l r)
{-# INLINE alterFYoneda #-}
#endif
findIndex :: Ord k => k -> Map k a -> Int
findIndex :: forall k a. Ord k => k -> Map k a -> Size
findIndex = forall k a. Ord k => Size -> k -> Map k a -> Size
go Size
0
where
go :: Ord k => Int -> k -> Map k a -> Int
go :: forall k a. Ord k => Size -> k -> Map k a -> Size
go !Size
_ !k
_ Map k a
Tip = forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findIndex: element is not in the map"
go Size
idx k
k (Bin Size
_ k
kx a
_ Map k a
l Map k a
r) = case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> forall k a. Ord k => Size -> k -> Map k a -> Size
go Size
idx k
k Map k a
l
Ordering
GT -> forall k a. Ord k => Size -> k -> Map k a -> Size
go (Size
idx forall a. Num a => a -> a -> a
+ forall k a. Map k a -> Size
size Map k a
l forall a. Num a => a -> a -> a
+ Size
1) k
k Map k a
r
Ordering
EQ -> Size
idx forall a. Num a => a -> a -> a
+ forall k a. Map k a -> Size
size Map k a
l
#if __GLASGOW_HASKELL__
{-# INLINABLE findIndex #-}
#endif
lookupIndex :: Ord k => k -> Map k a -> Maybe Int
lookupIndex :: forall k a. Ord k => k -> Map k a -> Maybe Size
lookupIndex = forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go Size
0
where
go :: Ord k => Int -> k -> Map k a -> Maybe Int
go :: forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go !Size
_ !k
_ Map k a
Tip = forall a. Maybe a
Nothing
go Size
idx k
k (Bin Size
_ k
kx a
_ Map k a
l Map k a
r) = case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go Size
idx k
k Map k a
l
Ordering
GT -> forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go (Size
idx forall a. Num a => a -> a -> a
+ forall k a. Map k a -> Size
size Map k a
l forall a. Num a => a -> a -> a
+ Size
1) k
k Map k a
r
Ordering
EQ -> forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$! Size
idx forall a. Num a => a -> a -> a
+ forall k a. Map k a -> Size
size Map k a
l
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupIndex #-}
#endif
elemAt :: Int -> Map k a -> (k,a)
elemAt :: forall k a. Size -> Map k a -> (k, a)
elemAt !Size
_ Map k a
Tip = forall a. HasCallStack => [Char] -> a
error [Char]
"Map.elemAt: index out of range"
elemAt Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
= case forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> forall k a. Size -> Map k a -> (k, a)
elemAt Size
i Map k a
l
Ordering
GT -> forall k a. Size -> Map k a -> (k, a)
elemAt (Size
iforall a. Num a => a -> a -> a
-Size
sizeLforall a. Num a => a -> a -> a
-Size
1) Map k a
r
Ordering
EQ -> (k
kx,a
x)
where
sizeL :: Size
sizeL = forall k a. Map k a -> Size
size Map k a
l
take :: Int -> Map k a -> Map k a
take :: forall k a. Size -> Map k a -> Map k a
take Size
i Map k a
m | Size
i forall a. Ord a => a -> a -> Bool
>= forall k a. Map k a -> Size
size Map k a
m = Map k a
m
take Size
i0 Map k a
m0 = forall k a. Size -> Map k a -> Map k a
go Size
i0 Map k a
m0
where
go :: Size -> Map k a -> Map k a
go Size
i !Map k a
_ | Size
i forall a. Ord a => a -> a -> Bool
<= Size
0 = forall k a. Map k a
Tip
go !Size
_ Map k a
Tip = forall k a. Map k a
Tip
go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> Size -> Map k a -> Map k a
go Size
i Map k a
l
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l (Size -> Map k a -> Map k a
go (Size
i forall a. Num a => a -> a -> a
- Size
sizeL forall a. Num a => a -> a -> a
- Size
1) Map k a
r)
Ordering
EQ -> Map k a
l
where sizeL :: Size
sizeL = forall k a. Map k a -> Size
size Map k a
l
drop :: Int -> Map k a -> Map k a
drop :: forall k a. Size -> Map k a -> Map k a
drop Size
i Map k a
m | Size
i forall a. Ord a => a -> a -> Bool
>= forall k a. Map k a -> Size
size Map k a
m = forall k a. Map k a
Tip
drop Size
i0 Map k a
m0 = forall k a. Size -> Map k a -> Map k a
go Size
i0 Map k a
m0
where
go :: Size -> Map k a -> Map k a
go Size
i Map k a
m | Size
i forall a. Ord a => a -> a -> Bool
<= Size
0 = Map k a
m
go !Size
_ Map k a
Tip = forall k a. Map k a
Tip
go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
case forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x (Size -> Map k a -> Map k a
go Size
i Map k a
l) Map k a
r
Ordering
GT -> Size -> Map k a -> Map k a
go (Size
i forall a. Num a => a -> a -> a
- Size
sizeL forall a. Num a => a -> a -> a
- Size
1) Map k a
r
Ordering
EQ -> forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
r
where sizeL :: Size
sizeL = forall k a. Map k a -> Size
size Map k a
l
splitAt :: Int -> Map k a -> (Map k a, Map k a)
splitAt :: forall k a. Size -> Map k a -> (Map k a, Map k a)
splitAt Size
i0 Map k a
m0
| Size
i0 forall a. Ord a => a -> a -> Bool
>= forall k a. Map k a -> Size
size Map k a
m0 = (Map k a
m0, forall k a. Map k a
Tip)
| Bool
otherwise = forall a b. StrictPair a b -> (a, b)
toPair forall a b. (a -> b) -> a -> b
$ forall {k} {a}. Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i0 Map k a
m0
where
go :: Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i Map k a
m | Size
i forall a. Ord a => a -> a -> Bool
<= Size
0 = forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: Map k a
m
go !Size
_ Map k a
Tip = forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: forall k a. Map k a
Tip
go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
= case forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> case Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i Map k a
l of
Map k a
ll :*: Map k a
lr -> Map k a
ll forall a b. a -> b -> StrictPair a b
:*: forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
lr Map k a
r
Ordering
GT -> case Size -> Map k a -> StrictPair (Map k a) (Map k a)
go (Size
i forall a. Num a => a -> a -> a
- Size
sizeL forall a. Num a => a -> a -> a
- Size
1) Map k a
r of
Map k a
rl :*: Map k a
rr -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
rl forall a b. a -> b -> StrictPair a b
:*: Map k a
rr
Ordering
EQ -> Map k a
l forall a b. a -> b -> StrictPair a b
:*: forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
r
where sizeL :: Size
sizeL = forall k a. Map k a -> Size
size Map k a
l
updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a
updateAt :: forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f !Size
i Map k a
t =
case Map k a
t of
Map k a
Tip -> forall a. HasCallStack => [Char] -> a
error [Char]
"Map.updateAt: index out of range"
Bin Size
sx k
kx a
x Map k a
l Map k a
r -> case forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f Size
i Map k a
l) Map k a
r
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f (Size
iforall a. Num a => a -> a -> a
-Size
sizeLforall a. Num a => a -> a -> a
-Size
1) Map k a
r)
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
where
sizeL :: Size
sizeL = forall k a. Map k a -> Size
size Map k a
l
deleteAt :: Int -> Map k a -> Map k a
deleteAt :: forall k a. Size -> Map k a -> Map k a
deleteAt !Size
i Map k a
t =
case Map k a
t of
Map k a
Tip -> forall a. HasCallStack => [Char] -> a
error [Char]
"Map.deleteAt: index out of range"
Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (forall k a. Size -> Map k a -> Map k a
deleteAt Size
i Map k a
l) Map k a
r
Ordering
GT -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (forall k a. Size -> Map k a -> Map k a
deleteAt (Size
iforall a. Num a => a -> a -> a
-Size
sizeLforall a. Num a => a -> a -> a
-Size
1) Map k a
r)
Ordering
EQ -> forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
where
sizeL :: Size
sizeL = forall k a. Map k a -> Size
size Map k a
l
lookupMinSure :: k -> a -> Map k a -> (k, a)
lookupMinSure :: forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
a Map k a
Tip = (k
k, a
a)
lookupMinSure k
_ a
_ (Bin Size
_ k
k a
a Map k a
l Map k a
_) = forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
a Map k a
l
lookupMin :: Map k a -> Maybe (k,a)
lookupMin :: forall k a. Map k a -> Maybe (k, a)
lookupMin Map k a
Tip = forall a. Maybe a
Nothing
lookupMin (Bin Size
_ k
k a
x Map k a
l Map k a
_) = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$! forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
x Map k a
l
findMin :: Map k a -> (k,a)
findMin :: forall k a. Map k a -> (k, a)
findMin Map k a
t
| Just (k, a)
r <- forall k a. Map k a -> Maybe (k, a)
lookupMin Map k a
t = (k, a)
r
| Bool
otherwise = forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findMin: empty map has no minimal element"
lookupMaxSure :: k -> a -> Map k a -> (k, a)
lookupMaxSure :: forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
a Map k a
Tip = (k
k, a
a)
lookupMaxSure k
_ a
_ (Bin Size
_ k
k a
a Map k a
_ Map k a
r) = forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
a Map k a
r
lookupMax :: Map k a -> Maybe (k, a)
lookupMax :: forall k a. Map k a -> Maybe (k, a)
lookupMax Map k a
Tip = forall a. Maybe a
Nothing
lookupMax (Bin Size
_ k
k a
x Map k a
_ Map k a
r) = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$! forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
x Map k a
r
findMax :: Map k a -> (k,a)
findMax :: forall k a. Map k a -> (k, a)
findMax Map k a
t
| Just (k, a)
r <- forall k a. Map k a -> Maybe (k, a)
lookupMax Map k a
t = (k, a)
r
| Bool
otherwise = forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findMax: empty map has no maximal element"
deleteMin :: Map k a -> Map k a
deleteMin :: forall k a. Map k a -> Map k a
deleteMin (Bin Size
_ k
_ a
_ Map k a
Tip Map k a
r) = Map k a
r
deleteMin (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (forall k a. Map k a -> Map k a
deleteMin Map k a
l) Map k a
r
deleteMin Map k a
Tip = forall k a. Map k a
Tip
deleteMax :: Map k a -> Map k a
deleteMax :: forall k a. Map k a -> Map k a
deleteMax (Bin Size
_ k
_ a
_ Map k a
l Map k a
Tip) = Map k a
l
deleteMax (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (forall k a. Map k a -> Map k a
deleteMax Map k a
r)
deleteMax Map k a
Tip = forall k a. Map k a
Tip
updateMin :: (a -> Maybe a) -> Map k a -> Map k a
updateMin :: forall a k. (a -> Maybe a) -> Map k a -> Map k a
updateMin a -> Maybe a
f Map k a
m
= forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey (\k
_ a
x -> a -> Maybe a
f a
x) Map k a
m
updateMax :: (a -> Maybe a) -> Map k a -> Map k a
updateMax :: forall a k. (a -> Maybe a) -> Map k a -> Map k a
updateMax a -> Maybe a
f Map k a
m
= forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey (\k
_ a
x -> a -> Maybe a
f a
x) Map k a
m
updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey :: forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey k -> a -> Maybe a
_ Map k a
Tip = forall k a. Map k a
Tip
updateMinWithKey k -> a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
Tip Map k a
r) = case k -> a -> Maybe a
f k
kx a
x of
Maybe a
Nothing -> Map k a
r
Just a
x' -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' forall k a. Map k a
Tip Map k a
r
updateMinWithKey k -> a -> Maybe a
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey k -> a -> Maybe a
f Map k a
l) Map k a
r
updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey :: forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey k -> a -> Maybe a
_ Map k a
Tip = forall k a. Map k a
Tip
updateMaxWithKey k -> a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
l Map k a
Tip) = case k -> a -> Maybe a
f k
kx a
x of
Maybe a
Nothing -> Map k a
l
Just a
x' -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l forall k a. Map k a
Tip
updateMaxWithKey k -> a -> Maybe a
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey k -> a -> Maybe a
f Map k a
r)
minViewWithKey :: Map k a -> Maybe ((k,a), Map k a)
minViewWithKey :: forall k a. Map k a -> Maybe ((k, a), Map k a)
minViewWithKey Map k a
Tip = forall a. Maybe a
Nothing
minViewWithKey (Bin Size
_ k
k a
x Map k a
l Map k a
r) = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$
case forall k a. k -> a -> Map k a -> Map k a -> MinView k a
minViewSure k
k a
x Map k a
l Map k a
r of
MinView k
km a
xm Map k a
t -> ((k
km, a
xm), Map k a
t)
{-# INLINE minViewWithKey #-}
maxViewWithKey :: Map k a -> Maybe ((k,a), Map k a)
maxViewWithKey :: forall k a. Map k a -> Maybe ((k, a), Map k a)
maxViewWithKey Map k a
Tip = forall a. Maybe a
Nothing
maxViewWithKey (Bin Size
_ k
k a
x Map k a
l Map k a
r) = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$
case forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure k
k a
x Map k a
l Map k a
r of
MaxView k
km a
xm Map k a
t -> ((k
km, a
xm), Map k a
t)
{-# INLINE maxViewWithKey #-}
minView :: Map k a -> Maybe (a, Map k a)
minView :: forall k a. Map k a -> Maybe (a, Map k a)
minView Map k a
t = case forall k a. Map k a -> Maybe ((k, a), Map k a)
minViewWithKey Map k a
t of
Maybe ((k, a), Map k a)
Nothing -> forall a. Maybe a
Nothing
Just ~((k
_, a
x), Map k a
t') -> forall a. a -> Maybe a
Just (a
x, Map k a
t')
maxView :: Map k a -> Maybe (a, Map k a)
maxView :: forall k a. Map k a -> Maybe (a, Map k a)
maxView Map k a
t = case forall k a. Map k a -> Maybe ((k, a), Map k a)
maxViewWithKey Map k a
t of
Maybe ((k, a), Map k a)
Nothing -> forall a. Maybe a
Nothing
Just ~((k
_, a
x), Map k a
t') -> forall a. a -> Maybe a
Just (a
x, Map k a
t')
unions :: (Foldable f, Ord k) => f (Map k a) -> Map k a
unions :: forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
f (Map k a) -> Map k a
unions f (Map k a)
ts
= forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' forall k v. Ord k => Map k v -> Map k v -> Map k v
union forall k a. Map k a
empty f (Map k a)
ts
#if __GLASGOW_HASKELL__
{-# INLINABLE unions #-}
#endif
unionsWith :: (Foldable f, Ord k) => (a->a->a) -> f (Map k a) -> Map k a
unionsWith :: forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
(a -> a -> a) -> f (Map k a) -> Map k a
unionsWith a -> a -> a
f f (Map k a)
ts
= forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' (forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f) forall k a. Map k a
empty f (Map k a)
ts
#if __GLASGOW_HASKELL__
{-# INLINABLE unionsWith #-}
#endif
union :: Ord k => Map k a -> Map k a -> Map k a
union :: forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
t1 Map k a
Tip = Map k a
t1
union Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = forall k a. Ord k => k -> a -> Map k a -> Map k a
insertR k
k a
x Map k a
t1
union (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
k a
x Map k a
t2
union Map k a
Tip Map k a
t2 = Map k a
t2
union t1 :: Map k a
t1@(Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
split k
k1 Map k a
t2 of
(Map k a
l2, Map k a
r2) | Map k a
l1l2 forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 forall a. a -> a -> Bool
`ptrEq` Map k a
r1 -> Map k a
t1
| Bool
otherwise -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
where !l1l2 :: Map k a
l1l2 = forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
l1 Map k a
l2
!r1r2 :: Map k a
r1r2 = forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE union #-}
#endif
unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith :: forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
_f Map k a
t1 Map k a
Tip = Map k a
t1
unionWith a -> a -> a
f Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR a -> a -> a
f k
k a
x Map k a
t1
unionWith a -> a -> a
f (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith a -> a -> a
f k
k a
x Map k a
t2
unionWith a -> a -> a
_f Map k a
Tip Map k a
t2 = Map k a
t2
unionWith a -> a -> a
f (Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k1 Map k a
t2 of
(Map k a
l2, Maybe a
mb, Map k a
r2) -> case Maybe a
mb of
Maybe a
Nothing -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
Just a
x2 -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 (a -> a -> a
f a
x1 a
x2) Map k a
l1l2 Map k a
r1r2
where !l1l2 :: Map k a
l1l2 = forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f Map k a
l1 Map k a
l2
!r1r2 :: Map k a
r1r2 = forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE unionWith #-}
#endif
unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
_f Map k a
t1 Map k a
Tip = Map k a
t1
unionWithKey k -> a -> a -> a
f Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR k -> a -> a -> a
f k
k a
x Map k a
t1
unionWithKey k -> a -> a -> a
f (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey k -> a -> a -> a
f k
k a
x Map k a
t2
unionWithKey k -> a -> a -> a
_f Map k a
Tip Map k a
t2 = Map k a
t2
unionWithKey k -> a -> a -> a
f (Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k1 Map k a
t2 of
(Map k a
l2, Maybe a
mb, Map k a
r2) -> case Maybe a
mb of
Maybe a
Nothing -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
Just a
x2 -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 (k -> a -> a -> a
f k
k1 a
x1 a
x2) Map k a
l1l2 Map k a
r1r2
where !l1l2 :: Map k a
l1l2 = forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
f Map k a
l1 Map k a
l2
!r1r2 :: Map k a
r1r2 = forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
f Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE unionWithKey #-}
#endif
difference :: Ord k => Map k a -> Map k b -> Map k a
difference :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
Tip Map k b
_ = forall k a. Map k a
Tip
difference Map k a
t1 Map k b
Tip = Map k a
t1
difference Map k a
t1 (Bin Size
_ k
k b
_ Map k b
l2 Map k b
r2) = case forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
split k
k Map k a
t1 of
(Map k a
l1, Map k a
r1)
| forall k a. Map k a -> Size
size Map k a
l1l2 forall a. Num a => a -> a -> a
+ forall k a. Map k a -> Size
size Map k a
r1r2 forall a. Eq a => a -> a -> Bool
== forall k a. Map k a -> Size
size Map k a
t1 -> Map k a
t1
| Bool
otherwise -> forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
where
!l1l2 :: Map k a
l1l2 = forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
l1 Map k b
l2
!r1r2 :: Map k a
r1r2 = forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE difference #-}
#endif
withoutKeys :: Ord k => Map k a -> Set k -> Map k a
withoutKeys :: forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
Tip Set k
_ = forall k a. Map k a
Tip
withoutKeys Map k a
m Set k
Set.Tip = Map k a
m
withoutKeys Map k a
m (Set.Bin Size
_ k
k Set k
ls Set k
rs) = case forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k a
m of
(Map k a
lm, Bool
b, Map k a
rm)
| Bool -> Bool
not Bool
b Bool -> Bool -> Bool
&& Map k a
lm' forall a. a -> a -> Bool
`ptrEq` Map k a
lm Bool -> Bool -> Bool
&& Map k a
rm' forall a. a -> a -> Bool
`ptrEq` Map k a
rm -> Map k a
m
| Bool
otherwise -> forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
lm' Map k a
rm'
where
!lm' :: Map k a
lm' = forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
lm Set k
ls
!rm' :: Map k a
rm' = forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
rm Set k
rs
#if __GLASGOW_HASKELL__
{-# INLINABLE withoutKeys #-}
#endif
differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith :: forall k a b.
Ord k =>
(a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith a -> b -> Maybe a
f = forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched (\k
_ a
x b
y -> a -> b -> Maybe a
f a
x b
y)
#if __GLASGOW_HASKELL__
{-# INLINABLE differenceWith #-}
#endif
differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey :: forall k a b.
Ord k =>
(k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey k -> a -> b -> Maybe a
f =
forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing (forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched k -> a -> b -> Maybe a
f)
#if __GLASGOW_HASKELL__
{-# INLINABLE differenceWithKey #-}
#endif
intersection :: Ord k => Map k a -> Map k b -> Map k a
intersection :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
Tip Map k b
_ = forall k a. Map k a
Tip
intersection Map k a
_ Map k b
Tip = forall k a. Map k a
Tip
intersection t1 :: Map k a
t1@(Bin Size
_ k
k a
x Map k a
l1 Map k a
r1) Map k b
t2
| Bool
mb = if Map k a
l1l2 forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 forall a. a -> a -> Bool
`ptrEq` Map k a
r1
then Map k a
t1
else forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k a
x Map k a
l1l2 Map k a
r1r2
| Bool
otherwise = forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
where
!(Map k b
l2, Bool
mb, Map k b
r2) = forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k b
t2
!l1l2 :: Map k a
l1l2 = forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
l1 Map k b
l2
!r1r2 :: Map k a
r1r2 = forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersection #-}
#endif
restrictKeys :: Ord k => Map k a -> Set k -> Map k a
restrictKeys :: forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
Tip Set k
_ = forall k a. Map k a
Tip
restrictKeys Map k a
_ Set k
Set.Tip = forall k a. Map k a
Tip
restrictKeys m :: Map k a
m@(Bin Size
_ k
k a
x Map k a
l1 Map k a
r1) Set k
s
| Bool
b = if Map k a
l1l2 forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 forall a. a -> a -> Bool
`ptrEq` Map k a
r1
then Map k a
m
else forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k a
x Map k a
l1l2 Map k a
r1r2
| Bool
otherwise = forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
where
!(Set k
l2, Bool
b, Set k
r2) = forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
Set.splitMember k
k Set k
s
!l1l2 :: Map k a
l1l2 = forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
l1 Set k
l2
!r1r2 :: Map k a
r1r2 = forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
r1 Set k
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE restrictKeys #-}
#endif
intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith :: forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
_f Map k a
Tip Map k b
_ = forall k a. Map k a
Tip
intersectionWith a -> b -> c
_f Map k a
_ Map k b
Tip = forall k a. Map k a
Tip
intersectionWith a -> b -> c
f (Bin Size
_ k
k a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case Maybe b
mb of
Just b
x2 -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k (a -> b -> c
f a
x1 b
x2) Map k c
l1l2 Map k c
r1r2
Maybe b
Nothing -> forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l1l2 Map k c
r1r2
where
!(Map k b
l2, Maybe b
mb, Map k b
r2) = forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k Map k b
t2
!l1l2 :: Map k c
l1l2 = forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
f Map k a
l1 Map k b
l2
!r1r2 :: Map k c
r1r2 = forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
f Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersectionWith #-}
#endif
intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey :: forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
_f Map k a
Tip Map k b
_ = forall k a. Map k a
Tip
intersectionWithKey k -> a -> b -> c
_f Map k a
_ Map k b
Tip = forall k a. Map k a
Tip
intersectionWithKey k -> a -> b -> c
f (Bin Size
_ k
k a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case Maybe b
mb of
Just b
x2 -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k (k -> a -> b -> c
f k
k a
x1 b
x2) Map k c
l1l2 Map k c
r1r2
Maybe b
Nothing -> forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l1l2 Map k c
r1r2
where
!(Map k b
l2, Maybe b
mb, Map k b
r2) = forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k Map k b
t2
!l1l2 :: Map k c
l1l2 = forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
f Map k a
l1 Map k b
l2
!r1r2 :: Map k c
r1r2 = forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
f Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersectionWithKey #-}
#endif
disjoint :: Ord k => Map k a -> Map k b -> Bool
disjoint :: forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
Tip Map k b
_ = Bool
True
disjoint Map k a
_ Map k b
Tip = Bool
True
disjoint (Bin Size
1 k
k a
_ Map k a
_ Map k a
_) Map k b
t = k
k forall k a. Ord k => k -> Map k a -> Bool
`notMember` Map k b
t
disjoint (Bin Size
_ k
k a
_ Map k a
l Map k a
r) Map k b
t
= Bool -> Bool
not Bool
found Bool -> Bool -> Bool
&& forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
l Map k b
lt Bool -> Bool -> Bool
&& forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
r Map k b
gt
where
(Map k b
lt,Bool
found,Map k b
gt) = forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k b
t
compose :: Ord b => Map b c -> Map a b -> Map a c
compose :: forall b c a. Ord b => Map b c -> Map a b -> Map a c
compose Map b c
bc !Map a b
ab
| forall k a. Map k a -> Bool
null Map b c
bc = forall k a. Map k a
empty
| Bool
otherwise = forall a b k. (a -> Maybe b) -> Map k a -> Map k b
mapMaybe (Map b c
bc forall k a. Ord k => Map k a -> k -> Maybe a
!?) Map a b
ab
data WhenMissing f k x y = WhenMissing
{ forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree :: Map k x -> f (Map k y)
, forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey :: k -> x -> f (Maybe y)}
instance (Applicative f, Monad f) => Functor (WhenMissing f k x) where
fmap :: forall a b. (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
fmap = forall (f :: * -> *) a b k x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing
{-# INLINE fmap #-}
instance (Applicative f, Monad f)
=> Category.Category (WhenMissing f k) where
id :: forall a. WhenMissing f k a a
id = forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing
WhenMissing f k b c
f . :: forall b c a.
WhenMissing f k b c -> WhenMissing f k a b -> WhenMissing f k a c
. WhenMissing f k a b
g = forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing forall a b. (a -> b) -> a -> b
$
\ k
k a
x -> forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k a b
g k
k a
x forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe b
y ->
case Maybe b
y of
Maybe b
Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing
Just b
q -> forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k b c
f k
k b
q
{-# INLINE id #-}
{-# INLINE (.) #-}
instance (Applicative f, Monad f) => Applicative (WhenMissing f k x) where
pure :: forall a. a -> WhenMissing f k x a
pure a
x = forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> y) -> WhenMissing f k x y
mapMissing (\ k
_ x
_ -> a
x)
WhenMissing f k x (a -> b)
f <*> :: forall a b.
WhenMissing f k x (a -> b)
-> WhenMissing f k x a -> WhenMissing f k x b
<*> WhenMissing f k x a
g = forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing forall a b. (a -> b) -> a -> b
$ \k
k x
x -> do
Maybe (a -> b)
res1 <- forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x (a -> b)
f k
k x
x
case Maybe (a -> b)
res1 of
Maybe (a -> b)
Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing
Just a -> b
r -> (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$!) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
g k
k x
x
{-# INLINE pure #-}
{-# INLINE (<*>) #-}
instance (Applicative f, Monad f) => Monad (WhenMissing f k x) where
WhenMissing f k x a
m >>= :: forall a b.
WhenMissing f k x a
-> (a -> WhenMissing f k x b) -> WhenMissing f k x b
>>= a -> WhenMissing f k x b
f = forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing forall a b. (a -> b) -> a -> b
$ \k
k x
x -> do
Maybe a
res1 <- forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
m k
k x
x
case Maybe a
res1 of
Maybe a
Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing
Just a
r -> forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey (a -> WhenMissing f k x b
f a
r) k
k x
x
{-# INLINE (>>=) #-}
mapWhenMissing :: (Applicative f, Monad f)
=> (a -> b)
-> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing :: forall (f :: * -> *) a b k x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing a -> b
f WhenMissing f k x a
t = WhenMissing
{ missingSubtree :: Map k x -> f (Map k b)
missingSubtree = \Map k x
m -> forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree WhenMissing f k x a
t Map k x
m forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Map k a
m' -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Map k a
m'
, missingKey :: k -> x -> f (Maybe b)
missingKey = \k
k x
x -> forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
t k
k x
x forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe a
q -> (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Maybe a
q) }
{-# INLINE mapWhenMissing #-}
mapGentlyWhenMissing :: Functor f
=> (a -> b)
-> WhenMissing f k x a -> WhenMissing f k x b
mapGentlyWhenMissing :: forall (f :: * -> *) a b k x.
Functor f =>
(a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapGentlyWhenMissing a -> b
f WhenMissing f k x a
t = WhenMissing
{ missingSubtree :: Map k x -> f (Map k b)
missingSubtree = \Map k x
m -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree WhenMissing f k x a
t Map k x
m
, missingKey :: k -> x -> f (Maybe b)
missingKey = \k
k x
x -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
t k
k x
x }
{-# INLINE mapGentlyWhenMissing #-}
mapGentlyWhenMatched :: Functor f
=> (a -> b)
-> WhenMatched f k x y a -> WhenMatched f k x y b
mapGentlyWhenMatched :: forall (f :: * -> *) a b k x y.
Functor f =>
(a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
mapGentlyWhenMatched a -> b
f WhenMatched f k x y a
t = forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched forall a b. (a -> b) -> a -> b
$
\k
k x
x y
y -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y a
t k
k x
x y
y
{-# INLINE mapGentlyWhenMatched #-}
lmapWhenMissing :: (b -> a) -> WhenMissing f k a x -> WhenMissing f k b x
lmapWhenMissing :: forall b a (f :: * -> *) k x.
(b -> a) -> WhenMissing f k a x -> WhenMissing f k b x
lmapWhenMissing b -> a
f WhenMissing f k a x
t = WhenMissing
{ missingSubtree :: Map k b -> f (Map k x)
missingSubtree = \Map k b
m -> forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree WhenMissing f k a x
t (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f Map k b
m)
, missingKey :: k -> b -> f (Maybe x)
missingKey = \k
k b
x -> forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k a x
t k
k (b -> a
f b
x) }
{-# INLINE lmapWhenMissing #-}
contramapFirstWhenMatched :: (b -> a)
-> WhenMatched f k a y z
-> WhenMatched f k b y z
contramapFirstWhenMatched :: forall b a (f :: * -> *) k y z.
(b -> a) -> WhenMatched f k a y z -> WhenMatched f k b y z
contramapFirstWhenMatched b -> a
f WhenMatched f k a y z
t = forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched forall a b. (a -> b) -> a -> b
$
\k
k b
x y
y -> forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k a y z
t k
k (b -> a
f b
x) y
y
{-# INLINE contramapFirstWhenMatched #-}
contramapSecondWhenMatched :: (b -> a)
-> WhenMatched f k x a z
-> WhenMatched f k x b z
contramapSecondWhenMatched :: forall b a (f :: * -> *) k x z.
(b -> a) -> WhenMatched f k x a z -> WhenMatched f k x b z
contramapSecondWhenMatched b -> a
f WhenMatched f k x a z
t = forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched forall a b. (a -> b) -> a -> b
$
\k
k x
x b
y -> forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x a z
t k
k x
x (b -> a
f b
y)
{-# INLINE contramapSecondWhenMatched #-}
type SimpleWhenMissing = WhenMissing Identity
newtype WhenMatched f k x y z = WhenMatched
{ forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
matchedKey :: k -> x -> y -> f (Maybe z) }
runWhenMatched :: WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched :: forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched = forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
matchedKey
{-# INLINE runWhenMatched #-}
runWhenMissing :: WhenMissing f k x y -> k -> x -> f (Maybe y)
runWhenMissing :: forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
runWhenMissing = forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey
{-# INLINE runWhenMissing #-}
instance Functor f => Functor (WhenMatched f k x y) where
fmap :: forall a b.
(a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
fmap = forall (f :: * -> *) a b k x y.
Functor f =>
(a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
mapWhenMatched
{-# INLINE fmap #-}
instance (Monad f, Applicative f) => Category.Category (WhenMatched f k x) where
id :: forall a. WhenMatched f k x a a
id = forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> z) -> WhenMatched f k x y z
zipWithMatched (\k
_ x
_ a
y -> a
y)
WhenMatched f k x b c
f . :: forall b c a.
WhenMatched f k x b c
-> WhenMatched f k x a b -> WhenMatched f k x a c
. WhenMatched f k x a b
g = forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched forall a b. (a -> b) -> a -> b
$
\k
k x
x a
y -> do
Maybe b
res <- forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x a b
g k
k x
x a
y
case Maybe b
res of
Maybe b
Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing
Just b
r -> forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x b c
f k
k x
x b
r
{-# INLINE id #-}
{-# INLINE (.) #-}
instance (Monad f, Applicative f) => Applicative (WhenMatched f k x y) where
pure :: forall a. a -> WhenMatched f k x y a
pure a
x = forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> z) -> WhenMatched f k x y z
zipWithMatched (\k
_ x
_ y
_ -> a
x)
WhenMatched f k x y (a -> b)
fs <*> :: forall a b.
WhenMatched f k x y (a -> b)
-> WhenMatched f k x y a -> WhenMatched f k x y b
<*> WhenMatched f k x y a
xs = forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched forall a b. (a -> b) -> a -> b
$ \k
k x
x y
y -> do
Maybe (a -> b)
res <- forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y (a -> b)
fs k
k x
x y
y
case Maybe (a -> b)
res of
Maybe (a -> b)
Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing
Just a -> b
r -> (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$!) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y a
xs k
k x
x y
y
{-# INLINE pure #-}
{-# INLINE (<*>) #-}
instance (Monad f, Applicative f) => Monad (WhenMatched f k x y) where
WhenMatched f k x y a
m >>= :: forall a b.
WhenMatched f k x y a
-> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b
>>= a -> WhenMatched f k x y b
f = forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched forall a b. (a -> b) -> a -> b
$ \k
k x
x y
y -> do
Maybe a
res <- forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y a
m k
k x
x y
y
case Maybe a
res of
Maybe a
Nothing -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing
Just a
r -> forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched (a -> WhenMatched f k x y b
f a
r) k
k x
x y
y
{-# INLINE (>>=) #-}
mapWhenMatched :: Functor f
=> (a -> b)
-> WhenMatched f k x y a
-> WhenMatched f k x y b
mapWhenMatched :: forall (f :: * -> *) a b k x y.
Functor f =>
(a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
mapWhenMatched a -> b
f (WhenMatched k -> x -> y -> f (Maybe a)
g) = forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched forall a b. (a -> b) -> a -> b
$ \k
k x
x y
y -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (k -> x -> y -> f (Maybe a)
g k
k x
x y
y)
{-# INLINE mapWhenMatched #-}
type SimpleWhenMatched = WhenMatched Identity
zipWithMatched :: Applicative f
=> (k -> x -> y -> z)
-> WhenMatched f k x y z
zipWithMatched :: forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> z) -> WhenMatched f k x y z
zipWithMatched k -> x -> y -> z
f = forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched forall a b. (a -> b) -> a -> b
$ \ k
k x
x y
y -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ k -> x -> y -> z
f k
k x
x y
y
{-# INLINE zipWithMatched #-}
zipWithAMatched :: Applicative f
=> (k -> x -> y -> f z)
-> WhenMatched f k x y z
zipWithAMatched :: forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> f z) -> WhenMatched f k x y z
zipWithAMatched k -> x -> y -> f z
f = forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched forall a b. (a -> b) -> a -> b
$ \ k
k x
x y
y -> forall a. a -> Maybe a
Just forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> y -> f z
f k
k x
x y
y
{-# INLINE zipWithAMatched #-}
zipWithMaybeMatched :: Applicative f
=> (k -> x -> y -> Maybe z)
-> WhenMatched f k x y z
zipWithMaybeMatched :: forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched k -> x -> y -> Maybe z
f = forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched forall a b. (a -> b) -> a -> b
$ \ k
k x
x y
y -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ k -> x -> y -> Maybe z
f k
k x
x y
y
{-# INLINE zipWithMaybeMatched #-}
zipWithMaybeAMatched :: (k -> x -> y -> f (Maybe z))
-> WhenMatched f k x y z
zipWithMaybeAMatched :: forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched k -> x -> y -> f (Maybe z)
f = forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched forall a b. (a -> b) -> a -> b
$ \ k
k x
x y
y -> k -> x -> y -> f (Maybe z)
f k
k x
x y
y
{-# INLINE zipWithMaybeAMatched #-}
dropMissing :: Applicative f => WhenMissing f k x y
dropMissing :: forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = forall a b. a -> b -> a
const (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall k a. Map k a
Tip)
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
_ x
_ -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing }
{-# INLINE dropMissing #-}
preserveMissing :: Applicative f => WhenMissing f k x x
preserveMissing :: forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing = WhenMissing
{ missingSubtree :: Map k x -> f (Map k x)
missingSubtree = forall (f :: * -> *) a. Applicative f => a -> f a
pure
, missingKey :: k -> x -> f (Maybe x)
missingKey = \k
_ x
v -> forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall a. a -> Maybe a
Just x
v) }
{-# INLINE preserveMissing #-}
preserveMissing' :: Applicative f => WhenMissing f k x x
preserveMissing' :: forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing' = WhenMissing
{ missingSubtree :: Map k x -> f (Map k x)
missingSubtree = \Map k x
t -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! forall k a. Map k a -> ()
forceTree Map k x
t seq :: forall a b. a -> b -> b
`seq` Map k x
t
, missingKey :: k -> x -> f (Maybe x)
missingKey = \k
_ x
v -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$! x
v }
{-# INLINE preserveMissing' #-}
forceTree :: Map k a -> ()
forceTree :: forall k a. Map k a -> ()
forceTree (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = a
v seq :: forall a b. a -> b -> b
`seq` forall k a. Map k a -> ()
forceTree Map k a
l seq :: forall a b. a -> b -> b
`seq` forall k a. Map k a -> ()
forceTree Map k a
r seq :: forall a b. a -> b -> b
`seq` ()
forceTree Map k a
Tip = ()
mapMissing :: Applicative f => (k -> x -> y) -> WhenMissing f k x y
mapMissing :: forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> y) -> WhenMissing f k x y
mapMissing k -> x -> y
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = \Map k x
m -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> x -> y
f Map k x
m
, missingKey :: k -> x -> f (Maybe y)
missingKey = \ k
k x
x -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just (k -> x -> y
f k
k x
x) }
{-# INLINE mapMissing #-}
mapMaybeMissing :: Applicative f => (k -> x -> Maybe y) -> WhenMissing f k x y
mapMaybeMissing :: forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> Maybe y) -> WhenMissing f k x y
mapMaybeMissing k -> x -> Maybe y
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = \Map k x
m -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> x -> Maybe y
f Map k x
m
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
k x
x -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! k -> x -> Maybe y
f k
k x
x }
{-# INLINE mapMaybeMissing #-}
filterMissing :: Applicative f
=> (k -> x -> Bool) -> WhenMissing f k x x
filterMissing :: forall (f :: * -> *) k x.
Applicative f =>
(k -> x -> Bool) -> WhenMissing f k x x
filterMissing k -> x -> Bool
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k x)
missingSubtree = \Map k x
m -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey k -> x -> Bool
f Map k x
m
, missingKey :: k -> x -> f (Maybe x)
missingKey = \k
k x
x -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$! if k -> x -> Bool
f k
k x
x then forall a. a -> Maybe a
Just x
x else forall a. Maybe a
Nothing }
{-# INLINE filterMissing #-}
filterAMissing :: Applicative f
=> (k -> x -> f Bool) -> WhenMissing f k x x
filterAMissing :: forall (f :: * -> *) k x.
Applicative f =>
(k -> x -> f Bool) -> WhenMissing f k x x
filterAMissing k -> x -> f Bool
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k x)
missingSubtree = \Map k x
m -> forall (f :: * -> *) k a.
Applicative f =>
(k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA k -> x -> f Bool
f Map k x
m
, missingKey :: k -> x -> f (Maybe x)
missingKey = \k
k x
x -> forall a. a -> a -> Bool -> a
bool forall a. Maybe a
Nothing (forall a. a -> Maybe a
Just x
x) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> f Bool
f k
k x
x }
{-# INLINE filterAMissing #-}
bool :: a -> a -> Bool -> a
bool :: forall a. a -> a -> Bool -> a
bool a
f a
_ Bool
False = a
f
bool a
_ a
t Bool
True = a
t
traverseMissing :: Applicative f
=> (k -> x -> f y) -> WhenMissing f k x y
traverseMissing :: forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f y) -> WhenMissing f k x y
traverseMissing k -> x -> f y
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = forall (t :: * -> *) k a b.
Applicative t =>
(k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey k -> x -> f y
f
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
k x
x -> forall a. a -> Maybe a
Just forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> f y
f k
k x
x }
{-# INLINE traverseMissing #-}
traverseMaybeMissing :: Applicative f
=> (k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing :: forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing k -> x -> f (Maybe y)
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = forall (f :: * -> *) k a b.
Applicative f =>
(k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey k -> x -> f (Maybe y)
f
, missingKey :: k -> x -> f (Maybe y)
missingKey = k -> x -> f (Maybe y)
f }
{-# INLINE traverseMaybeMissing #-}
merge :: Ord k
=> SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge :: forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge SimpleWhenMissing k a c
g1 SimpleWhenMissing k b c
g2 SimpleWhenMatched k a b c
f Map k a
m1 Map k b
m2 = forall a. Identity a -> a
runIdentity forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) k a c b.
(Applicative f, Ord k) =>
WhenMissing f k a c
-> WhenMissing f k b c
-> WhenMatched f k a b c
-> Map k a
-> Map k b
-> f (Map k c)
mergeA SimpleWhenMissing k a c
g1 SimpleWhenMissing k b c
g2 SimpleWhenMatched k a b c
f Map k a
m1 Map k b
m2
{-# INLINE merge #-}
mergeA
:: (Applicative f, Ord k)
=> WhenMissing f k a c
-> WhenMissing f k b c
-> WhenMatched f k a b c
-> Map k a
-> Map k b
-> f (Map k c)
mergeA :: forall (f :: * -> *) k a c b.
(Applicative f, Ord k) =>
WhenMissing f k a c
-> WhenMissing f k b c
-> WhenMatched f k a b c
-> Map k a
-> Map k b
-> f (Map k c)
mergeA
WhenMissing{missingSubtree :: forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree = Map k a -> f (Map k c)
g1t, missingKey :: forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey = k -> a -> f (Maybe c)
g1k}
WhenMissing{missingSubtree :: forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree = Map k b -> f (Map k c)
g2t}
(WhenMatched k -> a -> b -> f (Maybe c)
f) = Map k a -> Map k b -> f (Map k c)
go
where
go :: Map k a -> Map k b -> f (Map k c)
go Map k a
t1 Map k b
Tip = Map k a -> f (Map k c)
g1t Map k a
t1
go Map k a
Tip Map k b
t2 = Map k b -> f (Map k c)
g2t Map k b
t2
go (Bin Size
_ k
kx a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
kx Map k b
t2 of
(Map k b
l2, Maybe b
mx2, Map k b
r2) -> case Maybe b
mx2 of
Maybe b
Nothing -> forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 (\Map k c
l' Maybe c
mx' Map k c
r' -> forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall k a. Map k a -> Map k a -> Map k a
link2 (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx) Maybe c
mx' Map k c
l' Map k c
r')
f (Map k c)
l1l2 (k -> a -> f (Maybe c)
g1k k
kx a
x1) f (Map k c)
r1r2
Just b
x2 -> forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 (\Map k c
l' Maybe c
mx' Map k c
r' -> forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall k a. Map k a -> Map k a -> Map k a
link2 (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx) Maybe c
mx' Map k c
l' Map k c
r')
f (Map k c)
l1l2 (k -> a -> b -> f (Maybe c)
f k
kx a
x1 b
x2) f (Map k c)
r1r2
where
!l1l2 :: f (Map k c)
l1l2 = Map k a -> Map k b -> f (Map k c)
go Map k a
l1 Map k b
l2
!r1r2 :: f (Map k c)
r1r2 = Map k a -> Map k b -> f (Map k c)
go Map k a
r1 Map k b
r2
{-# INLINE mergeA #-}
mergeWithKey :: Ord k
=> (k -> a -> b -> Maybe c)
-> (Map k a -> Map k c)
-> (Map k b -> Map k c)
-> Map k a -> Map k b -> Map k c
mergeWithKey :: forall k a b c.
Ord k =>
(k -> a -> b -> Maybe c)
-> (Map k a -> Map k c)
-> (Map k b -> Map k c)
-> Map k a
-> Map k b
-> Map k c
mergeWithKey k -> a -> b -> Maybe c
f Map k a -> Map k c
g1 Map k b -> Map k c
g2 = Map k a -> Map k b -> Map k c
go
where
go :: Map k a -> Map k b -> Map k c
go Map k a
Tip Map k b
t2 = Map k b -> Map k c
g2 Map k b
t2
go Map k a
t1 Map k b
Tip = Map k a -> Map k c
g1 Map k a
t1
go (Bin Size
_ k
kx a
x Map k a
l1 Map k a
r1) Map k b
t2 =
case Maybe b
found of
Maybe b
Nothing -> case Map k a -> Map k c
g1 (forall k a. k -> a -> Map k a
singleton k
kx a
x) of
Map k c
Tip -> forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l' Map k c
r'
(Bin Size
_ k
_ c
x' Map k c
Tip Map k c
Tip) -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx c
x' Map k c
l' Map k c
r'
Map k c
_ -> forall a. HasCallStack => [Char] -> a
error [Char]
"mergeWithKey: Given function only1 does not fulfill required conditions (see documentation)"
Just b
x2 -> case k -> a -> b -> Maybe c
f k
kx a
x b
x2 of
Maybe c
Nothing -> forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l' Map k c
r'
Just c
x' -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx c
x' Map k c
l' Map k c
r'
where
(Map k b
l2, Maybe b
found, Map k b
r2) = forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
kx Map k b
t2
l' :: Map k c
l' = Map k a -> Map k b -> Map k c
go Map k a
l1 Map k b
l2
r' :: Map k c
r' = Map k a -> Map k b -> Map k c
go Map k a
r1 Map k b
r2
{-# INLINE mergeWithKey #-}
isSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isSubmapOf :: forall k a. (Ord k, Eq a) => Map k a -> Map k a -> Bool
isSubmapOf Map k a
m1 Map k a
m2 = forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
isSubmapOfBy forall a. Eq a => a -> a -> Bool
(==) Map k a
m1 Map k a
m2
#if __GLASGOW_HASKELL__
{-# INLINABLE isSubmapOf #-}
#endif
isSubmapOfBy :: Ord k => (a->b->Bool) -> Map k a -> Map k b -> Bool
isSubmapOfBy :: forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
isSubmapOfBy a -> b -> Bool
f Map k a
t1 Map k b
t2
= forall k a. Map k a -> Size
size Map k a
t1 forall a. Ord a => a -> a -> Bool
<= forall k a. Map k a -> Size
size Map k b
t2 Bool -> Bool -> Bool
&& forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' a -> b -> Bool
f Map k a
t1 Map k b
t2
#if __GLASGOW_HASKELL__
{-# INLINABLE isSubmapOfBy #-}
#endif
submap' :: Ord a => (b -> c -> Bool) -> Map a b -> Map a c -> Bool
submap' :: forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' b -> c -> Bool
_ Map a b
Tip Map a c
_ = Bool
True
submap' b -> c -> Bool
_ Map a b
_ Map a c
Tip = Bool
False
submap' b -> c -> Bool
f (Bin Size
1 a
kx b
x Map a b
_ Map a b
_) Map a c
t
= case forall k a. Ord k => k -> Map k a -> Maybe a
lookup a
kx Map a c
t of
Just c
y -> b -> c -> Bool
f b
x c
y
Maybe c
Nothing -> Bool
False
submap' b -> c -> Bool
f (Bin Size
_ a
kx b
x Map a b
l Map a b
r) Map a c
t
= case Maybe c
found of
Maybe c
Nothing -> Bool
False
Just c
y -> b -> c -> Bool
f b
x c
y
Bool -> Bool -> Bool
&& forall k a. Map k a -> Size
size Map a b
l forall a. Ord a => a -> a -> Bool
<= forall k a. Map k a -> Size
size Map a c
lt Bool -> Bool -> Bool
&& forall k a. Map k a -> Size
size Map a b
r forall a. Ord a => a -> a -> Bool
<= forall k a. Map k a -> Size
size Map a c
gt
Bool -> Bool -> Bool
&& forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' b -> c -> Bool
f Map a b
l Map a c
lt Bool -> Bool -> Bool
&& forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' b -> c -> Bool
f Map a b
r Map a c
gt
where
(Map a c
lt,Maybe c
found,Map a c
gt) = forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup a
kx Map a c
t
#if __GLASGOW_HASKELL__
{-# INLINABLE submap' #-}
#endif
isProperSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isProperSubmapOf :: forall k a. (Ord k, Eq a) => Map k a -> Map k a -> Bool
isProperSubmapOf Map k a
m1 Map k a
m2
= forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
isProperSubmapOfBy forall a. Eq a => a -> a -> Bool
(==) Map k a
m1 Map k a
m2
#if __GLASGOW_HASKELL__
{-# INLINABLE isProperSubmapOf #-}
#endif
isProperSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool
isProperSubmapOfBy :: forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
isProperSubmapOfBy a -> b -> Bool
f Map k a
t1 Map k b
t2
= forall k a. Map k a -> Size
size Map k a
t1 forall a. Ord a => a -> a -> Bool
< forall k a. Map k a -> Size
size Map k b
t2 Bool -> Bool -> Bool
&& forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' a -> b -> Bool
f Map k a
t1 Map k b
t2
#if __GLASGOW_HASKELL__
{-# INLINABLE isProperSubmapOfBy #-}
#endif
filter :: (a -> Bool) -> Map k a -> Map k a
filter :: forall a k. (a -> Bool) -> Map k a -> Map k a
filter a -> Bool
p Map k a
m
= forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey (\k
_ a
x -> a -> Bool
p a
x) Map k a
m
filterWithKey :: (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey :: forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey k -> a -> Bool
_ Map k a
Tip = forall k a. Map k a
Tip
filterWithKey k -> a -> Bool
p t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> a -> Bool
p k
kx a
x = if Map k a
pl forall a. a -> a -> Bool
`ptrEq` Map k a
l Bool -> Bool -> Bool
&& Map k a
pr forall a. a -> a -> Bool
`ptrEq` Map k a
r
then Map k a
t
else forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
pl Map k a
pr
| Bool
otherwise = forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
pl Map k a
pr
where !pl :: Map k a
pl = forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey k -> a -> Bool
p Map k a
l
!pr :: Map k a
pr = forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey k -> a -> Bool
p Map k a
r
filterWithKeyA :: Applicative f => (k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA :: forall (f :: * -> *) k a.
Applicative f =>
(k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA k -> a -> f Bool
_ Map k a
Tip = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall k a. Map k a
Tip
filterWithKeyA k -> a -> f Bool
p t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 Bool -> Map k a -> Map k a -> Map k a
combine (k -> a -> f Bool
p k
kx a
x) (forall (f :: * -> *) k a.
Applicative f =>
(k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA k -> a -> f Bool
p Map k a
l) (forall (f :: * -> *) k a.
Applicative f =>
(k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA k -> a -> f Bool
p Map k a
r)
where
combine :: Bool -> Map k a -> Map k a -> Map k a
combine Bool
True Map k a
pl Map k a
pr
| Map k a
pl forall a. a -> a -> Bool
`ptrEq` Map k a
l Bool -> Bool -> Bool
&& Map k a
pr forall a. a -> a -> Bool
`ptrEq` Map k a
r = Map k a
t
| Bool
otherwise = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
pl Map k a
pr
combine Bool
False Map k a
pl Map k a
pr = forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
pl Map k a
pr
takeWhileAntitone :: (k -> Bool) -> Map k a -> Map k a
takeWhileAntitone :: forall k a. (k -> Bool) -> Map k a -> Map k a
takeWhileAntitone k -> Bool
_ Map k a
Tip = forall k a. Map k a
Tip
takeWhileAntitone k -> Bool
p (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> Bool
p k
kx = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l (forall k a. (k -> Bool) -> Map k a -> Map k a
takeWhileAntitone k -> Bool
p Map k a
r)
| Bool
otherwise = forall k a. (k -> Bool) -> Map k a -> Map k a
takeWhileAntitone k -> Bool
p Map k a
l
dropWhileAntitone :: (k -> Bool) -> Map k a -> Map k a
dropWhileAntitone :: forall k a. (k -> Bool) -> Map k a -> Map k a
dropWhileAntitone k -> Bool
_ Map k a
Tip = forall k a. Map k a
Tip
dropWhileAntitone k -> Bool
p (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> Bool
p k
kx = forall k a. (k -> Bool) -> Map k a -> Map k a
dropWhileAntitone k -> Bool
p Map k a
r
| Bool
otherwise = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x (forall k a. (k -> Bool) -> Map k a -> Map k a
dropWhileAntitone k -> Bool
p Map k a
l) Map k a
r
spanAntitone :: (k -> Bool) -> Map k a -> (Map k a, Map k a)
spanAntitone :: forall k a. (k -> Bool) -> Map k a -> (Map k a, Map k a)
spanAntitone k -> Bool
p0 Map k a
m = forall a b. StrictPair a b -> (a, b)
toPair (forall {k} {a}.
(k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> Bool
p0 Map k a
m)
where
go :: (k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> Bool
_ Map k a
Tip = forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: forall k a. Map k a
Tip
go k -> Bool
p (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> Bool
p k
kx = let Map k a
u :*: Map k a
v = (k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> Bool
p Map k a
r in forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
u forall a b. a -> b -> StrictPair a b
:*: Map k a
v
| Bool
otherwise = let Map k a
u :*: Map k a
v = (k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> Bool
p Map k a
l in Map k a
u forall a b. a -> b -> StrictPair a b
:*: forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
v Map k a
r
partition :: (a -> Bool) -> Map k a -> (Map k a,Map k a)
partition :: forall a k. (a -> Bool) -> Map k a -> (Map k a, Map k a)
partition a -> Bool
p Map k a
m
= forall k a. (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
partitionWithKey (\k
_ a
x -> a -> Bool
p a
x) Map k a
m
partitionWithKey :: (k -> a -> Bool) -> Map k a -> (Map k a,Map k a)
partitionWithKey :: forall k a. (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
partitionWithKey k -> a -> Bool
p0 Map k a
t0 = forall a b. StrictPair a b -> (a, b)
toPair forall a b. (a -> b) -> a -> b
$ forall {k} {a}.
(k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> a -> Bool
p0 Map k a
t0
where
go :: (k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> a -> Bool
_ Map k a
Tip = (forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: forall k a. Map k a
Tip)
go k -> a -> Bool
p t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> a -> Bool
p k
kx a
x = (if Map k a
l1 forall a. a -> a -> Bool
`ptrEq` Map k a
l Bool -> Bool -> Bool
&& Map k a
r1 forall a. a -> a -> Bool
`ptrEq` Map k a
r
then Map k a
t
else forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l1 Map k a
r1) forall a b. a -> b -> StrictPair a b
:*: forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l2 Map k a
r2
| Bool
otherwise = forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1 Map k a
r1 forall a b. a -> b -> StrictPair a b
:*:
(if Map k a
l2 forall a. a -> a -> Bool
`ptrEq` Map k a
l Bool -> Bool -> Bool
&& Map k a
r2 forall a. a -> a -> Bool
`ptrEq` Map k a
r
then Map k a
t
else forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l2 Map k a
r2)
where
(Map k a
l1 :*: Map k a
l2) = (k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> a -> Bool
p Map k a
l
(Map k a
r1 :*: Map k a
r2) = (k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> a -> Bool
p Map k a
r
mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b
mapMaybe :: forall a b k. (a -> Maybe b) -> Map k a -> Map k b
mapMaybe a -> Maybe b
f = forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey (\k
_ a
x -> a -> Maybe b
f a
x)
mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey :: forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
_ Map k a
Tip = forall k a. Map k a
Tip
mapMaybeWithKey k -> a -> Maybe b
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = case k -> a -> Maybe b
f k
kx a
x of
Just b
y -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx b
y (forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
l) (forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
r)
Maybe b
Nothing -> forall k a. Map k a -> Map k a -> Map k a
link2 (forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
l) (forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
r)
traverseMaybeWithKey :: Applicative f
=> (k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey :: forall (f :: * -> *) k a b.
Applicative f =>
(k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey = forall (f :: * -> *) k a b.
Applicative f =>
(k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
go
where
go :: (k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
_ Map k t
Tip = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall k a. Map k a
Tip
go k -> t -> f (Maybe a)
f (Bin Size
_ k
kx t
x Map k t
Tip Map k t
Tip) = forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall k a. Map k a
Tip (\a
x' -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x' forall k a. Map k a
Tip forall k a. Map k a
Tip) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> t -> f (Maybe a)
f k
kx t
x
go k -> t -> f (Maybe a)
f (Bin Size
_ k
kx t
x Map k t
l Map k t
r) = forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 Map k a -> Maybe a -> Map k a -> Map k a
combine ((k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
f Map k t
l) (k -> t -> f (Maybe a)
f k
kx t
x) ((k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
f Map k t
r)
where
combine :: Map k a -> Maybe a -> Map k a -> Map k a
combine !Map k a
l' Maybe a
mx !Map k a
r' = case Maybe a
mx of
Maybe a
Nothing -> forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l' Map k a
r'
Just a
x' -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x' Map k a
l' Map k a
r'
mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEither :: forall a b c k. (a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEither a -> Either b c
f Map k a
m
= forall k a b c.
(k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey (\k
_ a
x -> a -> Either b c
f a
x) Map k a
m
mapEitherWithKey :: (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey :: forall k a b c.
(k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey k -> a -> Either b c
f0 Map k a
t0 = forall a b. StrictPair a b -> (a, b)
toPair forall a b. (a -> b) -> a -> b
$ forall {k} {t} {a} {a}.
(k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> a -> Either b c
f0 Map k a
t0
where
go :: (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
_ Map k t
Tip = (forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: forall k a. Map k a
Tip)
go k -> t -> Either a a
f (Bin Size
_ k
kx t
x Map k t
l Map k t
r) = case k -> t -> Either a a
f k
kx t
x of
Left a
y -> forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
y Map k a
l1 Map k a
r1 forall a b. a -> b -> StrictPair a b
:*: forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l2 Map k a
r2
Right a
z -> forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1 Map k a
r1 forall a b. a -> b -> StrictPair a b
:*: forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
z Map k a
l2 Map k a
r2
where
(Map k a
l1 :*: Map k a
l2) = (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
f Map k t
l
(Map k a
r1 :*: Map k a
r2) = (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
f Map k t
r
map :: (a -> b) -> Map k a -> Map k b
map :: forall a b k. (a -> b) -> Map k a -> Map k b
map a -> b
f = Map k a -> Map k b
go where
go :: Map k a -> Map k b
go Map k a
Tip = forall k a. Map k a
Tip
go (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx (a -> b
f a
x) (Map k a -> Map k b
go Map k a
l) (Map k a -> Map k b
go Map k a
r)
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] map #-}
{-# RULES
"map/map" forall f g xs . map f (map g xs) = map (f . g) xs
"map/coerce" map coerce = coerce
#-}
#endif
mapWithKey :: (k -> a -> b) -> Map k a -> Map k b
mapWithKey :: forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
_ Map k a
Tip = forall k a. Map k a
Tip
mapWithKey k -> a -> b
f (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx (k -> a -> b
f k
kx a
x) (forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
f Map k a
l) (forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
f Map k a
r)
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] mapWithKey #-}
{-# RULES
"mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) =
mapWithKey (\k a -> f k (g k a)) xs
"mapWithKey/map" forall f g xs . mapWithKey f (map g xs) =
mapWithKey (\k a -> f k (g a)) xs
"map/mapWithKey" forall f g xs . map f (mapWithKey g xs) =
mapWithKey (\k a -> f (g k a)) xs
#-}
#endif
traverseWithKey :: Applicative t => (k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey :: forall (t :: * -> *) k a b.
Applicative t =>
(k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey k -> a -> t b
f = Map k a -> t (Map k b)
go
where
go :: Map k a -> t (Map k b)
go Map k a
Tip = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall k a. Map k a
Tip
go (Bin Size
1 k
k a
v Map k a
_ Map k a
_) = (\b
v' -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k b
v' forall k a. Map k a
Tip forall k a. Map k a
Tip) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> a -> t b
f k
k a
v
go (Bin Size
s k
k a
v Map k a
l Map k a
r) = forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 (forall a b c. (a -> b -> c) -> b -> a -> c
flip (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
s k
k)) (Map k a -> t (Map k b)
go Map k a
l) (k -> a -> t b
f k
k a
v) (Map k a -> t (Map k b)
go Map k a
r)
{-# INLINE traverseWithKey #-}
mapAccum :: (a -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccum :: forall a b c k. (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccum a -> b -> (a, c)
f a
a Map k b
m
= forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumWithKey (\a
a' k
_ b
x' -> a -> b -> (a, c)
f a
a' b
x') a
a Map k b
m
mapAccumWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumWithKey :: forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumWithKey a -> k -> b -> (a, c)
f a
a Map k b
t
= forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a Map k b
t
mapAccumL :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumL :: forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
_ a
a Map k b
Tip = (a
a,forall k a. Map k a
Tip)
mapAccumL a -> k -> b -> (a, c)
f a
a (Bin Size
sx k
kx b
x Map k b
l Map k b
r) =
let (a
a1,Map k c
l') = forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a Map k b
l
(a
a2,c
x') = a -> k -> b -> (a, c)
f a
a1 k
kx b
x
(a
a3,Map k c
r') = forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a2 Map k b
r
in (a
a3,forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx c
x' Map k c
l' Map k c
r')
mapAccumRWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumRWithKey :: forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
_ a
a Map k b
Tip = (a
a,forall k a. Map k a
Tip)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a (Bin Size
sx k
kx b
x Map k b
l Map k b
r) =
let (a
a1,Map k c
r') = forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a Map k b
r
(a
a2,c
x') = a -> k -> b -> (a, c)
f a
a1 k
kx b
x
(a
a3,Map k c
l') = forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a2 Map k b
l
in (a
a3,forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx c
x' Map k c
l' Map k c
r')
mapKeys :: Ord k2 => (k1->k2) -> Map k1 a -> Map k2 a
mapKeys :: forall k2 k1 a. Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeys k1 -> k2
f = forall k a. Ord k => [(k, a)] -> Map k a
fromList forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k1
k a
x [(k2, a)]
xs -> (k1 -> k2
f k1
k, a
x) forall a. a -> [a] -> [a]
: [(k2, a)]
xs) []
#if __GLASGOW_HASKELL__
{-# INLINABLE mapKeys #-}
#endif
mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1->k2) -> Map k1 a -> Map k2 a
mapKeysWith :: forall k2 a k1.
Ord k2 =>
(a -> a -> a) -> (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysWith a -> a -> a
c k1 -> k2
f = forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
fromListWith a -> a -> a
c forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k1
k a
x [(k2, a)]
xs -> (k1 -> k2
f k1
k, a
x) forall a. a -> [a] -> [a]
: [(k2, a)]
xs) []
#if __GLASGOW_HASKELL__
{-# INLINABLE mapKeysWith #-}
#endif
mapKeysMonotonic :: (k1->k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic :: forall k1 k2 a. (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic k1 -> k2
_ Map k1 a
Tip = forall k a. Map k a
Tip
mapKeysMonotonic k1 -> k2
f (Bin Size
sz k1
k a
x Map k1 a
l Map k1 a
r) =
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz (k1 -> k2
f k1
k) a
x (forall k1 k2 a. (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic k1 -> k2
f Map k1 a
l) (forall k1 k2 a. (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic k1 -> k2
f Map k1 a
r)
foldr :: (a -> b -> b) -> b -> Map k a -> b
foldr :: forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr a -> b -> b
f b
z = b -> Map k a -> b
go b
z
where
go :: b -> Map k a -> b
go b
z' Map k a
Tip = b
z'
go b
z' (Bin Size
_ k
_ a
x Map k a
l Map k a
r) = b -> Map k a -> b
go (a -> b -> b
f a
x (b -> Map k a -> b
go b
z' Map k a
r)) Map k a
l
{-# INLINE foldr #-}
foldr' :: (a -> b -> b) -> b -> Map k a -> b
foldr' :: forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr' a -> b -> b
f b
z = b -> Map k a -> b
go b
z
where
go :: b -> Map k a -> b
go !b
z' Map k a
Tip = b
z'
go b
z' (Bin Size
_ k
_ a
x Map k a
l Map k a
r) = b -> Map k a -> b
go (a -> b -> b
f a
x forall a b. (a -> b) -> a -> b
$! b -> Map k a -> b
go b
z' Map k a
r) Map k a
l
{-# INLINE foldr' #-}
foldl :: (a -> b -> a) -> a -> Map k b -> a
foldl :: forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl a -> b -> a
f a
z = a -> Map k b -> a
go a
z
where
go :: a -> Map k b -> a
go a
z' Map k b
Tip = a
z'
go a
z' (Bin Size
_ k
_ b
x Map k b
l Map k b
r) = a -> Map k b -> a
go (a -> b -> a
f (a -> Map k b -> a
go a
z' Map k b
l) b
x) Map k b
r
{-# INLINE foldl #-}
foldl' :: (a -> b -> a) -> a -> Map k b -> a
foldl' :: forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl' a -> b -> a
f a
z = a -> Map k b -> a
go a
z
where
go :: a -> Map k b -> a
go !a
z' Map k b
Tip = a
z'
go a
z' (Bin Size
_ k
_ b
x Map k b
l Map k b
r) =
let !z'' :: a
z'' = a -> Map k b -> a
go a
z' Map k b
l
in a -> Map k b -> a
go (a -> b -> a
f a
z'' b
x) Map k b
r
{-# INLINE foldl' #-}
foldrWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey :: forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey k -> a -> b -> b
f b
z = b -> Map k a -> b
go b
z
where
go :: b -> Map k a -> b
go b
z' Map k a
Tip = b
z'
go b
z' (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = b -> Map k a -> b
go (k -> a -> b -> b
f k
kx a
x (b -> Map k a -> b
go b
z' Map k a
r)) Map k a
l
{-# INLINE foldrWithKey #-}
foldrWithKey' :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey' :: forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey' k -> a -> b -> b
f b
z = b -> Map k a -> b
go b
z
where
go :: b -> Map k a -> b
go !b
z' Map k a
Tip = b
z'
go b
z' (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = b -> Map k a -> b
go (k -> a -> b -> b
f k
kx a
x forall a b. (a -> b) -> a -> b
$! b -> Map k a -> b
go b
z' Map k a
r) Map k a
l
{-# INLINE foldrWithKey' #-}
foldlWithKey :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey :: forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey a -> k -> b -> a
f a
z = a -> Map k b -> a
go a
z
where
go :: a -> Map k b -> a
go a
z' Map k b
Tip = a
z'
go a
z' (Bin Size
_ k
kx b
x Map k b
l Map k b
r) = a -> Map k b -> a
go (a -> k -> b -> a
f (a -> Map k b -> a
go a
z' Map k b
l) k
kx b
x) Map k b
r
{-# INLINE foldlWithKey #-}
foldlWithKey' :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey' :: forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey' a -> k -> b -> a
f a
z = a -> Map k b -> a
go a
z
where
go :: a -> Map k b -> a
go !a
z' Map k b
Tip = a
z'
go a
z' (Bin Size
_ k
kx b
x Map k b
l Map k b
r) =
let !z'' :: a
z'' = a -> Map k b -> a
go a
z' Map k b
l
in a -> Map k b -> a
go (a -> k -> b -> a
f a
z'' k
kx b
x) Map k b
r
{-# INLINE foldlWithKey' #-}
foldMapWithKey :: Monoid m => (k -> a -> m) -> Map k a -> m
foldMapWithKey :: forall m k a. Monoid m => (k -> a -> m) -> Map k a -> m
foldMapWithKey k -> a -> m
f = Map k a -> m
go
where
go :: Map k a -> m
go Map k a
Tip = forall a. Monoid a => a
mempty
go (Bin Size
1 k
k a
v Map k a
_ Map k a
_) = k -> a -> m
f k
k a
v
go (Bin Size
_ k
k a
v Map k a
l Map k a
r) = Map k a -> m
go Map k a
l forall a. Monoid a => a -> a -> a
`mappend` (k -> a -> m
f k
k a
v forall a. Monoid a => a -> a -> a
`mappend` Map k a -> m
go Map k a
r)
{-# INLINE foldMapWithKey #-}
elems :: Map k a -> [a]
elems :: forall k a. Map k a -> [a]
elems = forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr (:) []
keys :: Map k a -> [k]
keys :: forall k a. Map k a -> [k]
keys = forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k
k a
_ [k]
ks -> k
k forall a. a -> [a] -> [a]
: [k]
ks) []
assocs :: Map k a -> [(k,a)]
assocs :: forall k a. Map k a -> [(k, a)]
assocs Map k a
m
= forall k a. Map k a -> [(k, a)]
toAscList Map k a
m
keysSet :: Map k a -> Set.Set k
keysSet :: forall k a. Map k a -> Set k
keysSet Map k a
Tip = forall a. Set a
Set.Tip
keysSet (Bin Size
sz k
kx a
_ Map k a
l Map k a
r) = forall a. Size -> a -> Set a -> Set a -> Set a
Set.Bin Size
sz k
kx (forall k a. Map k a -> Set k
keysSet Map k a
l) (forall k a. Map k a -> Set k
keysSet Map k a
r)
argSet :: Map k a -> Set.Set (Arg k a)
argSet :: forall k a. Map k a -> Set (Arg k a)
argSet Map k a
Tip = forall a. Set a
Set.Tip
argSet (Bin Size
sz k
kx a
x Map k a
l Map k a
r) = forall a. Size -> a -> Set a -> Set a -> Set a
Set.Bin Size
sz (forall a b. a -> b -> Arg a b
Arg k
kx a
x) (forall k a. Map k a -> Set (Arg k a)
argSet Map k a
l) (forall k a. Map k a -> Set (Arg k a)
argSet Map k a
r)
fromSet :: (k -> a) -> Set.Set k -> Map k a
fromSet :: forall k a. (k -> a) -> Set k -> Map k a
fromSet k -> a
_ Set k
Set.Tip = forall k a. Map k a
Tip
fromSet k -> a
f (Set.Bin Size
sz k
x Set k
l Set k
r) = forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
x (k -> a
f k
x) (forall k a. (k -> a) -> Set k -> Map k a
fromSet k -> a
f Set k
l) (forall k a. (k -> a) -> Set k -> Map k a
fromSet k -> a
f Set k
r)
fromArgSet :: Set.Set (Arg k a) -> Map k a
fromArgSet :: forall k a. Set (Arg k a) -> Map k a
fromArgSet Set (Arg k a)
Set.Tip = forall k a. Map k a
Tip
fromArgSet (Set.Bin Size
sz (Arg k
x a
v) Set (Arg k a)
l Set (Arg k a)
r) = forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
x a
v (forall k a. Set (Arg k a) -> Map k a
fromArgSet Set (Arg k a)
l) (forall k a. Set (Arg k a) -> Map k a
fromArgSet Set (Arg k a)
r)
#ifdef __GLASGOW_HASKELL__
instance (Ord k) => GHCExts.IsList (Map k v) where
type Item (Map k v) = (k,v)
fromList :: [Item (Map k v)] -> Map k v
fromList = forall k a. Ord k => [(k, a)] -> Map k a
fromList
toList :: Map k v -> [Item (Map k v)]
toList = forall k a. Map k a -> [(k, a)]
toList
#endif
fromList :: Ord k => [(k,a)] -> Map k a
fromList :: forall k a. Ord k => [(k, a)] -> Map k a
fromList [] = forall k a. Map k a
Tip
fromList [(k
kx, a
x)] = forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x forall k a. Map k a
Tip forall k a. Map k a
Tip
fromList ((k
kx0, a
x0) : [(k, a)]
xs0) | forall {a} {b}. Ord a => a -> [(a, b)] -> Bool
not_ordered k
kx0 [(k, a)]
xs0 = forall {t :: * -> *} {k} {a}.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 forall k a. Map k a
Tip forall k a. Map k a
Tip) [(k, a)]
xs0
| Bool
otherwise = forall {k} {t} {a}.
(Ord k, Num t, Bits t) =>
t -> Map k a -> [(k, a)] -> Map k a
go (Size
1::Int) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 forall k a. Map k a
Tip forall k a. Map k a
Tip) [(k, a)]
xs0
where
not_ordered :: a -> [(a, b)] -> Bool
not_ordered a
_ [] = Bool
False
not_ordered a
kx ((a
ky,b
_) : [(a, b)]
_) = a
kx forall a. Ord a => a -> a -> Bool
>= a
ky
{-# INLINE not_ordered #-}
fromList' :: Map k a -> t (k, a) -> Map k a
fromList' Map k a
t0 t (k, a)
xs = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' forall {k} {a}. Ord k => Map k a -> (k, a) -> Map k a
ins Map k a
t0 t (k, a)
xs
where ins :: Map k a -> (k, a) -> Map k a
ins Map k a
t (k
k,a
x) = forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
k a
x Map k a
t
go :: t -> Map k a -> [(k, a)] -> Map k a
go !t
_ Map k a
t [] = Map k a
t
go t
_ Map k a
t [(k
kx, a
x)] = forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
t
go t
s Map k a
l xs :: [(k, a)]
xs@((k
kx, a
x) : [(k, a)]
xss) | forall {a} {b}. Ord a => a -> [(a, b)] -> Bool
not_ordered k
kx [(k, a)]
xss = forall {t :: * -> *} {k} {a}.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' Map k a
l [(k, a)]
xs
| Bool
otherwise = case forall {t} {a} {b}.
(Num t, Ord a, Bits t) =>
t -> [(a, b)] -> (Map a b, [(a, b)], [(a, b)])
create t
s [(k, a)]
xss of
(Map k a
r, [(k, a)]
ys, []) -> t -> Map k a -> [(k, a)] -> Map k a
go (t
s forall a. Bits a => a -> Size -> a
`shiftL` Size
1) (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) [(k, a)]
ys
(Map k a
r, [(k, a)]
_, [(k, a)]
ys) -> forall {t :: * -> *} {k} {a}.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) [(k, a)]
ys
create :: t -> [(a, b)] -> (Map a b, [(a, b)], [(a, b)])
create !t
_ [] = (forall k a. Map k a
Tip, [], [])
create t
s xs :: [(a, b)]
xs@((a, b)
xp : [(a, b)]
xss)
| t
s forall a. Eq a => a -> a -> Bool
== t
1 = case (a, b)
xp of (a
kx, b
x) | forall {a} {b}. Ord a => a -> [(a, b)] -> Bool
not_ordered a
kx [(a, b)]
xss -> (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 a
kx b
x forall k a. Map k a
Tip forall k a. Map k a
Tip, [], [(a, b)]
xss)
| Bool
otherwise -> (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 a
kx b
x forall k a. Map k a
Tip forall k a. Map k a
Tip, [(a, b)]
xss, [])
| Bool
otherwise = case t -> [(a, b)] -> (Map a b, [(a, b)], [(a, b)])
create (t
s forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(a, b)]
xs of
res :: (Map a b, [(a, b)], [(a, b)])
res@(Map a b
_, [], [(a, b)]
_) -> (Map a b, [(a, b)], [(a, b)])
res
(Map a b
l, [(a
ky, b
y)], [(a, b)]
zs) -> (forall k a. k -> a -> Map k a -> Map k a
insertMax a
ky b
y Map a b
l, [], [(a, b)]
zs)
(Map a b
l, ys :: [(a, b)]
ys@((a
ky, b
y):[(a, b)]
yss), [(a, b)]
_) | forall {a} {b}. Ord a => a -> [(a, b)] -> Bool
not_ordered a
ky [(a, b)]
yss -> (Map a b
l, [], [(a, b)]
ys)
| Bool
otherwise -> case t -> [(a, b)] -> (Map a b, [(a, b)], [(a, b)])
create (t
s forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(a, b)]
yss of
(Map a b
r, [(a, b)]
zs, [(a, b)]
ws) -> (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link a
ky b
y Map a b
l Map a b
r, [(a, b)]
zs, [(a, b)]
ws)
#if __GLASGOW_HASKELL__
{-# INLINABLE fromList #-}
#endif
fromListWith :: Ord k => (a -> a -> a) -> [(k,a)] -> Map k a
fromListWith :: forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
fromListWith a -> a -> a
f [(k, a)]
xs
= forall k a. Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromListWith #-}
#endif
fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromListWithKey :: forall k a. Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromListWithKey k -> a -> a -> a
f [(k, a)]
xs
= forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Map k a -> (k, a) -> Map k a
ins forall k a. Map k a
empty [(k, a)]
xs
where
ins :: Map k a -> (k, a) -> Map k a
ins Map k a
t (k
k,a
x) = forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey k -> a -> a -> a
f k
k a
x Map k a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE fromListWithKey #-}
#endif
toList :: Map k a -> [(k,a)]
toList :: forall k a. Map k a -> [(k, a)]
toList = forall k a. Map k a -> [(k, a)]
toAscList
toAscList :: Map k a -> [(k,a)]
toAscList :: forall k a. Map k a -> [(k, a)]
toAscList = forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k
k a
x [(k, a)]
xs -> (k
k,a
x)forall a. a -> [a] -> [a]
:[(k, a)]
xs) []
toDescList :: Map k a -> [(k,a)]
toDescList :: forall k a. Map k a -> [(k, a)]
toDescList = forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey (\[(k, a)]
xs k
k a
x -> (k
k,a
x)forall a. a -> [a] -> [a]
:[(k, a)]
xs) []
#if __GLASGOW_HASKELL__
foldrFB :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrFB :: forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrFB = forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlFB :: forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlFB = forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey
{-# INLINE[0] foldlFB #-}
{-# INLINE assocs #-}
{-# INLINE toList #-}
{-# NOINLINE[0] elems #-}
{-# NOINLINE[0] keys #-}
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "Map.elems" [~1] forall m . elems m = build (\c n -> foldrFB (\_ x xs -> c x xs) n m) #-}
{-# RULES "Map.elemsBack" [1] foldrFB (\_ x xs -> x : xs) [] = elems #-}
{-# RULES "Map.keys" [~1] forall m . keys m = build (\c n -> foldrFB (\k _ xs -> c k xs) n m) #-}
{-# RULES "Map.keysBack" [1] foldrFB (\k _ xs -> k : xs) [] = keys #-}
{-# RULES "Map.toAscList" [~1] forall m . toAscList m = build (\c n -> foldrFB (\k x xs -> c (k,x) xs) n m) #-}
{-# RULES "Map.toAscListBack" [1] foldrFB (\k x xs -> (k, x) : xs) [] = toAscList #-}
{-# RULES "Map.toDescList" [~1] forall m . toDescList m = build (\c n -> foldlFB (\xs k x -> c (k,x) xs) n m) #-}
{-# RULES "Map.toDescListBack" [1] foldlFB (\xs k x -> (k, x) : xs) [] = toDescList #-}
#endif
fromAscList :: Eq k => [(k,a)] -> Map k a
fromAscList :: forall k a. Eq k => [(k, a)] -> Map k a
fromAscList [(k, a)]
xs
= forall k a. [(k, a)] -> Map k a
fromDistinctAscList (forall {a} {b}. Eq a => [(a, b)] -> [(a, b)]
combineEq [(k, a)]
xs)
where
combineEq :: [(a, b)] -> [(a, b)]
combineEq [(a, b)]
xs'
= case [(a, b)]
xs' of
[] -> []
[(a, b)
x] -> [(a, b)
x]
((a, b)
x:[(a, b)]
xx) -> forall {a} {b}. Eq a => (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
x [(a, b)]
xx
combineEq' :: (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
z [] = [(a, b)
z]
combineEq' z :: (a, b)
z@(a
kz,b
_) (x :: (a, b)
x@(a
kx,b
xx):[(a, b)]
xs')
| a
kxforall a. Eq a => a -> a -> Bool
==a
kz = (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a
kx,b
xx) [(a, b)]
xs'
| Bool
otherwise = (a, b)
zforall a. a -> [a] -> [a]
:(a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
x [(a, b)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscList #-}
#endif
fromDescList :: Eq k => [(k,a)] -> Map k a
fromDescList :: forall k a. Eq k => [(k, a)] -> Map k a
fromDescList [(k, a)]
xs = forall k a. [(k, a)] -> Map k a
fromDistinctDescList (forall {a} {b}. Eq a => [(a, b)] -> [(a, b)]
combineEq [(k, a)]
xs)
where
combineEq :: [(a, b)] -> [(a, b)]
combineEq [(a, b)]
xs'
= case [(a, b)]
xs' of
[] -> []
[(a, b)
x] -> [(a, b)
x]
((a, b)
x:[(a, b)]
xx) -> forall {a} {b}. Eq a => (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
x [(a, b)]
xx
combineEq' :: (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
z [] = [(a, b)
z]
combineEq' z :: (a, b)
z@(a
kz,b
_) (x :: (a, b)
x@(a
kx,b
xx):[(a, b)]
xs')
| a
kxforall a. Eq a => a -> a -> Bool
==a
kz = (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a
kx,b
xx) [(a, b)]
xs'
| Bool
otherwise = (a, b)
zforall a. a -> [a] -> [a]
:(a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
x [(a, b)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescList #-}
#endif
fromAscListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWith :: forall k a. Eq k => (a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWith a -> a -> a
f [(k, a)]
xs
= forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscListWith #-}
#endif
fromDescListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a
fromDescListWith :: forall k a. Eq k => (a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWith a -> a -> a
f [(k, a)]
xs
= forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescListWith #-}
#endif
fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWithKey :: forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWithKey k -> a -> a -> a
f [(k, a)]
xs
= forall k a. [(k, a)] -> Map k a
fromDistinctAscList ((k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
f [(k, a)]
xs)
where
combineEq :: (k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
_ [(k, a)]
xs'
= case [(k, a)]
xs' of
[] -> []
[(k, a)
x] -> [(k, a)
x]
((k, a)
x:[(k, a)]
xx) -> (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xx
combineEq' :: (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
z [] = [(k, a)
z]
combineEq' z :: (k, a)
z@(k
kz,a
zz) (x :: (k, a)
x@(k
kx,a
xx):[(k, a)]
xs')
| k
kxforall a. Eq a => a -> a -> Bool
==k
kz = let yy :: a
yy = k -> a -> a -> a
f k
kx a
xx a
zz in (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k
kx,a
yy) [(k, a)]
xs'
| Bool
otherwise = (k, a)
zforall a. a -> [a] -> [a]
:(k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscListWithKey #-}
#endif
fromDescListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromDescListWithKey :: forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWithKey k -> a -> a -> a
f [(k, a)]
xs
= forall k a. [(k, a)] -> Map k a
fromDistinctDescList ((k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
f [(k, a)]
xs)
where
combineEq :: (k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
_ [(k, a)]
xs'
= case [(k, a)]
xs' of
[] -> []
[(k, a)
x] -> [(k, a)
x]
((k, a)
x:[(k, a)]
xx) -> (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xx
combineEq' :: (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
z [] = [(k, a)
z]
combineEq' z :: (k, a)
z@(k
kz,a
zz) (x :: (k, a)
x@(k
kx,a
xx):[(k, a)]
xs')
| k
kxforall a. Eq a => a -> a -> Bool
==k
kz = let yy :: a
yy = k -> a -> a -> a
f k
kx a
xx a
zz in (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k
kx,a
yy) [(k, a)]
xs'
| Bool
otherwise = (k, a)
zforall a. a -> [a] -> [a]
:(k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescListWithKey #-}
#endif
fromDistinctAscList :: [(k,a)] -> Map k a
fromDistinctAscList :: forall k a. [(k, a)] -> Map k a
fromDistinctAscList [] = forall k a. Map k a
Tip
fromDistinctAscList ((k
kx0, a
x0) : [(k, a)]
xs0) = forall {t} {k} {a}.
(Num t, Bits t) =>
t -> Map k a -> [(k, a)] -> Map k a
go (Size
1::Int) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 forall k a. Map k a
Tip forall k a. Map k a
Tip) [(k, a)]
xs0
where
go :: t -> Map k a -> [(k, a)] -> Map k a
go !t
_ Map k a
t [] = Map k a
t
go t
s Map k a
l ((k
kx, a
x) : [(k, a)]
xs) = case forall {t} {k} {a}.
(Num t, Bits t) =>
t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create t
s [(k, a)]
xs of
(Map k a
r :*: [(k, a)]
ys) -> let !t' :: Map k a
t' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r
in t -> Map k a -> [(k, a)] -> Map k a
go (t
s forall a. Bits a => a -> Size -> a
`shiftL` Size
1) Map k a
t' [(k, a)]
ys
create :: t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create !t
_ [] = (forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: [])
create t
s xs :: [(k, a)]
xs@((k, a)
x' : [(k, a)]
xs')
| t
s forall a. Eq a => a -> a -> Bool
== t
1 = case (k, a)
x' of (k
kx, a
x) -> (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x forall k a. Map k a
Tip forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: [(k, a)]
xs')
| Bool
otherwise = case t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create (t
s forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
xs of
res :: StrictPair (Map k a) [(k, a)]
res@(Map k a
_ :*: []) -> StrictPair (Map k a) [(k, a)]
res
(Map k a
l :*: (k
ky, a
y):[(k, a)]
ys) -> case t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create (t
s forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
ys of
(Map k a
r :*: [(k, a)]
zs) -> (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
ky a
y Map k a
l Map k a
r forall a b. a -> b -> StrictPair a b
:*: [(k, a)]
zs)
fromDistinctDescList :: [(k,a)] -> Map k a
fromDistinctDescList :: forall k a. [(k, a)] -> Map k a
fromDistinctDescList [] = forall k a. Map k a
Tip
fromDistinctDescList ((k
kx0, a
x0) : [(k, a)]
xs0) = forall {t} {k} {a}.
(Num t, Bits t) =>
t -> Map k a -> [(k, a)] -> Map k a
go (Size
1 :: Int) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 forall k a. Map k a
Tip forall k a. Map k a
Tip) [(k, a)]
xs0
where
go :: t -> Map k a -> [(k, a)] -> Map k a
go !t
_ Map k a
t [] = Map k a
t
go t
s Map k a
r ((k
kx, a
x) : [(k, a)]
xs) = case forall {t} {k} {a}.
(Num t, Bits t) =>
t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create t
s [(k, a)]
xs of
(Map k a
l :*: [(k, a)]
ys) -> let !t' :: Map k a
t' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r
in t -> Map k a -> [(k, a)] -> Map k a
go (t
s forall a. Bits a => a -> Size -> a
`shiftL` Size
1) Map k a
t' [(k, a)]
ys
create :: t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create !t
_ [] = (forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: [])
create t
s xs :: [(k, a)]
xs@((k, a)
x' : [(k, a)]
xs')
| t
s forall a. Eq a => a -> a -> Bool
== t
1 = case (k, a)
x' of (k
kx, a
x) -> (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x forall k a. Map k a
Tip forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: [(k, a)]
xs')
| Bool
otherwise = case t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create (t
s forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
xs of
res :: StrictPair (Map k a) [(k, a)]
res@(Map k a
_ :*: []) -> StrictPair (Map k a) [(k, a)]
res
(Map k a
r :*: (k
ky, a
y):[(k, a)]
ys) -> case t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create (t
s forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
ys of
(Map k a
l :*: [(k, a)]
zs) -> (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
ky a
y Map k a
l Map k a
r forall a b. a -> b -> StrictPair a b
:*: [(k, a)]
zs)
split :: Ord k => k -> Map k a -> (Map k a,Map k a)
split :: forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
split !k
k0 Map k a
t0 = forall a b. StrictPair a b -> (a, b)
toPair forall a b. (a -> b) -> a -> b
$ forall {k} {a}.
Ord k =>
k -> Map k a -> StrictPair (Map k a) (Map k a)
go k
k0 Map k a
t0
where
go :: k -> Map k a -> StrictPair (Map k a) (Map k a)
go k
k Map k a
t =
case Map k a
t of
Map k a
Tip -> forall k a. Map k a
Tip forall a b. a -> b -> StrictPair a b
:*: forall k a. Map k a
Tip
Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let (Map k a
lt :*: Map k a
gt) = k -> Map k a -> StrictPair (Map k a) (Map k a)
go k
k Map k a
l in Map k a
lt forall a b. a -> b -> StrictPair a b
:*: forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
gt Map k a
r
Ordering
GT -> let (Map k a
lt :*: Map k a
gt) = k -> Map k a -> StrictPair (Map k a) (Map k a)
go k
k Map k a
r in forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lt forall a b. a -> b -> StrictPair a b
:*: Map k a
gt
Ordering
EQ -> (Map k a
l forall a b. a -> b -> StrictPair a b
:*: Map k a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE split #-}
#endif
splitLookup :: Ord k => k -> Map k a -> (Map k a,Maybe a,Map k a)
splitLookup :: forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k0 Map k a
m = case forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go k
k0 Map k a
m of
StrictTriple Map k a
l Maybe a
mv Map k a
r -> (Map k a
l, Maybe a
mv, Map k a
r)
where
go :: Ord k => k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go :: forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go !k
k Map k a
t =
case Map k a
t of
Map k a
Tip -> forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple forall k a. Map k a
Tip forall a. Maybe a
Nothing forall k a. Map k a
Tip
Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let StrictTriple Map k a
lt Maybe a
z Map k a
gt = forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go k
k Map k a
l
!gt' :: Map k a
gt' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
gt Map k a
r
in forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt Maybe a
z Map k a
gt'
Ordering
GT -> let StrictTriple Map k a
lt Maybe a
z Map k a
gt = forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go k
k Map k a
r
!lt' :: Map k a
lt' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lt
in forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt' Maybe a
z Map k a
gt
Ordering
EQ -> forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
l (forall a. a -> Maybe a
Just a
x) Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE splitLookup #-}
#endif
splitMember :: Ord k => k -> Map k a -> (Map k a,Bool,Map k a)
splitMember :: forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k0 Map k a
m = case forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go k
k0 Map k a
m of
StrictTriple Map k a
l Bool
mv Map k a
r -> (Map k a
l, Bool
mv, Map k a
r)
where
go :: Ord k => k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go :: forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go !k
k Map k a
t =
case Map k a
t of
Map k a
Tip -> forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple forall k a. Map k a
Tip Bool
False forall k a. Map k a
Tip
Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let StrictTriple Map k a
lt Bool
z Map k a
gt = forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go k
k Map k a
l
!gt' :: Map k a
gt' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
gt Map k a
r
in forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt Bool
z Map k a
gt'
Ordering
GT -> let StrictTriple Map k a
lt Bool
z Map k a
gt = forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go k
k Map k a
r
!lt' :: Map k a
lt' = forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lt
in forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt' Bool
z Map k a
gt
Ordering
EQ -> forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
l Bool
True Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE splitMember #-}
#endif
data StrictTriple a b c = StrictTriple !a !b !c
link :: k -> a -> Map k a -> Map k a -> Map k a
link :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
Tip Map k a
r = forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
r
link k
kx a
x Map k a
l Map k a
Tip = forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
l
link k
kx a
x l :: Map k a
l@(Bin Size
sizeL k
ky a
y Map k a
ly Map k a
ry) r :: Map k a
r@(Bin Size
sizeR k
kz a
z Map k a
lz Map k a
rz)
| Size
deltaforall a. Num a => a -> a -> a
*Size
sizeL forall a. Ord a => a -> a -> Bool
< Size
sizeR = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kz a
z (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lz) Map k a
rz
| Size
deltaforall a. Num a => a -> a -> a
*Size
sizeR forall a. Ord a => a -> a -> Bool
< Size
sizeL = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
ly (forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
ry Map k a
r)
| Bool
otherwise = forall k a. k -> a -> Map k a -> Map k a -> Map k a
bin k
kx a
x Map k a
l Map k a
r
insertMax,insertMin :: k -> a -> Map k a -> Map k a
insertMax :: forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
t
= case Map k a
t of
Map k a
Tip -> forall k a. k -> a -> Map k a
singleton k
kx a
x
Bin Size
_ k
ky a
y Map k a
l Map k a
r
-> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
r)
insertMin :: forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
t
= case Map k a
t of
Map k a
Tip -> forall k a. k -> a -> Map k a
singleton k
kx a
x
Bin Size
_ k
ky a
y Map k a
l Map k a
r
-> forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
l) Map k a
r
link2 :: Map k a -> Map k a -> Map k a
link2 :: forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
Tip Map k a
r = Map k a
r
link2 Map k a
l Map k a
Tip = Map k a
l
link2 l :: Map k a
l@(Bin Size
sizeL k
kx a
x Map k a
lx Map k a
rx) r :: Map k a
r@(Bin Size
sizeR k
ky a
y Map k a
ly Map k a
ry)
| Size
deltaforall a. Num a => a -> a -> a
*Size
sizeL forall a. Ord a => a -> a -> Bool
< Size
sizeR = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l Map k a
ly) Map k a
ry
| Size
deltaforall a. Num a => a -> a -> a
*Size
sizeR forall a. Ord a => a -> a -> Bool
< Size
sizeL = forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
lx (forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
rx Map k a
r)
| Bool
otherwise = forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
glue :: Map k a -> Map k a -> Map k a
glue :: forall k a. Map k a -> Map k a -> Map k a
glue Map k a
Tip Map k a
r = Map k a
r
glue Map k a
l Map k a
Tip = Map k a
l
glue l :: Map k a
l@(Bin Size
sl k
kl a
xl Map k a
ll Map k a
lr) r :: Map k a
r@(Bin Size
sr k
kr a
xr Map k a
rl Map k a
rr)
| Size
sl forall a. Ord a => a -> a -> Bool
> Size
sr = let !(MaxView k
km a
m Map k a
l') = forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure k
kl a
xl Map k a
ll Map k a
lr in forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
km a
m Map k a
l' Map k a
r
| Bool
otherwise = let !(MinView k
km a
m Map k a
r') = forall k a. k -> a -> Map k a -> Map k a -> MinView k a
minViewSure k
kr a
xr Map k a
rl Map k a
rr in forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
km a
m Map k a
l Map k a
r'
data MinView k a = MinView !k a !(Map k a)
data MaxView k a = MaxView !k a !(Map k a)
minViewSure :: k -> a -> Map k a -> Map k a -> MinView k a
minViewSure :: forall k a. k -> a -> Map k a -> Map k a -> MinView k a
minViewSure = forall k a. k -> a -> Map k a -> Map k a -> MinView k a
go
where
go :: t -> t -> Map t t -> Map t t -> MinView t t
go t
k t
x Map t t
Tip Map t t
r = forall k a. k -> a -> Map k a -> MinView k a
MinView t
k t
x Map t t
r
go t
k t
x (Bin Size
_ t
kl t
xl Map t t
ll Map t t
lr) Map t t
r =
case t -> t -> Map t t -> Map t t -> MinView t t
go t
kl t
xl Map t t
ll Map t t
lr of
MinView t
km t
xm Map t t
l' -> forall k a. k -> a -> Map k a -> MinView k a
MinView t
km t
xm (forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR t
k t
x Map t t
l' Map t t
r)
{-# NOINLINE minViewSure #-}
maxViewSure :: k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure :: forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure = forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
go
where
go :: t -> t -> Map t t -> Map t t -> MaxView t t
go t
k t
x Map t t
l Map t t
Tip = forall k a. k -> a -> Map k a -> MaxView k a
MaxView t
k t
x Map t t
l
go t
k t
x Map t t
l (Bin Size
_ t
kr t
xr Map t t
rl Map t t
rr) =
case t -> t -> Map t t -> Map t t -> MaxView t t
go t
kr t
xr Map t t
rl Map t t
rr of
MaxView t
km t
xm Map t t
r' -> forall k a. k -> a -> Map k a -> MaxView k a
MaxView t
km t
xm (forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL t
k t
x Map t t
l Map t t
r')
{-# NOINLINE maxViewSure #-}
deleteFindMin :: Map k a -> ((k,a),Map k a)
deleteFindMin :: forall k a. Map k a -> ((k, a), Map k a)
deleteFindMin Map k a
t = case forall k a. Map k a -> Maybe ((k, a), Map k a)
minViewWithKey Map k a
t of
Maybe ((k, a), Map k a)
Nothing -> (forall a. HasCallStack => [Char] -> a
error [Char]
"Map.deleteFindMin: can not return the minimal element of an empty map", forall k a. Map k a
Tip)
Just ((k, a), Map k a)
res -> ((k, a), Map k a)
res
deleteFindMax :: Map k a -> ((k,a),Map k a)
deleteFindMax :: forall k a. Map k a -> ((k, a), Map k a)
deleteFindMax Map k a
t = case forall k a. Map k a -> Maybe ((k, a), Map k a)
maxViewWithKey Map k a
t of
Maybe ((k, a), Map k a)
Nothing -> (forall a. HasCallStack => [Char] -> a
error [Char]
"Map.deleteFindMax: can not return the maximal element of an empty map", forall k a. Map k a
Tip)
Just ((k, a), Map k a)
res -> ((k, a), Map k a)
res
delta,ratio :: Int
delta :: Size
delta = Size
3
ratio :: Size
ratio = Size
2
balance :: k -> a -> Map k a -> Map k a -> Map k a
balance :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
k a
x Map k a
l Map k a
r = case Map k a
l of
Map k a
Tip -> case Map k a
r of
Map k a
Tip -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip
(Bin Size
_ k
_ a
_ Map k a
Tip Map k a
Tip) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
2 k
k a
x forall k a. Map k a
Tip Map k a
r
(Bin Size
_ k
rk a
rx Map k a
Tip rr :: Map k a
rr@(Bin Size
_ k
_ a
_ Map k a
_ Map k a
_)) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
rk a
rx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip) Map k a
rr
(Bin Size
_ k
rk a
rx (Bin Size
_ k
rlk a
rlx Map k a
_ Map k a
_) Map k a
Tip) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
rlk a
rlx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
rk a
rx forall k a. Map k a
Tip forall k a. Map k a
Tip)
(Bin Size
rs k
rk a
rx rl :: Map k a
rl@(Bin Size
rls k
rlk a
rlx Map k a
rll Map k a
rlr) rr :: Map k a
rr@(Bin Size
rrs k
_ a
_ Map k a
_ Map k a
_))
| Size
rls forall a. Ord a => a -> a -> Bool
< Size
ratioforall a. Num a => a -> a -> a
*Size
rrs -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rs) k
rk a
rx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rls) k
k a
x forall k a. Map k a
Tip Map k a
rl) Map k a
rr
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rs) k
rlk a
rlx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
rll) k
k a
x forall k a. Map k a
Tip Map k a
rll) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rrsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
rlr) k
rk a
rx Map k a
rlr Map k a
rr)
(Bin Size
ls k
lk a
lx Map k a
ll Map k a
lr) -> case Map k a
r of
Map k a
Tip -> case (Map k a
ll, Map k a
lr) of
(Map k a
Tip, Map k a
Tip) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
2 k
k a
x Map k a
l forall k a. Map k a
Tip
(Map k a
Tip, (Bin Size
_ k
lrk a
lrx Map k a
_ Map k a
_)) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
lrk a
lrx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
lk a
lx forall k a. Map k a
Tip forall k a. Map k a
Tip) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip)
((Bin Size
_ k
_ a
_ Map k a
_ Map k a
_), Map k a
Tip) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
lk a
lx Map k a
ll (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip)
((Bin Size
lls k
_ a
_ Map k a
_ Map k a
_), (Bin Size
lrs k
lrk a
lrx Map k a
lrl Map k a
lrr))
| Size
lrs forall a. Ord a => a -> a -> Bool
< Size
ratioforall a. Num a => a -> a -> a
*Size
lls -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
ls) k
lk a
lx Map k a
ll (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lrs) k
k a
x Map k a
lr forall k a. Map k a
Tip)
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
ls) k
lrk a
lrx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
llsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
lrl) k
lk a
lx Map k a
ll Map k a
lrl) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
lrr) k
k a
x Map k a
lrr forall k a. Map k a
Tip)
(Bin Size
rs k
rk a
rx Map k a
rl Map k a
rr)
| Size
rs forall a. Ord a => a -> a -> Bool
> Size
deltaforall a. Num a => a -> a -> a
*Size
ls -> case (Map k a
rl, Map k a
rr) of
(Bin Size
rls k
rlk a
rlx Map k a
rll Map k a
rlr, Bin Size
rrs k
_ a
_ Map k a
_ Map k a
_)
| Size
rls forall a. Ord a => a -> a -> Bool
< Size
ratioforall a. Num a => a -> a -> a
*Size
rrs -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
rk a
rx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rls) k
k a
x Map k a
l Map k a
rl) Map k a
rr
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
rlk a
rlx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
rll) k
k a
x Map k a
l Map k a
rll) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rrsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
rlr) k
rk a
rx Map k a
rlr Map k a
rr)
(Map k a
_, Map k a
_) -> forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Strict.Map.Autogen.balance"
| Size
ls forall a. Ord a => a -> a -> Bool
> Size
deltaforall a. Num a => a -> a -> a
*Size
rs -> case (Map k a
ll, Map k a
lr) of
(Bin Size
lls k
_ a
_ Map k a
_ Map k a
_, Bin Size
lrs k
lrk a
lrx Map k a
lrl Map k a
lrr)
| Size
lrs forall a. Ord a => a -> a -> Bool
< Size
ratioforall a. Num a => a -> a -> a
*Size
lls -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
lk a
lx Map k a
ll (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rsforall a. Num a => a -> a -> a
+Size
lrs) k
k a
x Map k a
lr Map k a
r)
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
lrk a
lrx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
llsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
lrl) k
lk a
lx Map k a
ll Map k a
lrl) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
lrr) k
k a
x Map k a
lrr Map k a
r)
(Map k a
_, Map k a
_) -> forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Strict.Map.Autogen.balance"
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
k a
x Map k a
l Map k a
r
{-# NOINLINE balance #-}
balanceL :: k -> a -> Map k a -> Map k a -> Map k a
balanceL :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
k a
x Map k a
l Map k a
r = case Map k a
r of
Map k a
Tip -> case Map k a
l of
Map k a
Tip -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip
(Bin Size
_ k
_ a
_ Map k a
Tip Map k a
Tip) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
2 k
k a
x Map k a
l forall k a. Map k a
Tip
(Bin Size
_ k
lk a
lx Map k a
Tip (Bin Size
_ k
lrk a
lrx Map k a
_ Map k a
_)) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
lrk a
lrx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
lk a
lx forall k a. Map k a
Tip forall k a. Map k a
Tip) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip)
(Bin Size
_ k
lk a
lx ll :: Map k a
ll@(Bin Size
_ k
_ a
_ Map k a
_ Map k a
_) Map k a
Tip) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
lk a
lx Map k a
ll (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip)
(Bin Size
ls k
lk a
lx ll :: Map k a
ll@(Bin Size
lls k
_ a
_ Map k a
_ Map k a
_) lr :: Map k a
lr@(Bin Size
lrs k
lrk a
lrx Map k a
lrl Map k a
lrr))
| Size
lrs forall a. Ord a => a -> a -> Bool
< Size
ratioforall a. Num a => a -> a -> a
*Size
lls -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
ls) k
lk a
lx Map k a
ll (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lrs) k
k a
x Map k a
lr forall k a. Map k a
Tip)
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
ls) k
lrk a
lrx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
llsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
lrl) k
lk a
lx Map k a
ll Map k a
lrl) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
lrr) k
k a
x Map k a
lrr forall k a. Map k a
Tip)
(Bin Size
rs k
_ a
_ Map k a
_ Map k a
_) -> case Map k a
l of
Map k a
Tip -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rs) k
k a
x forall k a. Map k a
Tip Map k a
r
(Bin Size
ls k
lk a
lx Map k a
ll Map k a
lr)
| Size
ls forall a. Ord a => a -> a -> Bool
> Size
deltaforall a. Num a => a -> a -> a
*Size
rs -> case (Map k a
ll, Map k a
lr) of
(Bin Size
lls k
_ a
_ Map k a
_ Map k a
_, Bin Size
lrs k
lrk a
lrx Map k a
lrl Map k a
lrr)
| Size
lrs forall a. Ord a => a -> a -> Bool
< Size
ratioforall a. Num a => a -> a -> a
*Size
lls -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
lk a
lx Map k a
ll (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rsforall a. Num a => a -> a -> a
+Size
lrs) k
k a
x Map k a
lr Map k a
r)
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
lrk a
lrx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
llsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
lrl) k
lk a
lx Map k a
ll Map k a
lrl) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
lrr) k
k a
x Map k a
lrr Map k a
r)
(Map k a
_, Map k a
_) -> forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Strict.Map.Autogen.balanceL"
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
k a
x Map k a
l Map k a
r
{-# NOINLINE balanceL #-}
balanceR :: k -> a -> Map k a -> Map k a -> Map k a
balanceR :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
k a
x Map k a
l Map k a
r = case Map k a
l of
Map k a
Tip -> case Map k a
r of
Map k a
Tip -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip
(Bin Size
_ k
_ a
_ Map k a
Tip Map k a
Tip) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
2 k
k a
x forall k a. Map k a
Tip Map k a
r
(Bin Size
_ k
rk a
rx Map k a
Tip rr :: Map k a
rr@(Bin Size
_ k
_ a
_ Map k a
_ Map k a
_)) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
rk a
rx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip) Map k a
rr
(Bin Size
_ k
rk a
rx (Bin Size
_ k
rlk a
rlx Map k a
_ Map k a
_) Map k a
Tip) -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
rlk a
rlx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x forall k a. Map k a
Tip forall k a. Map k a
Tip) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
rk a
rx forall k a. Map k a
Tip forall k a. Map k a
Tip)
(Bin Size
rs k
rk a
rx rl :: Map k a
rl@(Bin Size
rls k
rlk a
rlx Map k a
rll Map k a
rlr) rr :: Map k a
rr@(Bin Size
rrs k
_ a
_ Map k a
_ Map k a
_))
| Size
rls forall a. Ord a => a -> a -> Bool
< Size
ratioforall a. Num a => a -> a -> a
*Size
rrs -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rs) k
rk a
rx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rls) k
k a
x forall k a. Map k a
Tip Map k a
rl) Map k a
rr
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rs) k
rlk a
rlx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
rll) k
k a
x forall k a. Map k a
Tip Map k a
rll) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rrsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
rlr) k
rk a
rx Map k a
rlr Map k a
rr)
(Bin Size
ls k
_ a
_ Map k a
_ Map k a
_) -> case Map k a
r of
Map k a
Tip -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
ls) k
k a
x Map k a
l forall k a. Map k a
Tip
(Bin Size
rs k
rk a
rx Map k a
rl Map k a
rr)
| Size
rs forall a. Ord a => a -> a -> Bool
> Size
deltaforall a. Num a => a -> a -> a
*Size
ls -> case (Map k a
rl, Map k a
rr) of
(Bin Size
rls k
rlk a
rlx Map k a
rll Map k a
rlr, Bin Size
rrs k
_ a
_ Map k a
_ Map k a
_)
| Size
rls forall a. Ord a => a -> a -> Bool
< Size
ratioforall a. Num a => a -> a -> a
*Size
rrs -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
rk a
rx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rls) k
k a
x Map k a
l Map k a
rl) Map k a
rr
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
rlk a
rlx (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
rll) k
k a
x Map k a
l Map k a
rll) (forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
rrsforall a. Num a => a -> a -> a
+forall k a. Map k a -> Size
size Map k a
rlr) k
rk a
rx Map k a
rlr Map k a
rr)
(Map k a
_, Map k a
_) -> forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Strict.Map.Autogen.balanceR"
| Bool
otherwise -> forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1forall a. Num a => a -> a -> a
+Size
lsforall a. Num a => a -> a -> a
+Size
rs) k
k a
x Map k a
l Map k a
r
{-# NOINLINE balanceR #-}
bin :: k -> a -> Map k a -> Map k a -> Map k a
bin :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
bin k
k a
x Map k a
l Map k a
r
= forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (forall k a. Map k a -> Size
size Map k a
l forall a. Num a => a -> a -> a
+ forall k a. Map k a -> Size
size Map k a
r forall a. Num a => a -> a -> a
+ Size
1) k
k a
x Map k a
l Map k a
r
{-# INLINE bin #-}
instance (Eq k,Eq a) => Eq (Map k a) where
Map k a
t1 == :: Map k a -> Map k a -> Bool
== Map k a
t2 = (forall k a. Map k a -> Size
size Map k a
t1 forall a. Eq a => a -> a -> Bool
== forall k a. Map k a -> Size
size Map k a
t2) Bool -> Bool -> Bool
&& (forall k a. Map k a -> [(k, a)]
toAscList Map k a
t1 forall a. Eq a => a -> a -> Bool
== forall k a. Map k a -> [(k, a)]
toAscList Map k a
t2)
instance (Ord k, Ord v) => Ord (Map k v) where
compare :: Map k v -> Map k v -> Ordering
compare Map k v
m1 Map k v
m2 = forall a. Ord a => a -> a -> Ordering
compare (forall k a. Map k a -> [(k, a)]
toAscList Map k v
m1) (forall k a. Map k a -> [(k, a)]
toAscList Map k v
m2)
instance Eq2 Map where
liftEq2 :: forall a b c d.
(a -> b -> Bool) -> (c -> d -> Bool) -> Map a c -> Map b d -> Bool
liftEq2 a -> b -> Bool
eqk c -> d -> Bool
eqv Map a c
m Map b d
n =
forall k a. Map k a -> Size
size Map a c
m forall a. Eq a => a -> a -> Bool
== forall k a. Map k a -> Size
size Map b d
n Bool -> Bool -> Bool
&& forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq (forall (f :: * -> * -> *) a b c d.
Eq2 f =>
(a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool
liftEq2 a -> b -> Bool
eqk c -> d -> Bool
eqv) (forall k a. Map k a -> [(k, a)]
toList Map a c
m) (forall k a. Map k a -> [(k, a)]
toList Map b d
n)
instance Eq k => Eq1 (Map k) where
liftEq :: forall a b. (a -> b -> Bool) -> Map k a -> Map k b -> Bool
liftEq = forall (f :: * -> * -> *) a b c d.
Eq2 f =>
(a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool
liftEq2 forall a. Eq a => a -> a -> Bool
(==)
instance Ord2 Map where
liftCompare2 :: forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> Map a c -> Map b d -> Ordering
liftCompare2 a -> b -> Ordering
cmpk c -> d -> Ordering
cmpv Map a c
m Map b d
n =
forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare (forall (f :: * -> * -> *) a b c d.
Ord2 f =>
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> f a c -> f b d -> Ordering
liftCompare2 a -> b -> Ordering
cmpk c -> d -> Ordering
cmpv) (forall k a. Map k a -> [(k, a)]
toList Map a c
m) (forall k a. Map k a -> [(k, a)]
toList Map b d
n)
instance Ord k => Ord1 (Map k) where
liftCompare :: forall a b. (a -> b -> Ordering) -> Map k a -> Map k b -> Ordering
liftCompare = forall (f :: * -> * -> *) a b c d.
Ord2 f =>
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> f a c -> f b d -> Ordering
liftCompare2 forall a. Ord a => a -> a -> Ordering
compare
instance Show2 Map where
liftShowsPrec2 :: forall a b.
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> Map a b
-> ShowS
liftShowsPrec2 Size -> a -> ShowS
spk [a] -> ShowS
slk Size -> b -> ShowS
spv [b] -> ShowS
slv Size
d Map a b
m =
forall a. (Size -> a -> ShowS) -> [Char] -> Size -> a -> ShowS
showsUnaryWith (forall (f :: * -> *) a.
Show1 f =>
(Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> f a -> ShowS
liftShowsPrec Size -> (a, b) -> ShowS
sp [(a, b)] -> ShowS
sl) [Char]
"fromList" Size
d (forall k a. Map k a -> [(k, a)]
toList Map a b
m)
where
sp :: Size -> (a, b) -> ShowS
sp = forall (f :: * -> * -> *) a b.
Show2 f =>
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> f a b
-> ShowS
liftShowsPrec2 Size -> a -> ShowS
spk [a] -> ShowS
slk Size -> b -> ShowS
spv [b] -> ShowS
slv
sl :: [(a, b)] -> ShowS
sl = forall (f :: * -> * -> *) a b.
Show2 f =>
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> [f a b]
-> ShowS
liftShowList2 Size -> a -> ShowS
spk [a] -> ShowS
slk Size -> b -> ShowS
spv [b] -> ShowS
slv
instance Show k => Show1 (Map k) where
liftShowsPrec :: forall a.
(Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> Map k a -> ShowS
liftShowsPrec = forall (f :: * -> * -> *) a b.
Show2 f =>
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> f a b
-> ShowS
liftShowsPrec2 forall a. Show a => Size -> a -> ShowS
showsPrec forall a. Show a => [a] -> ShowS
showList
instance (Ord k, Read k) => Read1 (Map k) where
liftReadsPrec :: forall a. (Size -> ReadS a) -> ReadS [a] -> Size -> ReadS (Map k a)
liftReadsPrec Size -> ReadS a
rp ReadS [a]
rl = forall a. ([Char] -> ReadS a) -> Size -> ReadS a
readsData forall a b. (a -> b) -> a -> b
$
forall a t.
(Size -> ReadS a) -> [Char] -> (a -> t) -> [Char] -> ReadS t
readsUnaryWith (forall (f :: * -> *) a.
Read1 f =>
(Size -> ReadS a) -> ReadS [a] -> Size -> ReadS (f a)
liftReadsPrec Size -> ReadS (k, a)
rp' ReadS [(k, a)]
rl') [Char]
"fromList" forall k a. Ord k => [(k, a)] -> Map k a
fromList
where
rp' :: Size -> ReadS (k, a)
rp' = forall (f :: * -> *) a.
Read1 f =>
(Size -> ReadS a) -> ReadS [a] -> Size -> ReadS (f a)
liftReadsPrec Size -> ReadS a
rp ReadS [a]
rl
rl' :: ReadS [(k, a)]
rl' = forall (f :: * -> *) a.
Read1 f =>
(Size -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Size -> ReadS a
rp ReadS [a]
rl
instance Functor (Map k) where
fmap :: forall a b. (a -> b) -> Map k a -> Map k b
fmap a -> b
f Map k a
m = forall a b k. (a -> b) -> Map k a -> Map k b
map a -> b
f Map k a
m
#ifdef __GLASGOW_HASKELL__
a
_ <$ :: forall a b. a -> Map k b -> Map k a
<$ Map k b
Tip = forall k a. Map k a
Tip
a
a <$ (Bin Size
sx k
kx b
_ Map k b
l Map k b
r) = forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
a (a
a forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Map k b
l) (a
a forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Map k b
r)
#endif
instance Traversable (Map k) where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map k a -> f (Map k b)
traverse a -> f b
f = forall (t :: * -> *) k a b.
Applicative t =>
(k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey (\k
_ -> a -> f b
f)
{-# INLINE traverse #-}
instance Foldable.Foldable (Map k) where
fold :: forall m. Monoid m => Map k m -> m
fold = forall {a} {k}. Monoid a => Map k a -> a
go
where go :: Map k a -> a
go Map k a
Tip = forall a. Monoid a => a
mempty
go (Bin Size
1 k
_ a
v Map k a
_ Map k a
_) = a
v
go (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = Map k a -> a
go Map k a
l forall a. Monoid a => a -> a -> a
`mappend` (a
v forall a. Monoid a => a -> a -> a
`mappend` Map k a -> a
go Map k a
r)
{-# INLINABLE fold #-}
foldr :: forall a b. (a -> b -> b) -> b -> Map k a -> b
foldr = forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr
{-# INLINE foldr #-}
foldl :: forall b a. (b -> a -> b) -> b -> Map k a -> b
foldl = forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl
{-# INLINE foldl #-}
foldMap :: forall m a. Monoid m => (a -> m) -> Map k a -> m
foldMap a -> m
f Map k a
t = Map k a -> m
go Map k a
t
where go :: Map k a -> m
go Map k a
Tip = forall a. Monoid a => a
mempty
go (Bin Size
1 k
_ a
v Map k a
_ Map k a
_) = a -> m
f a
v
go (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = Map k a -> m
go Map k a
l forall a. Monoid a => a -> a -> a
`mappend` (a -> m
f a
v forall a. Monoid a => a -> a -> a
`mappend` Map k a -> m
go Map k a
r)
{-# INLINE foldMap #-}
foldl' :: forall b a. (b -> a -> b) -> b -> Map k a -> b
foldl' = forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl'
{-# INLINE foldl' #-}
foldr' :: forall a b. (a -> b -> b) -> b -> Map k a -> b
foldr' = forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr'
{-# INLINE foldr' #-}
length :: forall a. Map k a -> Size
length = forall k a. Map k a -> Size
size
{-# INLINE length #-}
null :: forall a. Map k a -> Bool
null = forall k a. Map k a -> Bool
null
{-# INLINE null #-}
toList :: forall a. Map k a -> [a]
toList = forall k a. Map k a -> [a]
elems
{-# INLINE toList #-}
elem :: forall a. Eq a => a -> Map k a -> Bool
elem = forall {t} {k}. Eq t => t -> Map k t -> Bool
go
where go :: t -> Map k t -> Bool
go !t
_ Map k t
Tip = Bool
False
go t
x (Bin Size
_ k
_ t
v Map k t
l Map k t
r) = t
x forall a. Eq a => a -> a -> Bool
== t
v Bool -> Bool -> Bool
|| t -> Map k t -> Bool
go t
x Map k t
l Bool -> Bool -> Bool
|| t -> Map k t -> Bool
go t
x Map k t
r
{-# INLINABLE elem #-}
maximum :: forall a. Ord a => Map k a -> a
maximum = forall {a} {k}. Ord a => Map k a -> a
start
where start :: Map k a -> a
start Map k a
Tip = forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.maximum (for Data.Strict.Map.Autogen): empty map"
start (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = forall {t} {k}. Ord t => t -> Map k t -> t
go (forall {t} {k}. Ord t => t -> Map k t -> t
go a
v Map k a
l) Map k a
r
go :: t -> Map k t -> t
go !t
m Map k t
Tip = t
m
go t
m (Bin Size
_ k
_ t
v Map k t
l Map k t
r) = t -> Map k t -> t
go (t -> Map k t -> t
go (forall a. Ord a => a -> a -> a
max t
m t
v) Map k t
l) Map k t
r
{-# INLINABLE maximum #-}
minimum :: forall a. Ord a => Map k a -> a
minimum = forall {a} {k}. Ord a => Map k a -> a
start
where start :: Map k a -> a
start Map k a
Tip = forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.minimum (for Data.Strict.Map.Autogen): empty map"
start (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = forall {t} {k}. Ord t => t -> Map k t -> t
go (forall {t} {k}. Ord t => t -> Map k t -> t
go a
v Map k a
l) Map k a
r
go :: t -> Map k t -> t
go !t
m Map k t
Tip = t
m
go t
m (Bin Size
_ k
_ t
v Map k t
l Map k t
r) = t -> Map k t -> t
go (t -> Map k t -> t
go (forall a. Ord a => a -> a -> a
min t
m t
v) Map k t
l) Map k t
r
{-# INLINABLE minimum #-}
sum :: forall a. Num a => Map k a -> a
sum = forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl' forall a. Num a => a -> a -> a
(+) a
0
{-# INLINABLE sum #-}
product :: forall a. Num a => Map k a -> a
product = forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl' forall a. Num a => a -> a -> a
(*) a
1
{-# INLINABLE product #-}
#if MIN_VERSION_base(4,10,0)
instance Bifoldable Map where
bifold :: forall m. Monoid m => Map m m -> m
bifold = forall m. Monoid m => Map m m -> m
go
where go :: Map a a -> a
go Map a a
Tip = forall a. Monoid a => a
mempty
go (Bin Size
1 a
k a
v Map a a
_ Map a a
_) = a
k forall a. Monoid a => a -> a -> a
`mappend` a
v
go (Bin Size
_ a
k a
v Map a a
l Map a a
r) = Map a a -> a
go Map a a
l forall a. Monoid a => a -> a -> a
`mappend` (a
k forall a. Monoid a => a -> a -> a
`mappend` (a
v forall a. Monoid a => a -> a -> a
`mappend` Map a a -> a
go Map a a
r))
{-# INLINABLE bifold #-}
bifoldr :: forall a c b. (a -> c -> c) -> (b -> c -> c) -> c -> Map a b -> c
bifoldr a -> c -> c
f b -> c -> c
g c
z = c -> Map a b -> c
go c
z
where go :: c -> Map a b -> c
go c
z' Map a b
Tip = c
z'
go c
z' (Bin Size
_ a
k b
v Map a b
l Map a b
r) = c -> Map a b -> c
go (a -> c -> c
f a
k (b -> c -> c
g b
v (c -> Map a b -> c
go c
z' Map a b
r))) Map a b
l
{-# INLINE bifoldr #-}
bifoldl :: forall c a b. (c -> a -> c) -> (c -> b -> c) -> c -> Map a b -> c
bifoldl c -> a -> c
f c -> b -> c
g c
z = c -> Map a b -> c
go c
z
where go :: c -> Map a b -> c
go c
z' Map a b
Tip = c
z'
go c
z' (Bin Size
_ a
k b
v Map a b
l Map a b
r) = c -> Map a b -> c
go (c -> b -> c
g (c -> a -> c
f (c -> Map a b -> c
go c
z' Map a b
l) a
k) b
v) Map a b
r
{-# INLINE bifoldl #-}
bifoldMap :: forall m a b. Monoid m => (a -> m) -> (b -> m) -> Map a b -> m
bifoldMap a -> m
f b -> m
g Map a b
t = Map a b -> m
go Map a b
t
where go :: Map a b -> m
go Map a b
Tip = forall a. Monoid a => a
mempty
go (Bin Size
1 a
k b
v Map a b
_ Map a b
_) = a -> m
f a
k forall a. Monoid a => a -> a -> a
`mappend` b -> m
g b
v
go (Bin Size
_ a
k b
v Map a b
l Map a b
r) = Map a b -> m
go Map a b
l forall a. Monoid a => a -> a -> a
`mappend` (a -> m
f a
k forall a. Monoid a => a -> a -> a
`mappend` (b -> m
g b
v forall a. Monoid a => a -> a -> a
`mappend` Map a b -> m
go Map a b
r))
{-# INLINE bifoldMap #-}
#endif
instance (NFData k, NFData a) => NFData (Map k a) where
rnf :: Map k a -> ()
rnf Map k a
Tip = ()
rnf (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = forall a. NFData a => a -> ()
rnf k
kx seq :: forall a b. a -> b -> b
`seq` forall a. NFData a => a -> ()
rnf a
x seq :: forall a b. a -> b -> b
`seq` forall a. NFData a => a -> ()
rnf Map k a
l seq :: forall a b. a -> b -> b
`seq` forall a. NFData a => a -> ()
rnf Map k a
r
instance (Ord k, Read k, Read e) => Read (Map k e) where
#ifdef __GLASGOW_HASKELL__
readPrec :: ReadPrec (Map k e)
readPrec = forall a. ReadPrec a -> ReadPrec a
parens forall a b. (a -> b) -> a -> b
$ forall a. Size -> ReadPrec a -> ReadPrec a
prec Size
10 forall a b. (a -> b) -> a -> b
$ do
Ident [Char]
"fromList" <- ReadPrec Lexeme
lexP
[(k, e)]
xs <- forall a. Read a => ReadPrec a
readPrec
forall (m :: * -> *) a. Monad m => a -> m a
return (forall k a. Ord k => [(k, a)] -> Map k a
fromList [(k, e)]
xs)
readListPrec :: ReadPrec [Map k e]
readListPrec = forall a. Read a => ReadPrec [a]
readListPrecDefault
#else
readsPrec p = readParen (p > 10) $ \ r -> do
("fromList",s) <- lex r
(xs,t) <- reads s
return (fromList xs,t)
#endif
instance (Show k, Show a) => Show (Map k a) where
showsPrec :: Size -> Map k a -> ShowS
showsPrec Size
d Map k a
m = Bool -> ShowS -> ShowS
showParen (Size
d forall a. Ord a => a -> a -> Bool
> Size
10) forall a b. (a -> b) -> a -> b
$
[Char] -> ShowS
showString [Char]
"fromList " forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Show a => a -> ShowS
shows (forall k a. Map k a -> [(k, a)]
toList Map k a
m)
splitRoot :: Map k b -> [Map k b]
splitRoot :: forall k b. Map k b -> [Map k b]
splitRoot Map k b
orig =
case Map k b
orig of
Map k b
Tip -> []
Bin Size
_ k
k b
v Map k b
l Map k b
r -> [Map k b
l, forall k a. k -> a -> Map k a
singleton k
k b
v, Map k b
r]
{-# INLINE splitRoot #-}