{-# LANGUAGE CPP #-}
{-# LANGUAGE UnboxedTuples #-}
module Streamly.Internal.Data.MutArray.Generic
(
MutArray (..)
, nil
, emptyOf
, unsafeCreateOf
, createOf
, createWith
, create
, fromStreamN
, fromStream
, fromPureStream
, fromListN
, fromList
, putIndex
, putIndexUnsafe
, putIndices
, modifyIndexUnsafe
, modifyIndex
, realloc
, uninit
, snocWith
, snoc
, snocUnsafe
, reader
, producerWith
, producer
, read
, readRev
, toStreamK
, toList
, getIndex
, getIndexUnsafe
, getIndexUnsafeWith
, length
, strip
, cmp
, eq
, chunksOf
, getSliceUnsafe
, getSlice
, putSliceUnsafe
, clone
, new
, writeNUnsafe
, writeN
, writeWith
, write
)
where
#include "inline.hs"
#include "assert.hs"
import Control.Monad (when)
import Control.Monad.IO.Class (MonadIO(..))
import Data.Functor.Identity (Identity(..))
import GHC.Base
( MutableArray#
, RealWorld
, copyMutableArray#
, newArray#
, readArray#
, writeArray#
)
import GHC.IO (IO(..))
import GHC.Int (Int(..))
import Streamly.Internal.Data.Fold.Type (Fold(..))
import Streamly.Internal.Data.Producer.Type (Producer (..))
import Streamly.Internal.Data.Unfold.Type (Unfold(..))
import Streamly.Internal.Data.Stream.Type (Stream)
import Streamly.Internal.Data.SVar.Type (adaptState)
import qualified Streamly.Internal.Data.Fold.Type as FL
import qualified Streamly.Internal.Data.Producer as Producer
import qualified Streamly.Internal.Data.Stream.Type as D
import qualified Streamly.Internal.Data.Stream.Generate as D
import qualified Streamly.Internal.Data.Stream.Lift as D
import qualified Streamly.Internal.Data.StreamK.Type as K
import Prelude hiding (read, length)
#include "DocTestDataMutArrayGeneric.hs"
data MutArray a =
MutArray
{ forall a. MutArray a -> MutableArray# RealWorld a
arrContents# :: MutableArray# RealWorld a
, forall a. MutArray a -> Int
arrStart :: {-# UNPACK #-}!Int
, forall a. MutArray a -> Int
arrLen :: {-# UNPACK #-}!Int
, forall a. MutArray a -> Int
arrTrueLen :: {-# UNPACK #-}!Int
}
{-# INLINE bottomElement #-}
bottomElement :: a
bottomElement :: forall a. a
bottomElement =
[Char] -> a
forall a. HasCallStack => [Char] -> a
error
([Char] -> a) -> [Char] -> a
forall a b. (a -> b) -> a -> b
$ [[Char]] -> [Char]
unwords
[ [Char]
funcName
, [Char]
"This is the bottom element of the array."
, [Char]
"This is a place holder and should never be reached!"
]
where
funcName :: [Char]
funcName = [Char]
"Streamly.Internal.Data.MutArray.Generic.bottomElement:"
{-# INLINE emptyOf #-}
emptyOf :: MonadIO m => Int -> m (MutArray a)
emptyOf :: forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
emptyOf n :: Int
n@(I# Int#
n#) =
IO (MutArray a) -> m (MutArray a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO
(IO (MutArray a) -> m (MutArray a))
-> IO (MutArray a) -> m (MutArray a)
forall a b. (a -> b) -> a -> b
$ (State# RealWorld -> (# State# RealWorld, MutArray a #))
-> IO (MutArray a)
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO
((State# RealWorld -> (# State# RealWorld, MutArray a #))
-> IO (MutArray a))
-> (State# RealWorld -> (# State# RealWorld, MutArray a #))
-> IO (MutArray a)
forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s# ->
case Int#
-> a
-> State# RealWorld
-> (# State# RealWorld, MutableArray# RealWorld a #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# a
forall a. a
bottomElement State# RealWorld
s# of
(# State# RealWorld
s1#, MutableArray# RealWorld a
arr# #) ->
let ma :: MutArray a
ma = MutableArray# RealWorld a -> Int -> Int -> Int -> MutArray a
forall a.
MutableArray# RealWorld a -> Int -> Int -> Int -> MutArray a
MutArray MutableArray# RealWorld a
arr# Int
0 Int
0 Int
n
in (# State# RealWorld
s1#, MutArray a
ma #)
{-# INLINE new #-}
new :: MonadIO m => Int -> m (MutArray a)
new :: forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
new = Int -> m (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
emptyOf
{-# INLINE nil #-}
nil :: MonadIO m => m (MutArray a)
nil :: forall (m :: * -> *) a. MonadIO m => m (MutArray a)
nil = Int -> m (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
new Int
0
{-# INLINE putIndexUnsafeWith #-}
putIndexUnsafeWith :: MonadIO m => Int -> MutableArray# RealWorld a -> a -> m ()
putIndexUnsafeWith :: forall (m :: * -> *) a.
MonadIO m =>
Int -> MutableArray# RealWorld a -> a -> m ()
putIndexUnsafeWith Int
n MutableArray# RealWorld a
_arrContents# a
x =
IO () -> m ()
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO
(IO () -> m ()) -> IO () -> m ()
forall a b. (a -> b) -> a -> b
$ (State# RealWorld -> (# State# RealWorld, () #)) -> IO ()
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO
((State# RealWorld -> (# State# RealWorld, () #)) -> IO ())
-> (State# RealWorld -> (# State# RealWorld, () #)) -> IO ()
forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s# ->
case Int
n of
I# Int#
n# ->
let s1# :: State# RealWorld
s1# = MutableArray# RealWorld a
-> Int# -> a -> State# RealWorld -> State# RealWorld
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# RealWorld a
_arrContents# Int#
n# a
x State# RealWorld
s#
in (# State# RealWorld
s1#, () #)
{-# INLINE putIndexUnsafe #-}
putIndexUnsafe :: forall m a. MonadIO m => Int -> MutArray a -> a -> m ()
putIndexUnsafe :: forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> a -> m ()
putIndexUnsafe Int
i MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} a
x =
Bool
-> (Int -> MutableArray# RealWorld a -> a -> m ())
-> Int
-> MutableArray# RealWorld a
-> a
-> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
arrLen)
Int -> MutableArray# RealWorld a -> a -> m ()
forall (m :: * -> *) a.
MonadIO m =>
Int -> MutableArray# RealWorld a -> a -> m ()
putIndexUnsafeWith (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
arrStart) MutableArray# RealWorld a
arrContents# a
x
invalidIndex :: String -> Int -> a
invalidIndex :: forall a. [Char] -> Int -> a
invalidIndex [Char]
label Int
i =
[Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char] -> a) -> [Char] -> a
forall a b. (a -> b) -> a -> b
$ [Char]
label [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
": invalid array index " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
i
{-# INLINE putIndex #-}
putIndex :: MonadIO m => Int -> MutArray a -> a -> m ()
putIndex :: forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> a -> m ()
putIndex Int
i arr :: MutArray a
arr@MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} a
x =
if Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
arrLen
then Int -> MutArray a -> a -> m ()
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> a -> m ()
putIndexUnsafe Int
i MutArray a
arr a
x
else [Char] -> Int -> m ()
forall a. [Char] -> Int -> a
invalidIndex [Char]
"putIndex" Int
i
{-# INLINE putIndices #-}
putIndices :: MonadIO m
=> MutArray a -> Fold m (Int, a) ()
putIndices :: forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> Fold m (Int, a) ()
putIndices MutArray a
arr = (() -> (Int, a) -> m ()) -> m () -> Fold m (Int, a) ()
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> m b) -> m b -> Fold m a b
FL.foldlM' () -> (Int, a) -> m ()
forall {m :: * -> *}. MonadIO m => () -> (Int, a) -> m ()
step (() -> m ()
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return ())
where
step :: () -> (Int, a) -> m ()
step () (Int
i, a
x) = Int -> MutArray a -> a -> m ()
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> a -> m ()
putIndex Int
i MutArray a
arr a
x
modifyIndexUnsafe :: MonadIO m => Int -> MutArray a -> (a -> (a, b)) -> m b
modifyIndexUnsafe :: forall (m :: * -> *) a b.
MonadIO m =>
Int -> MutArray a -> (a -> (a, b)) -> m b
modifyIndexUnsafe Int
i MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} a -> (a, b)
f = do
IO b -> m b
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO
(IO b -> m b) -> IO b -> m b
forall a b. (a -> b) -> a -> b
$ (State# RealWorld -> (# State# RealWorld, b #)) -> IO b
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO
((State# RealWorld -> (# State# RealWorld, b #)) -> IO b)
-> (State# RealWorld -> (# State# RealWorld, b #)) -> IO b
forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s# ->
case Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
arrStart of
I# Int#
n# ->
case MutableArray# RealWorld a
-> Int# -> State# RealWorld -> (# State# RealWorld, a #)
forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# RealWorld a
arrContents# Int#
n# State# RealWorld
s# of
(# State# RealWorld
s1#, a
a #) ->
let (a
a1, b
b) = a -> (a, b)
f a
a
s2# :: State# RealWorld
s2# = MutableArray# RealWorld a
-> Int# -> a -> State# RealWorld -> State# RealWorld
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# RealWorld a
arrContents# Int#
n# a
a1 State# RealWorld
s1#
in (# State# RealWorld
s2#, b
b #)
modifyIndex :: MonadIO m => Int -> MutArray a -> (a -> (a, b)) -> m b
modifyIndex :: forall (m :: * -> *) a b.
MonadIO m =>
Int -> MutArray a -> (a -> (a, b)) -> m b
modifyIndex Int
i arr :: MutArray a
arr@MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} a -> (a, b)
f = do
if Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
arrLen
then Int -> MutArray a -> (a -> (a, b)) -> m b
forall (m :: * -> *) a b.
MonadIO m =>
Int -> MutArray a -> (a -> (a, b)) -> m b
modifyIndexUnsafe Int
i MutArray a
arr a -> (a, b)
f
else [Char] -> Int -> m b
forall a. [Char] -> Int -> a
invalidIndex [Char]
"modifyIndex" Int
i
realloc :: MonadIO m => Int -> MutArray a -> m (MutArray a)
realloc :: forall (m :: * -> *) a.
MonadIO m =>
Int -> MutArray a -> m (MutArray a)
realloc Int
n MutArray a
arr = do
MutArray a
arr1 <- Int -> m (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
new Int
n
let !newLen :: Int
newLen@(I# Int#
newLen#) = Int -> Int -> Int
forall a. Ord a => a -> a -> a
min Int
n (MutArray a -> Int
forall a. MutArray a -> Int
arrLen MutArray a
arr)
!(I# Int#
arrS#) = MutArray a -> Int
forall a. MutArray a -> Int
arrStart MutArray a
arr
!(I# Int#
arr1S#) = MutArray a -> Int
forall a. MutArray a -> Int
arrStart MutArray a
arr1
arrC# :: MutableArray# RealWorld a
arrC# = MutArray a -> MutableArray# RealWorld a
forall a. MutArray a -> MutableArray# RealWorld a
arrContents# MutArray a
arr
arr1C# :: MutableArray# RealWorld a
arr1C# = MutArray a -> MutableArray# RealWorld a
forall a. MutArray a -> MutableArray# RealWorld a
arrContents# MutArray a
arr1
IO (MutArray a) -> m (MutArray a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO
(IO (MutArray a) -> m (MutArray a))
-> IO (MutArray a) -> m (MutArray a)
forall a b. (a -> b) -> a -> b
$ (State# RealWorld -> (# State# RealWorld, MutArray a #))
-> IO (MutArray a)
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO
((State# RealWorld -> (# State# RealWorld, MutArray a #))
-> IO (MutArray a))
-> (State# RealWorld -> (# State# RealWorld, MutArray a #))
-> IO (MutArray a)
forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s# ->
let s1# :: State# RealWorld
s1# = MutableArray# RealWorld a
-> Int#
-> MutableArray# RealWorld a
-> Int#
-> Int#
-> State# RealWorld
-> State# RealWorld
forall d a.
MutableArray# d a
-> Int#
-> MutableArray# d a
-> Int#
-> Int#
-> State# d
-> State# d
copyMutableArray# MutableArray# RealWorld a
arrC# Int#
arrS# MutableArray# RealWorld a
arr1C# Int#
arr1S# Int#
newLen# State# RealWorld
s#
in (# State# RealWorld
s1#, MutArray a
arr1 {arrLen = newLen, arrTrueLen = n} #)
reallocWith ::
MonadIO m => String -> (Int -> Int) -> Int -> MutArray a -> m (MutArray a)
reallocWith :: forall (m :: * -> *) a.
MonadIO m =>
[Char] -> (Int -> Int) -> Int -> MutArray a -> m (MutArray a)
reallocWith [Char]
label Int -> Int
sizer Int
reqSize MutArray a
arr = do
let oldSize :: Int
oldSize = MutArray a -> Int
forall a. MutArray a -> Int
arrLen MutArray a
arr
newSize :: Int
newSize = Int -> Int
sizer Int
oldSize
safeSize :: Int
safeSize = Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
newSize (Int
oldSize Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
reqSize)
Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
newSize Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
oldSize Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
reqSize Bool -> Bool -> Bool
|| [Char] -> Bool
forall a. HasCallStack => [Char] -> a
error [Char]
badSize) (() -> m ()
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return ())
Int -> MutArray a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
Int -> MutArray a -> m (MutArray a)
realloc Int
safeSize MutArray a
arr
where
badSize :: [Char]
badSize = [[Char]] -> [Char]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat
[ [Char]
label
, [Char]
": new array size is less than required size "
, Int -> [Char]
forall a. Show a => a -> [Char]
show Int
reqSize
, [Char]
". Please check the sizing function passed."
]
{-# INLINE snocUnsafe #-}
snocUnsafe :: MonadIO m => MutArray a -> a -> m (MutArray a)
snocUnsafe :: forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> a -> m (MutArray a)
snocUnsafe arr :: MutArray a
arr@MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} a
a = do
Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
arrStart Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
arrLen Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
arrTrueLen) (() -> m ()
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return ())
let arr1 :: MutArray a
arr1 = MutArray a
arr {arrLen = arrLen + 1}
Int -> MutArray a -> a -> m ()
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> a -> m ()
putIndexUnsafe Int
arrLen MutArray a
arr1 a
a
MutArray a -> m (MutArray a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return MutArray a
arr1
{-# NOINLINE snocWithRealloc #-}
snocWithRealloc :: MonadIO m => (Int -> Int) -> MutArray a -> a -> m (MutArray a)
snocWithRealloc :: forall (m :: * -> *) a.
MonadIO m =>
(Int -> Int) -> MutArray a -> a -> m (MutArray a)
snocWithRealloc Int -> Int
sizer MutArray a
arr a
x = do
MutArray a
arr1 <- [Char] -> (Int -> Int) -> Int -> MutArray a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
[Char] -> (Int -> Int) -> Int -> MutArray a -> m (MutArray a)
reallocWith [Char]
"snocWithRealloc" Int -> Int
sizer Int
1 MutArray a
arr
MutArray a -> a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> a -> m (MutArray a)
snocUnsafe MutArray a
arr1 a
x
{-# INLINE snocWith #-}
snocWith :: MonadIO m => (Int -> Int) -> MutArray a -> a -> m (MutArray a)
snocWith :: forall (m :: * -> *) a.
MonadIO m =>
(Int -> Int) -> MutArray a -> a -> m (MutArray a)
snocWith Int -> Int
sizer arr :: MutArray a
arr@MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} a
x = do
if Int
arrStart Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
arrLen Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
arrTrueLen
then MutArray a -> a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> a -> m (MutArray a)
snocUnsafe MutArray a
arr a
x
else (Int -> Int) -> MutArray a -> a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
(Int -> Int) -> MutArray a -> a -> m (MutArray a)
snocWithRealloc Int -> Int
sizer MutArray a
arr a
x
{-# INLINE snoc #-}
snoc :: MonadIO m => MutArray a -> a -> m (MutArray a)
snoc :: forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> a -> m (MutArray a)
snoc = (Int -> Int) -> MutArray a -> a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
(Int -> Int) -> MutArray a -> a -> m (MutArray a)
snocWith (Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
2)
{-# INLINE uninit #-}
uninit :: MonadIO m => MutArray a -> Int -> m (MutArray a)
uninit :: forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> Int -> m (MutArray a)
uninit arr :: MutArray a
arr@MutArray{Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} Int
len =
if Int
arrStart Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
arrLen Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
len Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
arrTrueLen
then MutArray a -> m (MutArray a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (MutArray a -> m (MutArray a)) -> MutArray a -> m (MutArray a)
forall a b. (a -> b) -> a -> b
$ MutArray a
arr {arrLen = arrLen + len}
else Int -> MutArray a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
Int -> MutArray a -> m (MutArray a)
realloc (Int
arrLen Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
len) MutArray a
arr
{-# INLINE getIndexUnsafeWith #-}
getIndexUnsafeWith :: MonadIO m => MutableArray# RealWorld a -> Int -> m a
getIndexUnsafeWith :: forall (m :: * -> *) a.
MonadIO m =>
MutableArray# RealWorld a -> Int -> m a
getIndexUnsafeWith MutableArray# RealWorld a
_arrContents# Int
n =
IO a -> m a
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO
(IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO
((State# RealWorld -> (# State# RealWorld, a #)) -> IO a)
-> (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s# ->
let !(I# Int#
i#) = Int
n
in MutableArray# RealWorld a
-> Int# -> State# RealWorld -> (# State# RealWorld, a #)
forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# RealWorld a
_arrContents# Int#
i# State# RealWorld
s#
{-# INLINE_NORMAL getIndexUnsafe #-}
getIndexUnsafe :: MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe :: forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
n MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} = MutableArray# RealWorld a -> Int -> m a
forall (m :: * -> *) a.
MonadIO m =>
MutableArray# RealWorld a -> Int -> m a
getIndexUnsafeWith MutableArray# RealWorld a
arrContents# (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
arrStart)
{-# INLINE getIndex #-}
getIndex :: MonadIO m => Int -> MutArray a -> m (Maybe a)
getIndex :: forall (m :: * -> *) a.
MonadIO m =>
Int -> MutArray a -> m (Maybe a)
getIndex Int
i arr :: MutArray a
arr@MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} =
if Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
arrLen
then a -> Maybe a
forall a. a -> Maybe a
Just (a -> Maybe a) -> m a -> m (Maybe a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
i MutArray a
arr
else Maybe a -> m (Maybe a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe a
forall a. Maybe a
Nothing
{-# INLINE getSliceUnsafe #-}
getSliceUnsafe
:: Int
-> Int
-> MutArray a
-> MutArray a
getSliceUnsafe :: forall a. Int -> Int -> MutArray a -> MutArray a
getSliceUnsafe Int
index Int
len arr :: MutArray a
arr@MutArray {Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} =
Bool -> MutArray a -> MutArray a
forall a. HasCallStack => Bool -> a -> a
assert (Int
index Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
len Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
index Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
len Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
arrLen)
(MutArray a -> MutArray a) -> MutArray a -> MutArray a
forall a b. (a -> b) -> a -> b
$ MutArray a
arr {arrStart = arrStart + index, arrLen = len}
{-# INLINE getSlice #-}
getSlice
:: Int
-> Int
-> MutArray a
-> MutArray a
getSlice :: forall a. Int -> Int -> MutArray a -> MutArray a
getSlice Int
index Int
len arr :: MutArray a
arr@MutArray{Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} =
if Int
index Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
len Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 Bool -> Bool -> Bool
&& Int
index Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
len Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
arrLen
then MutArray a
arr {arrStart = arrStart + index, arrLen = len}
else [Char] -> MutArray a
forall a. HasCallStack => [Char] -> a
error
([Char] -> MutArray a) -> [Char] -> MutArray a
forall a b. (a -> b) -> a -> b
$ [Char]
"getSlice: invalid slice, index "
[Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
index [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" length " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
len
{-# INLINE toList #-}
toList :: MonadIO m => MutArray a -> m [a]
toList :: forall (m :: * -> *) a. MonadIO m => MutArray a -> m [a]
toList arr :: MutArray a
arr@MutArray{Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} = (Int -> m a) -> [Int] -> m [a]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
`getIndexUnsafe` MutArray a
arr) [Int
0 .. (Int
arrLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)]
{-# INLINE_NORMAL read #-}
read :: MonadIO m => MutArray a -> D.Stream m a
read :: forall (m :: * -> *) a. MonadIO m => MutArray a -> Stream m a
read arr :: MutArray a
arr@MutArray{Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} =
(Int -> m a) -> Stream m Int -> Stream m a
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Stream m a -> Stream m b
D.mapM (Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
`getIndexUnsafe` MutArray a
arr) (Stream m Int -> Stream m a) -> Stream m Int -> Stream m a
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Stream m Int
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> Stream m a
D.enumerateFromToIntegral Int
0 (Int
arrLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
{-# INLINE toStreamK #-}
toStreamK :: MonadIO m => MutArray a -> K.StreamK m a
toStreamK :: forall (m :: * -> *) a. MonadIO m => MutArray a -> StreamK m a
toStreamK arr :: MutArray a
arr@MutArray{Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} = (Int -> m (Maybe (a, Int))) -> Int -> StreamK m a
forall (m :: * -> *) b a.
Monad m =>
(b -> m (Maybe (a, b))) -> b -> StreamK m a
K.unfoldrM Int -> m (Maybe (a, Int))
forall {m :: * -> *}. MonadIO m => Int -> m (Maybe (a, Int))
step Int
0
where
step :: Int -> m (Maybe (a, Int))
step Int
i
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
arrLen = Maybe (a, Int) -> m (Maybe (a, Int))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (a, Int)
forall a. Maybe a
Nothing
| Bool
otherwise = do
a
x <- Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
i MutArray a
arr
Maybe (a, Int) -> m (Maybe (a, Int))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (a, Int) -> m (Maybe (a, Int)))
-> Maybe (a, Int) -> m (Maybe (a, Int))
forall a b. (a -> b) -> a -> b
$ (a, Int) -> Maybe (a, Int)
forall a. a -> Maybe a
Just (a
x, Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
{-# INLINE_NORMAL readRev #-}
readRev :: MonadIO m => MutArray a -> D.Stream m a
readRev :: forall (m :: * -> *) a. MonadIO m => MutArray a -> Stream m a
readRev arr :: MutArray a
arr@MutArray{Int
MutableArray# RealWorld a
arrContents# :: forall a. MutArray a -> MutableArray# RealWorld a
arrStart :: forall a. MutArray a -> Int
arrLen :: forall a. MutArray a -> Int
arrTrueLen :: forall a. MutArray a -> Int
arrContents# :: MutableArray# RealWorld a
arrStart :: Int
arrLen :: Int
arrTrueLen :: Int
..} =
(Int -> m a) -> Stream m Int -> Stream m a
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Stream m a -> Stream m b
D.mapM (Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
`getIndexUnsafe` MutArray a
arr)
(Stream m Int -> Stream m a) -> Stream m Int -> Stream m a
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Int -> Stream m Int
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> a -> Stream m a
D.enumerateFromThenToIntegral (Int
arrLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) (Int
arrLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
2) Int
0
arrayChunkSize :: Int
arrayChunkSize :: Int
arrayChunkSize = Int
1024
{-# INLINE_NORMAL unsafeCreateOf #-}
unsafeCreateOf :: MonadIO m => Int -> Fold m a (MutArray a)
unsafeCreateOf :: forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
unsafeCreateOf Int
n = (MutArray a -> a -> m (Step (MutArray a) (MutArray a)))
-> m (Step (MutArray a) (MutArray a))
-> (MutArray a -> m (MutArray a))
-> (MutArray a -> m (MutArray a))
-> Fold m a (MutArray a)
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold MutArray a -> a -> m (Step (MutArray a) (MutArray a))
forall {f :: * -> *} {a} {b}.
MonadIO f =>
MutArray a -> a -> f (Step (MutArray a) b)
step m (Step (MutArray a) (MutArray a))
forall {a} {b}. m (Step (MutArray a) b)
initial MutArray a -> m (MutArray a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return MutArray a -> m (MutArray a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
where
initial :: m (Step (MutArray a) b)
initial = MutArray a -> Step (MutArray a) b
forall s b. s -> Step s b
FL.Partial (MutArray a -> Step (MutArray a) b)
-> m (MutArray a) -> m (Step (MutArray a) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> m (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
new (Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
n Int
0)
step :: MutArray a -> a -> f (Step (MutArray a) b)
step MutArray a
arr a
x = MutArray a -> Step (MutArray a) b
forall s b. s -> Step s b
FL.Partial (MutArray a -> Step (MutArray a) b)
-> f (MutArray a) -> f (Step (MutArray a) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MutArray a -> a -> f (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> a -> m (MutArray a)
snocUnsafe MutArray a
arr a
x
{-# DEPRECATED writeNUnsafe "Please use unsafeCreateOf instead." #-}
{-# INLINE writeNUnsafe #-}
writeNUnsafe :: MonadIO m => Int -> Fold m a (MutArray a)
writeNUnsafe :: forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
writeNUnsafe = Int -> Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
unsafeCreateOf
{-# INLINE_NORMAL createOf #-}
createOf :: MonadIO m => Int -> Fold m a (MutArray a)
createOf :: forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
createOf Int
n = Int -> Fold m a (MutArray a) -> Fold m a (MutArray a)
forall (m :: * -> *) a b.
Monad m =>
Int -> Fold m a b -> Fold m a b
FL.take Int
n (Fold m a (MutArray a) -> Fold m a (MutArray a))
-> Fold m a (MutArray a) -> Fold m a (MutArray a)
forall a b. (a -> b) -> a -> b
$ Int -> Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
unsafeCreateOf Int
n
{-# INLINE writeN #-}
writeN :: MonadIO m => Int -> Fold m a (MutArray a)
writeN :: forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
writeN = Int -> Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
createOf
{-# INLINE_NORMAL createWith #-}
createWith :: MonadIO m => Int -> Fold m a (MutArray a)
createWith :: forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
createWith Int
elemCount = (MutArray a -> m (MutArray a))
-> Fold m a (MutArray a) -> Fold m a (MutArray a)
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> Fold m a b -> Fold m a c
FL.rmapM MutArray a -> m (MutArray a)
forall {a}. a -> m a
extract (Fold m a (MutArray a) -> Fold m a (MutArray a))
-> Fold m a (MutArray a) -> Fold m a (MutArray a)
forall a b. (a -> b) -> a -> b
$ (MutArray a -> a -> m (MutArray a))
-> m (MutArray a) -> Fold m a (MutArray a)
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> m b) -> m b -> Fold m a b
FL.foldlM' MutArray a -> a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> a -> m (MutArray a)
step m (MutArray a)
forall {a}. m (MutArray a)
initial
where
initial :: m (MutArray a)
initial = do
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
elemCount Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ [Char] -> m ()
forall a. HasCallStack => [Char] -> a
error [Char]
"createWith: elemCount is negative"
Int -> m (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
new Int
elemCount
step :: MutArray a -> a -> m (MutArray a)
step arr :: MutArray a
arr@(MutArray MutableArray# RealWorld a
_ Int
start Int
end Int
bound) a
x
| Int
end Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
bound = do
let oldSize :: Int
oldSize = Int
end Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
start
newSize :: Int
newSize = Int -> Int -> Int
forall a. Ord a => a -> a -> a
max (Int
oldSize Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
2) Int
1
MutArray a
arr1 <- Int -> MutArray a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
Int -> MutArray a -> m (MutArray a)
realloc Int
newSize MutArray a
arr
MutArray a -> a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> a -> m (MutArray a)
snocUnsafe MutArray a
arr1 a
x
step MutArray a
arr a
x = MutArray a -> a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> a -> m (MutArray a)
snocUnsafe MutArray a
arr a
x
extract :: a -> m a
extract = a -> m a
forall {a}. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
{-# DEPRECATED writeWith "Please use createWith instead." #-}
{-# INLINE writeWith #-}
writeWith :: MonadIO m => Int -> Fold m a (MutArray a)
writeWith :: forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
writeWith = Int -> Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
createWith
{-# INLINE create #-}
create :: MonadIO m => Fold m a (MutArray a)
create :: forall (m :: * -> *) a. MonadIO m => Fold m a (MutArray a)
create = Int -> Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
writeWith Int
arrayChunkSize
{-# INLINE write #-}
write :: MonadIO m => Fold m a (MutArray a)
write :: forall (m :: * -> *) a. MonadIO m => Fold m a (MutArray a)
write = Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Fold m a (MutArray a)
create
{-# INLINE fromStreamN #-}
fromStreamN :: MonadIO m => Int -> Stream m a -> m (MutArray a)
fromStreamN :: forall (m :: * -> *) a.
MonadIO m =>
Int -> Stream m a -> m (MutArray a)
fromStreamN Int
n = Fold m a (MutArray a) -> Stream m a -> m (MutArray a)
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Stream m a -> m b
D.fold (Int -> Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> Fold m a (MutArray a)
writeN Int
n)
{-# INLINE fromStream #-}
fromStream :: MonadIO m => Stream m a -> m (MutArray a)
fromStream :: forall (m :: * -> *) a. MonadIO m => Stream m a -> m (MutArray a)
fromStream = Fold m a (MutArray a) -> Stream m a -> m (MutArray a)
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Stream m a -> m b
D.fold Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Fold m a (MutArray a)
write
{-# INLINABLE fromListN #-}
fromListN :: MonadIO m => Int -> [a] -> m (MutArray a)
fromListN :: forall (m :: * -> *) a. MonadIO m => Int -> [a] -> m (MutArray a)
fromListN Int
n [a]
xs = Int -> Stream m a -> m (MutArray a)
forall (m :: * -> *) a.
MonadIO m =>
Int -> Stream m a -> m (MutArray a)
fromStreamN Int
n (Stream m a -> m (MutArray a)) -> Stream m a -> m (MutArray a)
forall a b. (a -> b) -> a -> b
$ [a] -> Stream m a
forall (m :: * -> *) a. Applicative m => [a] -> Stream m a
D.fromList [a]
xs
{-# INLINABLE fromList #-}
fromList :: MonadIO m => [a] -> m (MutArray a)
fromList :: forall (m :: * -> *) a. MonadIO m => [a] -> m (MutArray a)
fromList [a]
xs = Stream m a -> m (MutArray a)
forall (m :: * -> *) a. MonadIO m => Stream m a -> m (MutArray a)
fromStream (Stream m a -> m (MutArray a)) -> Stream m a -> m (MutArray a)
forall a b. (a -> b) -> a -> b
$ [a] -> Stream m a
forall (m :: * -> *) a. Applicative m => [a] -> Stream m a
D.fromList [a]
xs
{-# INLINABLE fromPureStream #-}
fromPureStream :: MonadIO m => Stream Identity a -> m (MutArray a)
fromPureStream :: forall (m :: * -> *) a.
MonadIO m =>
Stream Identity a -> m (MutArray a)
fromPureStream Stream Identity a
xs =
Fold m a (MutArray a) -> Stream m a -> m (MutArray a)
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Stream m a -> m b
D.fold Fold m a (MutArray a)
forall (m :: * -> *) a. MonadIO m => Fold m a (MutArray a)
write (Stream m a -> m (MutArray a)) -> Stream m a -> m (MutArray a)
forall a b. (a -> b) -> a -> b
$ (forall x. Identity x -> m x) -> Stream Identity a -> Stream m a
forall (n :: * -> *) (m :: * -> *) a.
Monad n =>
(forall x. m x -> n x) -> Stream m a -> Stream n a
D.morphInner (x -> m x
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (x -> m x) -> (Identity x -> x) -> Identity x -> m x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Identity x -> x
forall a. Identity a -> a
runIdentity) Stream Identity a
xs
data GroupState s a start end bound
= GroupStart s
| GroupBuffer s (MutableArray# RealWorld a) start end bound
| GroupYield
(MutableArray# RealWorld a)
start
end
bound
(GroupState s a start end bound)
| GroupFinish
{-# INLINE_NORMAL chunksOf #-}
chunksOf :: forall m a. MonadIO m
=> Int -> D.Stream m a -> D.Stream m (MutArray a)
chunksOf :: forall (m :: * -> *) a.
MonadIO m =>
Int -> Stream m a -> Stream m (MutArray a)
chunksOf Int
n (D.Stream State StreamK m a -> s -> m (Step s a)
step s
state) =
(State StreamK m (MutArray a)
-> GroupState s a Int Int Int
-> m (Step (GroupState s a Int Int Int) (MutArray a)))
-> GroupState s a Int Int Int -> Stream m (MutArray a)
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
D.Stream State StreamK m (MutArray a)
-> GroupState s a Int Int Int
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall {m :: * -> *} {a}.
State StreamK m a
-> GroupState s a Int Int Int
-> m (Step (GroupState s a Int Int Int) (MutArray a))
step' (s -> GroupState s a Int Int Int
forall s a start end bound. s -> GroupState s a start end bound
GroupStart s
state)
where
{-# INLINE_LATE step' #-}
step' :: State StreamK m a
-> GroupState s a Int Int Int
-> m (Step (GroupState s a Int Int Int) (MutArray a))
step' State StreamK m a
_ (GroupStart s
st) = do
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
[Char] -> m ()
forall a. HasCallStack => [Char] -> a
error ([Char] -> m ()) -> [Char] -> m ()
forall a b. (a -> b) -> a -> b
$ [Char]
"Streamly.Internal.Data.Array.Generic.Mut.Type.chunksOf: "
[Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
"the size of arrays [" [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
n
[Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
"] must be a natural number"
(MutArray MutableArray# RealWorld a
contents Int
start Int
end Int
bound :: MutArray a) <- Int -> m (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
new Int
n
Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a)))
-> Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a b. (a -> b) -> a -> b
$ GroupState s a Int Int Int
-> Step (GroupState s a Int Int Int) (MutArray a)
forall s a. s -> Step s a
D.Skip (s
-> MutableArray# RealWorld a
-> Int
-> Int
-> Int
-> GroupState s a Int Int Int
forall s a start end bound.
s
-> MutableArray# RealWorld a
-> start
-> end
-> bound
-> GroupState s a start end bound
GroupBuffer s
st MutableArray# RealWorld a
contents Int
start Int
end Int
bound)
step' State StreamK m a
gst (GroupBuffer s
st MutableArray# RealWorld a
contents Int
start Int
end Int
bound) = do
Step s a
r <- State StreamK m a -> s -> m (Step s a)
step (State StreamK m a -> State StreamK m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State StreamK m a
gst) s
st
case Step s a
r of
D.Yield a
x s
s -> do
Int -> MutableArray# RealWorld a -> a -> m ()
forall (m :: * -> *) a.
MonadIO m =>
Int -> MutableArray# RealWorld a -> a -> m ()
putIndexUnsafeWith Int
end MutableArray# RealWorld a
contents a
x
let end1 :: Int
end1 = Int
end Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a)))
-> Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a b. (a -> b) -> a -> b
$
if Int
end1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
bound
then GroupState s a Int Int Int
-> Step (GroupState s a Int Int Int) (MutArray a)
forall s a. s -> Step s a
D.Skip
(MutableArray# RealWorld a
-> Int
-> Int
-> Int
-> GroupState s a Int Int Int
-> GroupState s a Int Int Int
forall s a start end bound.
MutableArray# RealWorld a
-> start
-> end
-> bound
-> GroupState s a start end bound
-> GroupState s a start end bound
GroupYield
MutableArray# RealWorld a
contents Int
start Int
end1 Int
bound (s -> GroupState s a Int Int Int
forall s a start end bound. s -> GroupState s a start end bound
GroupStart s
s))
else GroupState s a Int Int Int
-> Step (GroupState s a Int Int Int) (MutArray a)
forall s a. s -> Step s a
D.Skip (s
-> MutableArray# RealWorld a
-> Int
-> Int
-> Int
-> GroupState s a Int Int Int
forall s a start end bound.
s
-> MutableArray# RealWorld a
-> start
-> end
-> bound
-> GroupState s a start end bound
GroupBuffer s
s MutableArray# RealWorld a
contents Int
start Int
end1 Int
bound)
D.Skip s
s ->
Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a)))
-> Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a b. (a -> b) -> a -> b
$ GroupState s a Int Int Int
-> Step (GroupState s a Int Int Int) (MutArray a)
forall s a. s -> Step s a
D.Skip (s
-> MutableArray# RealWorld a
-> Int
-> Int
-> Int
-> GroupState s a Int Int Int
forall s a start end bound.
s
-> MutableArray# RealWorld a
-> start
-> end
-> bound
-> GroupState s a start end bound
GroupBuffer s
s MutableArray# RealWorld a
contents Int
start Int
end Int
bound)
Step s a
D.Stop ->
Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a)))
-> Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a b. (a -> b) -> a -> b
$ GroupState s a Int Int Int
-> Step (GroupState s a Int Int Int) (MutArray a)
forall s a. s -> Step s a
D.Skip (MutableArray# RealWorld a
-> Int
-> Int
-> Int
-> GroupState s a Int Int Int
-> GroupState s a Int Int Int
forall s a start end bound.
MutableArray# RealWorld a
-> start
-> end
-> bound
-> GroupState s a start end bound
-> GroupState s a start end bound
GroupYield MutableArray# RealWorld a
contents Int
start Int
end Int
bound GroupState s a Int Int Int
forall s a start end bound. GroupState s a start end bound
GroupFinish)
step' State StreamK m a
_ (GroupYield MutableArray# RealWorld a
contents Int
start Int
end Int
bound GroupState s a Int Int Int
next) =
Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a)))
-> Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a b. (a -> b) -> a -> b
$ MutArray a
-> GroupState s a Int Int Int
-> Step (GroupState s a Int Int Int) (MutArray a)
forall s a. a -> s -> Step s a
D.Yield (MutableArray# RealWorld a -> Int -> Int -> Int -> MutArray a
forall a.
MutableArray# RealWorld a -> Int -> Int -> Int -> MutArray a
MutArray MutableArray# RealWorld a
contents Int
start Int
end Int
bound) GroupState s a Int Int Int
next
step' State StreamK m a
_ GroupState s a Int Int Int
GroupFinish = Step (GroupState s a Int Int Int) (MutArray a)
-> m (Step (GroupState s a Int Int Int) (MutArray a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Step (GroupState s a Int Int Int) (MutArray a)
forall s a. Step s a
D.Stop
{-# INLINE_NORMAL producerWith #-}
producerWith :: Monad m => (forall b. IO b -> m b) -> Producer m (MutArray a) a
producerWith :: forall (m :: * -> *) a.
Monad m =>
(forall b. IO b -> m b) -> Producer m (MutArray a) a
producerWith forall b. IO b -> m b
liftio = ((MutArray a, Int) -> m (Step (MutArray a, Int) a))
-> (MutArray a -> m (MutArray a, Int))
-> ((MutArray a, Int) -> m (MutArray a))
-> Producer m (MutArray a) a
forall (m :: * -> *) a b s.
(s -> m (Step s b)) -> (a -> m s) -> (s -> m a) -> Producer m a b
Producer (MutArray a, Int) -> m (Step (MutArray a, Int) a)
forall {a}. (MutArray a, Int) -> m (Step (MutArray a, Int) a)
step MutArray a -> m (MutArray a, Int)
forall {m :: * -> *} {b} {a}. (Monad m, Num b) => a -> m (a, b)
inject (MutArray a, Int) -> m (MutArray a)
forall {m :: * -> *} {a}.
Monad m =>
(MutArray a, Int) -> m (MutArray a)
extract
where
{-# INLINE inject #-}
inject :: a -> m (a, b)
inject a
arr = (a, b) -> m (a, b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
arr, b
0)
{-# INLINE extract #-}
extract :: (MutArray a, Int) -> m (MutArray a)
extract (MutArray a
arr, Int
i) =
MutArray a -> m (MutArray a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (MutArray a -> m (MutArray a)) -> MutArray a -> m (MutArray a)
forall a b. (a -> b) -> a -> b
$ MutArray a
arr {arrStart = arrStart arr + i, arrLen = arrLen arr - i}
{-# INLINE_LATE step #-}
step :: (MutArray a, Int) -> m (Step (MutArray a, Int) a)
step (MutArray a
arr, Int
i)
| Bool -> Bool -> Bool
forall a. HasCallStack => Bool -> a -> a
assert (MutArray a -> Int
forall a. MutArray a -> Int
arrLen MutArray a
arr Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0) (Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== MutArray a -> Int
forall a. MutArray a -> Int
arrLen MutArray a
arr) = Step (MutArray a, Int) a -> m (Step (MutArray a, Int) a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Step (MutArray a, Int) a
forall s a. Step s a
D.Stop
step (MutArray a
arr, Int
i) = do
a
x <- IO a -> m a
forall b. IO b -> m b
liftio (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Int -> MutArray a -> IO a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
i MutArray a
arr
Step (MutArray a, Int) a -> m (Step (MutArray a, Int) a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (MutArray a, Int) a -> m (Step (MutArray a, Int) a))
-> Step (MutArray a, Int) a -> m (Step (MutArray a, Int) a)
forall a b. (a -> b) -> a -> b
$ a -> (MutArray a, Int) -> Step (MutArray a, Int) a
forall s a. a -> s -> Step s a
D.Yield a
x (MutArray a
arr, Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
{-# INLINE_NORMAL producer #-}
producer :: MonadIO m => Producer m (MutArray a) a
producer :: forall (m :: * -> *) a. MonadIO m => Producer m (MutArray a) a
producer = (forall b. IO b -> m b) -> Producer m (MutArray a) a
forall (m :: * -> *) a.
Monad m =>
(forall b. IO b -> m b) -> Producer m (MutArray a) a
producerWith IO b -> m b
forall b. IO b -> m b
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO
{-# INLINE_NORMAL reader #-}
reader :: MonadIO m => Unfold m (MutArray a) a
reader :: forall (m :: * -> *) a. MonadIO m => Unfold m (MutArray a) a
reader = Producer m (MutArray a) a -> Unfold m (MutArray a) a
forall (m :: * -> *) a b. Producer m a b -> Unfold m a b
Producer.simplify Producer m (MutArray a) a
forall (m :: * -> *) a. MonadIO m => Producer m (MutArray a) a
producer
{-# INLINE putSliceUnsafe #-}
putSliceUnsafe :: MonadIO m =>
MutArray a -> Int -> MutArray a -> Int -> Int -> m ()
putSliceUnsafe :: forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> Int -> MutArray a -> Int -> Int -> m ()
putSliceUnsafe MutArray a
src Int
srcStart MutArray a
dst Int
dstStart Int
len = IO () -> m ()
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO () -> m ()) -> IO () -> m ()
forall a b. (a -> b) -> a -> b
$ do
assertM(Int
len Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= MutArray a -> Int
forall a. MutArray a -> Int
arrLen MutArray a
dst)
assertM(Int
len Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= MutArray a -> Int
forall a. MutArray a -> Int
arrLen MutArray a
src)
let !(I# Int#
srcStart#) = Int
srcStart Int -> Int -> Int
forall a. Num a => a -> a -> a
+ MutArray a -> Int
forall a. MutArray a -> Int
arrStart MutArray a
src
!(I# Int#
dstStart#) = Int
dstStart Int -> Int -> Int
forall a. Num a => a -> a -> a
+ MutArray a -> Int
forall a. MutArray a -> Int
arrStart MutArray a
dst
!(I# Int#
len#) = Int
len
let arrS# :: MutableArray# RealWorld a
arrS# = MutArray a -> MutableArray# RealWorld a
forall a. MutArray a -> MutableArray# RealWorld a
arrContents# MutArray a
src
arrD# :: MutableArray# RealWorld a
arrD# = MutArray a -> MutableArray# RealWorld a
forall a. MutArray a -> MutableArray# RealWorld a
arrContents# MutArray a
dst
(State# RealWorld -> (# State# RealWorld, () #)) -> IO ()
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO ((State# RealWorld -> (# State# RealWorld, () #)) -> IO ())
-> (State# RealWorld -> (# State# RealWorld, () #)) -> IO ()
forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s# -> (# MutableArray# RealWorld a
-> Int#
-> MutableArray# RealWorld a
-> Int#
-> Int#
-> State# RealWorld
-> State# RealWorld
forall d a.
MutableArray# d a
-> Int#
-> MutableArray# d a
-> Int#
-> Int#
-> State# d
-> State# d
copyMutableArray#
MutableArray# RealWorld a
arrS# Int#
srcStart# MutableArray# RealWorld a
arrD# Int#
dstStart# Int#
len# State# RealWorld
s#
, () #)
{-# INLINE clone #-}
clone :: MonadIO m => MutArray a -> m (MutArray a)
clone :: forall (m :: * -> *) a. MonadIO m => MutArray a -> m (MutArray a)
clone MutArray a
src = do
let len :: Int
len = MutArray a -> Int
forall a. MutArray a -> Int
arrLen MutArray a
src
MutArray a
dst <- Int -> m (MutArray a)
forall (m :: * -> *) a. MonadIO m => Int -> m (MutArray a)
new Int
len
MutArray a -> Int -> MutArray a -> Int -> Int -> m ()
forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> Int -> MutArray a -> Int -> Int -> m ()
putSliceUnsafe MutArray a
src Int
0 MutArray a
dst Int
0 Int
len
MutArray a -> m (MutArray a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return MutArray a
dst
{-# INLINE length #-}
length :: MutArray a -> Int
length :: forall a. MutArray a -> Int
length = MutArray a -> Int
forall a. MutArray a -> Int
arrLen
{-# INLINE cmp #-}
cmp :: (MonadIO m, Ord a) => MutArray a -> MutArray a -> m Ordering
cmp :: forall (m :: * -> *) a.
(MonadIO m, Ord a) =>
MutArray a -> MutArray a -> m Ordering
cmp MutArray a
a1 MutArray a
a2 =
case Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
lenA1 Int
lenA2 of
Ordering
EQ -> Int -> m Ordering
forall {m :: * -> *}. MonadIO m => Int -> m Ordering
loop (Int
lenA1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Ordering
x -> Ordering -> m Ordering
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
x
where
lenA1 :: Int
lenA1 = MutArray a -> Int
forall a. MutArray a -> Int
length MutArray a
a1
lenA2 :: Int
lenA2 = MutArray a -> Int
forall a. MutArray a -> Int
length MutArray a
a2
loop :: Int -> m Ordering
loop Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = Ordering -> m Ordering
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
EQ
| Bool
otherwise = do
a
v1 <- Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
i MutArray a
a1
a
v2 <- Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
i MutArray a
a2
case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
v1 a
v2 of
Ordering
EQ -> Int -> m Ordering
loop (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Ordering
x -> Ordering -> m Ordering
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
x
{-# INLINE eq #-}
eq :: (MonadIO m, Eq a) => MutArray a -> MutArray a -> m Bool
eq :: forall (m :: * -> *) a.
(MonadIO m, Eq a) =>
MutArray a -> MutArray a -> m Bool
eq MutArray a
a1 MutArray a
a2 =
if Int
lenA1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
lenA2
then Int -> m Bool
forall {m :: * -> *}. MonadIO m => Int -> m Bool
loop (Int
lenA1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
else Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
where
lenA1 :: Int
lenA1 = MutArray a -> Int
forall a. MutArray a -> Int
length MutArray a
a1
lenA2 :: Int
lenA2 = MutArray a -> Int
forall a. MutArray a -> Int
length MutArray a
a2
loop :: Int -> m Bool
loop Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
| Bool
otherwise = do
a
v1 <- Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
i MutArray a
a1
a
v2 <- Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
i MutArray a
a2
if a
v1 a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
v2
then Int -> m Bool
loop (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
else Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
{-# INLINE strip #-}
strip :: MonadIO m => (a -> Bool) -> MutArray a -> m (MutArray a)
strip :: forall (m :: * -> *) a.
MonadIO m =>
(a -> Bool) -> MutArray a -> m (MutArray a)
strip a -> Bool
p MutArray a
arr = IO (MutArray a) -> m (MutArray a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (MutArray a) -> m (MutArray a))
-> IO (MutArray a) -> m (MutArray a)
forall a b. (a -> b) -> a -> b
$ do
let lastIndex :: Int
lastIndex = MutArray a -> Int
forall a. MutArray a -> Int
length MutArray a
arr Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
Int
indexR <- Int -> IO Int
forall {m :: * -> *}. MonadIO m => Int -> m Int
getIndexR Int
lastIndex
if Int
indexR Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0
then IO (MutArray a)
forall (m :: * -> *) a. MonadIO m => m (MutArray a)
nil
else do
Int
indexL <- Int -> IO Int
forall {m :: * -> *}. MonadIO m => Int -> m Int
getIndexL Int
0
if Int
indexL Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 Bool -> Bool -> Bool
&& Int
indexR Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
lastIndex
then MutArray a -> IO (MutArray a)
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return MutArray a
arr
else
let newLen :: Int
newLen = Int
indexR Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
indexL Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
in MutArray a -> IO (MutArray a)
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (MutArray a -> IO (MutArray a)) -> MutArray a -> IO (MutArray a)
forall a b. (a -> b) -> a -> b
$ Int -> Int -> MutArray a -> MutArray a
forall a. Int -> Int -> MutArray a -> MutArray a
getSliceUnsafe Int
indexL Int
newLen MutArray a
arr
where
getIndexR :: Int -> m Int
getIndexR Int
idx
| Int
idx Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Int
idx
| Bool
otherwise = do
a
r <- Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
idx MutArray a
arr
if a -> Bool
p a
r
then Int -> m Int
getIndexR (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
else Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Int
idx
getIndexL :: Int -> m Int
getIndexL Int
idx = do
a
r <- Int -> MutArray a -> m a
forall (m :: * -> *) a. MonadIO m => Int -> MutArray a -> m a
getIndexUnsafe Int
idx MutArray a
arr
if a -> Bool
p a
r
then Int -> m Int
getIndexL (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
else Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Int
idx