{-# LANGUAGE CPP #-}
-- |
-- Module      : Streamly.Internal.Data.Stream.StreamD.Generate
-- Copyright   : (c) 2020 Composewell Technologies and Contributors
--               (c) Roman Leshchinskiy 2008-2010
-- License     : BSD-3-Clause
-- Maintainer  : streamly@composewell.com
-- Stability   : experimental
-- Portability : GHC
--

-- A few combinators in this module have been adapted from the vector package
-- (c) Roman Leshchinskiy. See the notes in specific combinators.
--
module Streamly.Internal.Data.Stream.StreamD.Generate
  (
    -- * Primitives
      nil
    , nilM
    , cons
    , consM

    -- * From 'Unfold'
    , unfold

    -- * Unfolding
    , unfoldr
    , unfoldrM

    -- * From Values
    , fromPure
    , fromEffect
    , repeat
    , repeatM
    , replicate
    , replicateM

    -- * Enumeration
    -- ** Enumerating 'Num' Types
    , enumerateFromStepNum
    , enumerateFromNum
    , enumerateFromThenNum

    -- ** Enumerating 'Bounded' 'Enum' Types
    , enumerate
    , enumerateTo
    , enumerateFromBounded

    -- ** Enumerating 'Enum' Types not larger than 'Int'
    , enumerateFromToSmall
    , enumerateFromThenToSmall
    , enumerateFromThenSmallBounded

    -- ** Enumerating 'Bounded' 'Integral' Types
    , enumerateFromIntegral
    , enumerateFromThenIntegral

    -- ** Enumerating 'Integral' Types
    , enumerateFromToIntegral
    , enumerateFromThenToIntegral

    -- ** Enumerating unbounded 'Integral' Types
    , enumerateFromStepIntegral

    -- ** Enumerating 'Fractional' Types
    , enumerateFromFractional
    , enumerateFromToFractional
    , enumerateFromThenFractional
    , enumerateFromThenToFractional

    -- ** Enumerable Type Class
    , Enumerable(..)

    -- * Time Enumeration
    , times
    , timesWith
    , absTimes
    , absTimesWith
    , relTimes
    , relTimesWith
    , durations
    , timeout

    -- * From Generators
    -- | Generate a monadic stream from a seed.
    , fromIndices
    , fromIndicesM
    , generate
    , generateM

    -- * Iteration
    , iterate
    , iterateM

    -- * From Containers
    -- | Transform an input structure into a stream.

    , fromList
    , fromListM
    , fromFoldable
    , fromFoldableM

    -- * From Pointers
    , fromPtr
    , fromPtrN
    , fromByteStr#

    -- * Conversions
    , fromStreamK
    , toStreamK
    )
where

#include "inline.hs"
#include "ArrayMacros.h"

import Control.Monad.IO.Class (MonadIO(..))
import Data.Functor.Identity (Identity(..))
import Foreign.Ptr (Ptr, plusPtr)
import Foreign.Storable (Storable (peek), sizeOf)
import GHC.Exts (Addr#, Ptr (Ptr))
import Streamly.Internal.Data.Time.Clock
    (Clock(Monotonic), asyncClock, readClock)
import Streamly.Internal.Data.Time.Units
    (toAbsTime, AbsTime, toRelTime64, RelTime64, addToAbsTime64)

#ifdef USE_UNFOLDS_EVERYWHERE
import qualified Streamly.Internal.Data.Unfold as Unfold
import qualified Streamly.Internal.Data.Unfold.Enumeration as Unfold
#endif

import Data.Fixed
import Data.Int
import Data.Ratio
import Data.Word
import Numeric.Natural
import Prelude hiding (iterate, repeat, replicate, take, takeWhile)
import Streamly.Internal.Data.Stream.StreamD.Type

#include "DocTestDataStream.hs"

------------------------------------------------------------------------------
-- Primitives
------------------------------------------------------------------------------

-- XXX implement in terms of nilM?

-- | A stream that terminates without producing any output or side effect.
--
-- >>> Stream.fold Fold.toList Stream.nil
-- []
--
{-# INLINE_NORMAL nil #-}
nil :: Applicative m => Stream m a
nil :: Stream m a
nil = (State StreamK m a -> () -> m (Step () a)) -> () -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream (\State StreamK m a
_ ()
_ -> Step () a -> m (Step () a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Step () a
forall s a. Step s a
Stop) ()

-- XXX implement in terms of consM?
-- cons x = consM (return x)

-- | Fuse a pure value at the head of an existing stream::
--
-- >>> s = 1 `Stream.cons` Stream.fromList [2,3]
-- >>> Stream.fold Fold.toList s
-- [1,2,3]
--
-- This function should not be used to dynamically construct a stream. If a
-- stream is constructed by successive use of this function it would take
-- O(n^2) time to consume the stream.
--
-- This function should only be used to statically fuse an element with a
-- stream. Do not use this recursively or where it cannot be inlined.
--
-- See "Streamly.Data.StreamK" for a 'cons' that can be used to
-- construct a stream recursively.
--
-- Definition:
--
-- >>> cons x xs = return x `Stream.consM` xs
--
{-# INLINE_NORMAL cons #-}
cons :: Applicative m => a -> Stream m a -> Stream m a
cons :: a -> Stream m a -> Stream m a
cons a
x (Stream State StreamK m a -> s -> m (Step s a)
step s
state) = (State StreamK m a -> Maybe s -> m (Step (Maybe s) a))
-> Maybe s -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> Maybe s -> m (Step (Maybe s) a)
step1 Maybe s
forall a. Maybe a
Nothing
    where
    {-# INLINE_LATE step1 #-}
    step1 :: State StreamK m a -> Maybe s -> m (Step (Maybe s) a)
step1 State StreamK m a
_ Maybe s
Nothing = Step (Maybe s) a -> m (Step (Maybe s) a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Step (Maybe s) a -> m (Step (Maybe s) a))
-> Step (Maybe s) a -> m (Step (Maybe s) a)
forall a b. (a -> b) -> a -> b
$ a -> Maybe s -> Step (Maybe s) a
forall s a. a -> s -> Step s a
Yield a
x (s -> Maybe s
forall a. a -> Maybe a
Just s
state)
    step1 State StreamK m a
gst (Just s
st) = do
          (\case
            Yield a
a s
s -> a -> Maybe s -> Step (Maybe s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> Maybe s
forall a. a -> Maybe a
Just s
s)
            Skip  s
s   -> Maybe s -> Step (Maybe s) a
forall s a. s -> Step s a
Skip (s -> Maybe s
forall a. a -> Maybe a
Just s
s)
            Step s a
Stop      -> Step (Maybe s) a
forall s a. Step s a
Stop) (Step s a -> Step (Maybe s) a)
-> m (Step s a) -> m (Step (Maybe s) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> State StreamK m a -> s -> m (Step s a)
step State StreamK m a
gst s
st

------------------------------------------------------------------------------
-- Unfolding
------------------------------------------------------------------------------

-- Adapted from vector package

-- | Build a stream by unfolding a /monadic/ step function starting from a
-- seed.  The step function returns the next element in the stream and the next
-- seed value. When it is done it returns 'Nothing' and the stream ends. For
-- example,
--
-- >>> :{
-- let f b =
--         if b > 2
--         then return Nothing
--         else return (Just (b, b + 1))
-- in Stream.fold Fold.toList $ Stream.unfoldrM f 0
-- :}
-- [0,1,2]
--
{-# INLINE_NORMAL unfoldrM #-}
unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
unfoldrM next = unfold (Unfold.unfoldrM next)
#else
unfoldrM :: (s -> m (Maybe (a, s))) -> s -> Stream m a
unfoldrM s -> m (Maybe (a, s))
next = (State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> s -> m (Step s a)
forall p. p -> s -> m (Step s a)
step
  where
    {-# INLINE_LATE step #-}
    step :: p -> s -> m (Step s a)
step p
_ s
st = do
        Maybe (a, s)
r <- s -> m (Maybe (a, s))
next s
st
        Step s a -> m (Step s a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s a -> m (Step s a)) -> Step s a -> m (Step s a)
forall a b. (a -> b) -> a -> b
$ case Maybe (a, s)
r of
            Just (a
x, s
s) -> a -> s -> Step s a
forall s a. a -> s -> Step s a
Yield a
x s
s
            Maybe (a, s)
Nothing     -> Step s a
forall s a. Step s a
Stop
#endif

-- |
-- >>> :{
-- unfoldr step s =
--     case step s of
--         Nothing -> Stream.nil
--         Just (a, b) -> a `Stream.cons` unfoldr step b
-- :}
--
-- Build a stream by unfolding a /pure/ step function @step@ starting from a
-- seed @s@.  The step function returns the next element in the stream and the
-- next seed value. When it is done it returns 'Nothing' and the stream ends.
-- For example,
--
-- >>> :{
-- let f b =
--         if b > 2
--         then Nothing
--         else Just (b, b + 1)
-- in Stream.fold Fold.toList $ Stream.unfoldr f 0
-- :}
-- [0,1,2]
--
{-# INLINE_LATE unfoldr #-}
unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Stream m a
unfoldr :: (s -> Maybe (a, s)) -> s -> Stream m a
unfoldr s -> Maybe (a, s)
f = (s -> m (Maybe (a, s))) -> s -> Stream m a
forall (m :: * -> *) s a.
Monad m =>
(s -> m (Maybe (a, s))) -> s -> Stream m a
unfoldrM (Maybe (a, s) -> m (Maybe (a, s))
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (a, s) -> m (Maybe (a, s)))
-> (s -> Maybe (a, s)) -> s -> m (Maybe (a, s))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> Maybe (a, s)
f)

------------------------------------------------------------------------------
-- From values
------------------------------------------------------------------------------

-- |
-- >>> repeatM = Stream.sequence . Stream.repeat
-- >>> repeatM = fix . Stream.consM
-- >>> repeatM = cycle1 . Stream.fromEffect
--
-- Generate a stream by repeatedly executing a monadic action forever.
--
-- >>> :{
-- repeatAction =
--        Stream.repeatM (threadDelay 1000000 >> print 1)
--      & Stream.take 10
--      & Stream.fold Fold.drain
-- :}
--
{-# INLINE_NORMAL repeatM #-}
repeatM :: Monad m => m a -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
repeatM = unfold Unfold.repeatM
#else
repeatM :: m a -> Stream m a
repeatM m a
x = (State StreamK m a -> () -> m (Step () a)) -> () -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream (\State StreamK m a
_ ()
_ -> m a
x m a -> (a -> m (Step () a)) -> m (Step () a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \a
r -> Step () a -> m (Step () a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step () a -> m (Step () a)) -> Step () a -> m (Step () a)
forall a b. (a -> b) -> a -> b
$ a -> () -> Step () a
forall s a. a -> s -> Step s a
Yield a
r ()) ()
#endif

-- |
-- Generate an infinite stream by repeating a pure value.
--
-- >>> repeat x = Stream.repeatM (pure x)
--
{-# INLINE_NORMAL repeat #-}
repeat :: Monad m => a -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
repeat x = repeatM (pure x)
#else
repeat :: a -> Stream m a
repeat a
x = (State StreamK m a -> () -> m (Step () a)) -> () -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream (\State StreamK m a
_ ()
_ -> Step () a -> m (Step () a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step () a -> m (Step () a)) -> Step () a -> m (Step () a)
forall a b. (a -> b) -> a -> b
$ a -> () -> Step () a
forall s a. a -> s -> Step s a
Yield a
x ()) ()
#endif

-- Adapted from the vector package

-- |
-- >>> replicateM n = Stream.sequence . Stream.replicate n
--
-- Generate a stream by performing a monadic action @n@ times.
{-# INLINE_NORMAL replicateM #-}
replicateM :: Monad m => Int -> m a -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
replicateM n p = unfold Unfold.replicateM (n, p)
#else
replicateM :: Int -> m a -> Stream m a
replicateM Int
n m a
p = (State StreamK m a -> Int -> m (Step Int a)) -> Int -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> Int -> m (Step Int a)
forall p. p -> Int -> m (Step Int a)
step Int
n
  where
    {-# INLINE_LATE step #-}
    step :: p -> Int -> m (Step Int a)
step p
_ (Int
i :: Int)
      | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0    = Step Int a -> m (Step Int a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step Int a
forall s a. Step s a
Stop
      | Bool
otherwise = do
          a
x <- m a
p
          Step Int a -> m (Step Int a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step Int a -> m (Step Int a)) -> Step Int a -> m (Step Int a)
forall a b. (a -> b) -> a -> b
$ a -> Int -> Step Int a
forall s a. a -> s -> Step s a
Yield a
x (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
#endif

-- |
-- >>> replicate n = Stream.take n . Stream.repeat
-- >>> replicate n x = Stream.replicateM n (pure x)
--
-- Generate a stream of length @n@ by repeating a value @n@ times.
--
{-# INLINE_NORMAL replicate #-}
replicate :: Monad m => Int -> a -> Stream m a
replicate :: Int -> a -> Stream m a
replicate Int
n a
x = Int -> m a -> Stream m a
forall (m :: * -> *) a. Monad m => Int -> m a -> Stream m a
replicateM Int
n (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x)

------------------------------------------------------------------------------
-- Enumeration of Num
------------------------------------------------------------------------------

-- | For floating point numbers if the increment is less than the precision then
-- it just gets lost. Therefore we cannot always increment it correctly by just
-- repeated addition.
-- 9007199254740992 + 1 + 1 :: Double => 9.007199254740992e15
-- 9007199254740992 + 2     :: Double => 9.007199254740994e15
--
-- Instead we accumulate the increment counter and compute the increment
-- every time before adding it to the starting number.
--
-- This works for Integrals as well as floating point numbers, but
-- enumerateFromStepIntegral is faster for integrals.
{-# INLINE_NORMAL enumerateFromStepNum #-}
enumerateFromStepNum :: (Monad m, Num a) => a -> a -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
enumerateFromStepNum from stride =
    unfold Unfold.enumerateFromStepNum (from, stride)
#else
enumerateFromStepNum :: a -> a -> Stream m a
enumerateFromStepNum a
from a
stride = (State StreamK m a -> a -> m (Step a a)) -> a -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> a -> m (Step a a)
forall (m :: * -> *) p. Monad m => p -> a -> m (Step a a)
step a
0
    where
    {-# INLINE_LATE step #-}
    step :: p -> a -> m (Step a a)
step p
_ !a
i = Step a a -> m (Step a a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step a a -> m (Step a a)) -> Step a a -> m (Step a a)
forall a b. (a -> b) -> a -> b
$ (a -> a -> Step a a
forall s a. a -> s -> Step s a
Yield (a -> a -> Step a a) -> a -> a -> Step a a
forall a b. (a -> b) -> a -> b
$! (a
from a -> a -> a
forall a. Num a => a -> a -> a
+ a
i a -> a -> a
forall a. Num a => a -> a -> a
* a
stride)) (a -> Step a a) -> a -> Step a a
forall a b. (a -> b) -> a -> b
$! (a
i a -> a -> a
forall a. Num a => a -> a -> a
+ a
1)
#endif

{-# INLINE_NORMAL enumerateFromNum #-}
enumerateFromNum :: (Monad m, Num a) => a -> Stream m a
enumerateFromNum :: a -> Stream m a
enumerateFromNum a
from = a -> a -> Stream m a
forall (m :: * -> *) a. (Monad m, Num a) => a -> a -> Stream m a
enumerateFromStepNum a
from a
1

{-# INLINE_NORMAL enumerateFromThenNum #-}
enumerateFromThenNum :: (Monad m, Num a) => a -> a -> Stream m a
enumerateFromThenNum :: a -> a -> Stream m a
enumerateFromThenNum a
from a
next = a -> a -> Stream m a
forall (m :: * -> *) a. (Monad m, Num a) => a -> a -> Stream m a
enumerateFromStepNum a
from (a
next a -> a -> a
forall a. Num a => a -> a -> a
- a
from)

------------------------------------------------------------------------------
-- Enumeration of Integrals
------------------------------------------------------------------------------

#ifndef USE_UNFOLDS_EVERYWHERE
data EnumState a = EnumInit | EnumYield a a a | EnumStop

{-# INLINE_NORMAL enumerateFromThenToIntegralUp #-}
enumerateFromThenToIntegralUp
    :: (Monad m, Integral a)
    => a -> a -> a -> Stream m a
enumerateFromThenToIntegralUp :: a -> a -> a -> Stream m a
enumerateFromThenToIntegralUp a
from a
next a
to = (State StreamK m a -> EnumState a -> m (Step (EnumState a) a))
-> EnumState a -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> EnumState a -> m (Step (EnumState a) a)
forall (m :: * -> *) p.
Monad m =>
p -> EnumState a -> m (Step (EnumState a) a)
step EnumState a
forall a. EnumState a
EnumInit
    where
    {-# INLINE_LATE step #-}
    step :: p -> EnumState a -> m (Step (EnumState a) a)
step p
_ EnumState a
EnumInit =
        Step (EnumState a) a -> m (Step (EnumState a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (EnumState a) a -> m (Step (EnumState a) a))
-> Step (EnumState a) a -> m (Step (EnumState a) a)
forall a b. (a -> b) -> a -> b
$
            if a
to a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< a
next
            then if a
to a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< a
from
                 then Step (EnumState a) a
forall s a. Step s a
Stop
                 else a -> EnumState a -> Step (EnumState a) a
forall s a. a -> s -> Step s a
Yield a
from EnumState a
forall a. EnumState a
EnumStop
            else -- from <= next <= to
                let stride :: a
stride = a
next a -> a -> a
forall a. Num a => a -> a -> a
- a
from
                in EnumState a -> Step (EnumState a) a
forall s a. s -> Step s a
Skip (EnumState a -> Step (EnumState a) a)
-> EnumState a -> Step (EnumState a) a
forall a b. (a -> b) -> a -> b
$ a -> a -> a -> EnumState a
forall a. a -> a -> a -> EnumState a
EnumYield a
from a
stride (a
to a -> a -> a
forall a. Num a => a -> a -> a
- a
stride)

    step p
_ (EnumYield a
x a
stride a
toMinus) =
        Step (EnumState a) a -> m (Step (EnumState a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (EnumState a) a -> m (Step (EnumState a) a))
-> Step (EnumState a) a -> m (Step (EnumState a) a)
forall a b. (a -> b) -> a -> b
$
            if a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> a
toMinus
            then a -> EnumState a -> Step (EnumState a) a
forall s a. a -> s -> Step s a
Yield a
x EnumState a
forall a. EnumState a
EnumStop
            else a -> EnumState a -> Step (EnumState a) a
forall s a. a -> s -> Step s a
Yield a
x (EnumState a -> Step (EnumState a) a)
-> EnumState a -> Step (EnumState a) a
forall a b. (a -> b) -> a -> b
$ a -> a -> a -> EnumState a
forall a. a -> a -> a -> EnumState a
EnumYield (a
x a -> a -> a
forall a. Num a => a -> a -> a
+ a
stride) a
stride a
toMinus

    step p
_ EnumState a
EnumStop = Step (EnumState a) a -> m (Step (EnumState a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (EnumState a) a
forall s a. Step s a
Stop

{-# INLINE_NORMAL enumerateFromThenToIntegralDn #-}
enumerateFromThenToIntegralDn
    :: (Monad m, Integral a)
    => a -> a -> a -> Stream m a
enumerateFromThenToIntegralDn :: a -> a -> a -> Stream m a
enumerateFromThenToIntegralDn a
from a
next a
to = (State StreamK m a -> EnumState a -> m (Step (EnumState a) a))
-> EnumState a -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> EnumState a -> m (Step (EnumState a) a)
forall (m :: * -> *) p.
Monad m =>
p -> EnumState a -> m (Step (EnumState a) a)
step EnumState a
forall a. EnumState a
EnumInit
    where
    {-# INLINE_LATE step #-}
    step :: p -> EnumState a -> m (Step (EnumState a) a)
step p
_ EnumState a
EnumInit =
        Step (EnumState a) a -> m (Step (EnumState a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (EnumState a) a -> m (Step (EnumState a) a))
-> Step (EnumState a) a -> m (Step (EnumState a) a)
forall a b. (a -> b) -> a -> b
$ if a
to a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> a
next
            then if a
to a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> a
from
                 then Step (EnumState a) a
forall s a. Step s a
Stop
                 else a -> EnumState a -> Step (EnumState a) a
forall s a. a -> s -> Step s a
Yield a
from EnumState a
forall a. EnumState a
EnumStop
            else -- from >= next >= to
                let stride :: a
stride = a
next a -> a -> a
forall a. Num a => a -> a -> a
- a
from
                in EnumState a -> Step (EnumState a) a
forall s a. s -> Step s a
Skip (EnumState a -> Step (EnumState a) a)
-> EnumState a -> Step (EnumState a) a
forall a b. (a -> b) -> a -> b
$ a -> a -> a -> EnumState a
forall a. a -> a -> a -> EnumState a
EnumYield a
from a
stride (a
to a -> a -> a
forall a. Num a => a -> a -> a
- a
stride)

    step p
_ (EnumYield a
x a
stride a
toMinus) =
        Step (EnumState a) a -> m (Step (EnumState a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (EnumState a) a -> m (Step (EnumState a) a))
-> Step (EnumState a) a -> m (Step (EnumState a) a)
forall a b. (a -> b) -> a -> b
$
            if a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< a
toMinus
            then a -> EnumState a -> Step (EnumState a) a
forall s a. a -> s -> Step s a
Yield a
x EnumState a
forall a. EnumState a
EnumStop
            else a -> EnumState a -> Step (EnumState a) a
forall s a. a -> s -> Step s a
Yield a
x (EnumState a -> Step (EnumState a) a)
-> EnumState a -> Step (EnumState a) a
forall a b. (a -> b) -> a -> b
$ a -> a -> a -> EnumState a
forall a. a -> a -> a -> EnumState a
EnumYield (a
x a -> a -> a
forall a. Num a => a -> a -> a
+ a
stride) a
stride a
toMinus

    step p
_ EnumState a
EnumStop = Step (EnumState a) a -> m (Step (EnumState a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (EnumState a) a
forall s a. Step s a
Stop
#endif

-- XXX This can perhaps be simplified and written in terms of
-- enumeratFromStepIntegral as we have done in unfolds.

-- | Enumerate an 'Integral' type in steps up to a given limit.
-- @enumerateFromThenToIntegral from then to@ generates a finite stream whose
-- first element is @from@, the second element is @then@ and the successive
-- elements are in increments of @then - from@ up to @to@.
--
-- >>> Stream.fold Fold.toList $ Stream.enumerateFromThenToIntegral 0 2 6
-- [0,2,4,6]
--
-- >>> Stream.fold Fold.toList $ Stream.enumerateFromThenToIntegral 0 (-2) (-6)
-- [0,-2,-4,-6]
--
{-# INLINE_NORMAL enumerateFromThenToIntegral #-}
enumerateFromThenToIntegral
    :: (Monad m, Integral a)
    => a -> a -> a -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
enumerateFromThenToIntegral from next to =
    unfold Unfold.enumerateFromThenToIntegral (from, next, to)
#else
enumerateFromThenToIntegral :: a -> a -> a -> Stream m a
enumerateFromThenToIntegral a
from a
next a
to
    | a
next a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
from = a -> a -> a -> Stream m a
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> a -> Stream m a
enumerateFromThenToIntegralUp a
from a
next a
to
    | Bool
otherwise    = a -> a -> a -> Stream m a
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> a -> Stream m a
enumerateFromThenToIntegralDn a
from a
next a
to
#endif

-- | Enumerate an 'Integral' type in steps. @enumerateFromThenIntegral from
-- then@ generates a stream whose first element is @from@, the second element
-- is @then@ and the successive elements are in increments of @then - from@.
-- The stream is bounded by the size of the 'Integral' type.
--
-- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromThenIntegral (0 :: Int) 2
-- [0,2,4,6]
--
-- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromThenIntegral (0 :: Int) (-2)
-- [0,-2,-4,-6]
--
{-# INLINE_NORMAL enumerateFromThenIntegral #-}
enumerateFromThenIntegral
    :: (Monad m, Integral a, Bounded a)
    => a -> a -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
enumerateFromThenIntegral from next =
    unfold Unfold.enumerateFromThenIntegralBounded (from, next)
#else
enumerateFromThenIntegral :: a -> a -> Stream m a
enumerateFromThenIntegral a
from a
next =
    if a
next a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> a
from
    then a -> a -> a -> Stream m a
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> a -> Stream m a
enumerateFromThenToIntegralUp a
from a
next a
forall a. Bounded a => a
maxBound
    else a -> a -> a -> Stream m a
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> a -> Stream m a
enumerateFromThenToIntegralDn a
from a
next a
forall a. Bounded a => a
minBound
#endif

-- | @enumerateFromStepIntegral from step@ generates an infinite stream whose
-- first element is @from@ and the successive elements are in increments of
-- @step@.
--
-- CAUTION: This function is not safe for finite integral types. It does not
-- check for overflow, underflow or bounds.
--
-- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromStepIntegral 0 2
-- [0,2,4,6]
--
-- >>> Stream.fold Fold.toList $ Stream.take 3 $ Stream.enumerateFromStepIntegral 0 (-2)
-- [0,-2,-4]
--
{-# INLINE_NORMAL enumerateFromStepIntegral #-}
enumerateFromStepIntegral :: (Integral a, Monad m) => a -> a -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
enumerateFromStepIntegral from stride =
    unfold Unfold.enumerateFromStepIntegral (from, stride)
#else
enumerateFromStepIntegral :: a -> a -> Stream m a
enumerateFromStepIntegral a
from a
stride =
    a
from a -> Stream m a -> Stream m a
`seq` a
stride a -> Stream m a -> Stream m a
`seq` (State StreamK m a -> a -> m (Step a a)) -> a -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> a -> m (Step a a)
forall (m :: * -> *) p. Monad m => p -> a -> m (Step a a)
step a
from
    where
        {-# INLINE_LATE step #-}
        step :: p -> a -> m (Step a a)
step p
_ !a
x = Step a a -> m (Step a a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step a a -> m (Step a a)) -> Step a a -> m (Step a a)
forall a b. (a -> b) -> a -> b
$ a -> a -> Step a a
forall s a. a -> s -> Step s a
Yield a
x (a -> Step a a) -> a -> Step a a
forall a b. (a -> b) -> a -> b
$! (a
x a -> a -> a
forall a. Num a => a -> a -> a
+ a
stride)
#endif

-- | Enumerate an 'Integral' type up to a given limit.
-- @enumerateFromToIntegral from to@ generates a finite stream whose first
-- element is @from@ and successive elements are in increments of @1@ up to
-- @to@.
--
-- >>> Stream.fold Fold.toList $ Stream.enumerateFromToIntegral 0 4
-- [0,1,2,3,4]
--
{-# INLINE enumerateFromToIntegral #-}
enumerateFromToIntegral :: (Monad m, Integral a) => a -> a -> Stream m a
enumerateFromToIntegral :: a -> a -> Stream m a
enumerateFromToIntegral a
from a
to =
    (a -> Bool) -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Stream m a -> Stream m a
takeWhile (a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to) (Stream m a -> Stream m a) -> Stream m a -> Stream m a
forall a b. (a -> b) -> a -> b
$ a -> a -> Stream m a
forall a (m :: * -> *).
(Integral a, Monad m) =>
a -> a -> Stream m a
enumerateFromStepIntegral a
from a
1

-- | Enumerate an 'Integral' type. @enumerateFromIntegral from@ generates a
-- stream whose first element is @from@ and the successive elements are in
-- increments of @1@. The stream is bounded by the size of the 'Integral' type.
--
-- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromIntegral (0 :: Int)
-- [0,1,2,3]
--
{-# INLINE enumerateFromIntegral #-}
enumerateFromIntegral :: (Monad m, Integral a, Bounded a) => a -> Stream m a
enumerateFromIntegral :: a -> Stream m a
enumerateFromIntegral a
from = a -> a -> Stream m a
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> Stream m a
enumerateFromToIntegral a
from a
forall a. Bounded a => a
maxBound

------------------------------------------------------------------------------
-- Enumeration of Fractionals
------------------------------------------------------------------------------

-- We cannot write a general function for Num.  The only way to write code
-- portable between the two is to use a 'Real' constraint and convert between
-- Fractional and Integral using fromRational which is horribly slow.

-- Even though the underlying implementation of enumerateFromFractional and
-- enumerateFromThenFractional works for any 'Num' we have restricted these to
-- 'Fractional' because these do not perform any bounds check, in contrast to
-- integral versions and are therefore not equivalent substitutes for those.

-- | Numerically stable enumeration from a 'Fractional' number in steps of size
-- @1@. @enumerateFromFractional from@ generates a stream whose first element
-- is @from@ and the successive elements are in increments of @1@.  No overflow
-- or underflow checks are performed.
--
-- This is the equivalent to 'enumFrom' for 'Fractional' types. For example:
--
-- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromFractional 1.1
-- [1.1,2.1,3.1,4.1]
--
{-# INLINE enumerateFromFractional #-}
enumerateFromFractional :: (Monad m, Fractional a) => a -> Stream m a
enumerateFromFractional :: a -> Stream m a
enumerateFromFractional = a -> Stream m a
forall (m :: * -> *) a. (Monad m, Num a) => a -> Stream m a
enumerateFromNum

-- | Numerically stable enumeration from a 'Fractional' number in steps.
-- @enumerateFromThenFractional from then@ generates a stream whose first
-- element is @from@, the second element is @then@ and the successive elements
-- are in increments of @then - from@.  No overflow or underflow checks are
-- performed.
--
-- This is the equivalent of 'enumFromThen' for 'Fractional' types. For
-- example:
--
-- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromThenFractional 1.1 2.1
-- [1.1,2.1,3.1,4.1]
--
-- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromThenFractional 1.1 (-2.1)
-- [1.1,-2.1,-5.300000000000001,-8.500000000000002]
--
{-# INLINE enumerateFromThenFractional #-}
enumerateFromThenFractional
    :: (Monad m, Fractional a)
    => a -> a -> Stream m a
enumerateFromThenFractional :: a -> a -> Stream m a
enumerateFromThenFractional = a -> a -> Stream m a
forall (m :: * -> *) a. (Monad m, Num a) => a -> a -> Stream m a
enumerateFromThenNum

-- | Numerically stable enumeration from a 'Fractional' number to a given
-- limit.  @enumerateFromToFractional from to@ generates a finite stream whose
-- first element is @from@ and successive elements are in increments of @1@ up
-- to @to@.
--
-- This is the equivalent of 'enumFromTo' for 'Fractional' types. For
-- example:
--
-- >>> Stream.fold Fold.toList $ Stream.enumerateFromToFractional 1.1 4
-- [1.1,2.1,3.1,4.1]
--
-- >>> Stream.fold Fold.toList $ Stream.enumerateFromToFractional 1.1 4.6
-- [1.1,2.1,3.1,4.1,5.1]
--
-- Notice that the last element is equal to the specified @to@ value after
-- rounding to the nearest integer.
--
{-# INLINE_NORMAL enumerateFromToFractional #-}
enumerateFromToFractional
    :: (Monad m, Fractional a, Ord a)
    => a -> a -> Stream m a
enumerateFromToFractional :: a -> a -> Stream m a
enumerateFromToFractional a
from a
to =
    (a -> Bool) -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Stream m a -> Stream m a
takeWhile (a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to a -> a -> a
forall a. Num a => a -> a -> a
+ a
1 a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
2) (Stream m a -> Stream m a) -> Stream m a -> Stream m a
forall a b. (a -> b) -> a -> b
$ a -> a -> Stream m a
forall (m :: * -> *) a. (Monad m, Num a) => a -> a -> Stream m a
enumerateFromStepNum a
from a
1

-- | Numerically stable enumeration from a 'Fractional' number in steps up to a
-- given limit.  @enumerateFromThenToFractional from then to@ generates a
-- finite stream whose first element is @from@, the second element is @then@
-- and the successive elements are in increments of @then - from@ up to @to@.
--
-- This is the equivalent of 'enumFromThenTo' for 'Fractional' types. For
-- example:
--
-- >>> Stream.fold Fold.toList $ Stream.enumerateFromThenToFractional 0.1 2 6
-- [0.1,2.0,3.9,5.799999999999999]
--
-- >>> Stream.fold Fold.toList $ Stream.enumerateFromThenToFractional 0.1 (-2) (-6)
-- [0.1,-2.0,-4.1000000000000005,-6.200000000000001]
--
{-# INLINE_NORMAL enumerateFromThenToFractional #-}
enumerateFromThenToFractional
    :: (Monad m, Fractional a, Ord a)
    => a -> a -> a -> Stream m a
enumerateFromThenToFractional :: a -> a -> a -> Stream m a
enumerateFromThenToFractional a
from a
next a
to =
    (a -> Bool) -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Stream m a -> Stream m a
takeWhile a -> Bool
predicate (Stream m a -> Stream m a) -> Stream m a -> Stream m a
forall a b. (a -> b) -> a -> b
$ a -> a -> Stream m a
forall (m :: * -> *) a.
(Monad m, Fractional a) =>
a -> a -> Stream m a
enumerateFromThenFractional a
from a
next
    where
    mid :: a
mid = (a
next a -> a -> a
forall a. Num a => a -> a -> a
- a
from) a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
2
    predicate :: a -> Bool
predicate | a
next a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
from  = (a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to a -> a -> a
forall a. Num a => a -> a -> a
+ a
mid)
              | Bool
otherwise     = (a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
to a -> a -> a
forall a. Num a => a -> a -> a
+ a
mid)

-------------------------------------------------------------------------------
-- Enumeration of Enum types not larger than Int
-------------------------------------------------------------------------------
--
-- | 'enumerateFromTo' for 'Enum' types not larger than 'Int'.
--
{-# INLINE enumerateFromToSmall #-}
enumerateFromToSmall :: (Monad m, Enum a) => a -> a -> Stream m a
enumerateFromToSmall :: a -> a -> Stream m a
enumerateFromToSmall a
from a
to =
      (Int -> a) -> Stream m Int -> Stream m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> a
forall a. Enum a => Int -> a
toEnum
    (Stream m Int -> Stream m a) -> Stream m Int -> Stream m a
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Stream m Int
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> Stream m a
enumerateFromToIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
from) (a -> Int
forall a. Enum a => a -> Int
fromEnum a
to)

-- | 'enumerateFromThenTo' for 'Enum' types not larger than 'Int'.
--
{-# INLINE enumerateFromThenToSmall #-}
enumerateFromThenToSmall :: (Monad m, Enum a)
    => a -> a -> a -> Stream m a
enumerateFromThenToSmall :: a -> a -> a -> Stream m a
enumerateFromThenToSmall a
from a
next a
to =
          (Int -> a) -> Stream m Int -> Stream m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> a
forall a. Enum a => Int -> a
toEnum
        (Stream m Int -> Stream m a) -> Stream m Int -> Stream m a
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Int -> Stream m Int
forall (m :: * -> *) a.
(Monad m, Integral a) =>
a -> a -> a -> Stream m a
enumerateFromThenToIntegral
            (a -> Int
forall a. Enum a => a -> Int
fromEnum a
from) (a -> Int
forall a. Enum a => a -> Int
fromEnum a
next) (a -> Int
forall a. Enum a => a -> Int
fromEnum a
to)

-- | 'enumerateFromThen' for 'Enum' types not larger than 'Int'.
--
-- Note: We convert the 'Enum' to 'Int' and enumerate the 'Int'. If a
-- type is bounded but does not have a 'Bounded' instance then we can go on
-- enumerating it beyond the legal values of the type, resulting in the failure
-- of 'toEnum' when converting back to 'Enum'. Therefore we require a 'Bounded'
-- instance for this function to be safely used.
--
{-# INLINE enumerateFromThenSmallBounded #-}
enumerateFromThenSmallBounded :: (Monad m, Enumerable a, Bounded a)
    => a -> a -> Stream m a
enumerateFromThenSmallBounded :: a -> a -> Stream m a
enumerateFromThenSmallBounded a
from a
next =
    if a -> Int
forall a. Enum a => a -> Int
fromEnum a
next Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= a -> Int
forall a. Enum a => a -> Int
fromEnum a
from
    then a -> a -> a -> Stream m a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
a -> a -> a -> Stream m a
enumerateFromThenTo a
from a
next a
forall a. Bounded a => a
maxBound
    else a -> a -> a -> Stream m a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
a -> a -> a -> Stream m a
enumerateFromThenTo a
from a
next a
forall a. Bounded a => a
minBound

-------------------------------------------------------------------------------
-- Enumerable type class
-------------------------------------------------------------------------------
--
-- NOTE: We would like to rewrite calls to fromList [1..] etc. to stream
-- enumerations like this:
--
-- {-# RULES "fromList enumFrom" [1]
--     forall (a :: Int). D.fromList (enumFrom a) = D.enumerateFromIntegral a #-}
--
-- But this does not work because enumFrom is a class method and GHC rewrites
-- it quickly, so we do not get a chance to have our rule fired.

-- | Types that can be enumerated as a stream. The operations in this type
-- class are equivalent to those in the 'Enum' type class, except that these
-- generate a stream instead of a list. Use the functions in
-- "Streamly.Internal.Data.Stream.Enumeration" module to define new instances.
--
class Enum a => Enumerable a where
    -- | @enumerateFrom from@ generates a stream starting with the element
    -- @from@, enumerating up to 'maxBound' when the type is 'Bounded' or
    -- generating an infinite stream when the type is not 'Bounded'.
    --
    -- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFrom (0 :: Int)
    -- [0,1,2,3]
    --
    -- For 'Fractional' types, enumeration is numerically stable. However, no
    -- overflow or underflow checks are performed.
    --
    -- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFrom 1.1
    -- [1.1,2.1,3.1,4.1]
    --
    enumerateFrom :: (Monad m) => a -> Stream m a

    -- | Generate a finite stream starting with the element @from@, enumerating
    -- the type up to the value @to@. If @to@ is smaller than @from@ then an
    -- empty stream is returned.
    --
    -- >>> Stream.fold Fold.toList $ Stream.enumerateFromTo 0 4
    -- [0,1,2,3,4]
    --
    -- For 'Fractional' types, the last element is equal to the specified @to@
    -- value after rounding to the nearest integral value.
    --
    -- >>> Stream.fold Fold.toList $ Stream.enumerateFromTo 1.1 4
    -- [1.1,2.1,3.1,4.1]
    --
    -- >>> Stream.fold Fold.toList $ Stream.enumerateFromTo 1.1 4.6
    -- [1.1,2.1,3.1,4.1,5.1]
    --
    enumerateFromTo :: (Monad m) => a -> a -> Stream m a

    -- | @enumerateFromThen from then@ generates a stream whose first element
    -- is @from@, the second element is @then@ and the successive elements are
    -- in increments of @then - from@.  Enumeration can occur downwards or
    -- upwards depending on whether @then@ comes before or after @from@. For
    -- 'Bounded' types the stream ends when 'maxBound' is reached, for
    -- unbounded types it keeps enumerating infinitely.
    --
    -- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromThen 0 2
    -- [0,2,4,6]
    --
    -- >>> Stream.fold Fold.toList $ Stream.take 4 $ Stream.enumerateFromThen 0 (-2)
    -- [0,-2,-4,-6]
    --
    enumerateFromThen :: (Monad m) => a -> a -> Stream m a

    -- | @enumerateFromThenTo from then to@ generates a finite stream whose
    -- first element is @from@, the second element is @then@ and the successive
    -- elements are in increments of @then - from@ up to @to@. Enumeration can
    -- occur downwards or upwards depending on whether @then@ comes before or
    -- after @from@.
    --
    -- >>> Stream.fold Fold.toList $ Stream.enumerateFromThenTo 0 2 6
    -- [0,2,4,6]
    --
    -- >>> Stream.fold Fold.toList $ Stream.enumerateFromThenTo 0 (-2) (-6)
    -- [0,-2,-4,-6]
    --
    enumerateFromThenTo :: (Monad m) => a -> a -> a -> Stream m a

-- MAYBE: Sometimes it is more convenient to know the count rather then the
-- ending or starting element. For those cases we can define the folllowing
-- APIs. All of these will work only for bounded types if we represent the
-- count by Int.
--
-- enumerateN
-- enumerateFromN
-- enumerateToN
-- enumerateFromStep
-- enumerateFromStepN

-------------------------------------------------------------------------------
-- Convenient functions for bounded types
-------------------------------------------------------------------------------
--
-- |
-- > enumerate = enumerateFrom minBound
--
-- Enumerate a 'Bounded' type from its 'minBound' to 'maxBound'
--
{-# INLINE enumerate #-}
enumerate :: (Monad m, Bounded a, Enumerable a) => Stream m a
enumerate :: Stream m a
enumerate = a -> Stream m a
forall a (m :: * -> *). (Enumerable a, Monad m) => a -> Stream m a
enumerateFrom a
forall a. Bounded a => a
minBound

-- |
-- >>> enumerateTo = Stream.enumerateFromTo minBound
--
-- Enumerate a 'Bounded' type from its 'minBound' to specified value.
--
{-# INLINE enumerateTo #-}
enumerateTo :: (Monad m, Bounded a, Enumerable a) => a -> Stream m a
enumerateTo :: a -> Stream m a
enumerateTo = a -> a -> Stream m a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
a -> a -> Stream m a
enumerateFromTo a
forall a. Bounded a => a
minBound

-- |
-- >>> enumerateFromBounded from = Stream.enumerateFromTo from maxBound
--
-- 'enumerateFrom' for 'Bounded' 'Enum' types.
--
{-# INLINE enumerateFromBounded #-}
enumerateFromBounded :: (Monad m, Enumerable a, Bounded a)
    => a -> Stream m a
enumerateFromBounded :: a -> Stream m a
enumerateFromBounded a
from = a -> a -> Stream m a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
a -> a -> Stream m a
enumerateFromTo a
from a
forall a. Bounded a => a
maxBound

-------------------------------------------------------------------------------
-- Enumerable Instances
-------------------------------------------------------------------------------
--
-- For Enum types smaller than or equal to Int size.
#define ENUMERABLE_BOUNDED_SMALL(SMALL_TYPE)           \
instance Enumerable SMALL_TYPE where {                 \
    {-# INLINE enumerateFrom #-};                      \
    enumerateFrom = enumerateFromBounded;              \
    {-# INLINE enumerateFromThen #-};                  \
    enumerateFromThen = enumerateFromThenSmallBounded; \
    {-# INLINE enumerateFromTo #-};                    \
    enumerateFromTo = enumerateFromToSmall;            \
    {-# INLINE enumerateFromThenTo #-};                \
    enumerateFromThenTo = enumerateFromThenToSmall }

ENUMERABLE_BOUNDED_SMALL(())
ENUMERABLE_BOUNDED_SMALL(Bool)
ENUMERABLE_BOUNDED_SMALL(Ordering)
ENUMERABLE_BOUNDED_SMALL(Char)

-- For bounded Integral Enum types, may be larger than Int.
#define ENUMERABLE_BOUNDED_INTEGRAL(INTEGRAL_TYPE)  \
instance Enumerable INTEGRAL_TYPE where {           \
    {-# INLINE enumerateFrom #-};                   \
    enumerateFrom = enumerateFromIntegral;          \
    {-# INLINE enumerateFromThen #-};               \
    enumerateFromThen = enumerateFromThenIntegral;  \
    {-# INLINE enumerateFromTo #-};                 \
    enumerateFromTo = enumerateFromToIntegral;      \
    {-# INLINE enumerateFromThenTo #-};             \
    enumerateFromThenTo = enumerateFromThenToIntegral }

ENUMERABLE_BOUNDED_INTEGRAL(Int)
ENUMERABLE_BOUNDED_INTEGRAL(Int8)
ENUMERABLE_BOUNDED_INTEGRAL(Int16)
ENUMERABLE_BOUNDED_INTEGRAL(Int32)
ENUMERABLE_BOUNDED_INTEGRAL(Int64)
ENUMERABLE_BOUNDED_INTEGRAL(Word)
ENUMERABLE_BOUNDED_INTEGRAL(Word8)
ENUMERABLE_BOUNDED_INTEGRAL(Word16)
ENUMERABLE_BOUNDED_INTEGRAL(Word32)
ENUMERABLE_BOUNDED_INTEGRAL(Word64)

-- For unbounded Integral Enum types.
#define ENUMERABLE_UNBOUNDED_INTEGRAL(INTEGRAL_TYPE)              \
instance Enumerable INTEGRAL_TYPE where {                         \
    {-# INLINE enumerateFrom #-};                                 \
    enumerateFrom from = enumerateFromStepIntegral from 1;        \
    {-# INLINE enumerateFromThen #-};                             \
    enumerateFromThen from next =                                 \
        enumerateFromStepIntegral from (next - from);             \
    {-# INLINE enumerateFromTo #-};                               \
    enumerateFromTo = enumerateFromToIntegral;                    \
    {-# INLINE enumerateFromThenTo #-};                           \
    enumerateFromThenTo = enumerateFromThenToIntegral }

ENUMERABLE_UNBOUNDED_INTEGRAL(Integer)
ENUMERABLE_UNBOUNDED_INTEGRAL(Natural)

#define ENUMERABLE_FRACTIONAL(FRACTIONAL_TYPE,CONSTRAINT)         \
instance (CONSTRAINT) => Enumerable FRACTIONAL_TYPE where {     \
    {-# INLINE enumerateFrom #-};                                 \
    enumerateFrom = enumerateFromFractional;                      \
    {-# INLINE enumerateFromThen #-};                             \
    enumerateFromThen = enumerateFromThenFractional;              \
    {-# INLINE enumerateFromTo #-};                               \
    enumerateFromTo = enumerateFromToFractional;                  \
    {-# INLINE enumerateFromThenTo #-};                           \
    enumerateFromThenTo = enumerateFromThenToFractional }

ENUMERABLE_FRACTIONAL(Float,)
ENUMERABLE_FRACTIONAL(Double,)
ENUMERABLE_FRACTIONAL((Fixed a),HasResolution a)
ENUMERABLE_FRACTIONAL((Ratio a),Integral a)

instance Enumerable a => Enumerable (Identity a) where
    {-# INLINE enumerateFrom #-}
    enumerateFrom :: Identity a -> Stream m (Identity a)
enumerateFrom (Identity a
from) =
        (a -> Identity a) -> Stream m a -> Stream m (Identity a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Identity a
forall a. a -> Identity a
Identity (Stream m a -> Stream m (Identity a))
-> Stream m a -> Stream m (Identity a)
forall a b. (a -> b) -> a -> b
$ a -> Stream m a
forall a (m :: * -> *). (Enumerable a, Monad m) => a -> Stream m a
enumerateFrom a
from
    {-# INLINE enumerateFromThen #-}
    enumerateFromThen :: Identity a -> Identity a -> Stream m (Identity a)
enumerateFromThen (Identity a
from) (Identity a
next) =
        (a -> Identity a) -> Stream m a -> Stream m (Identity a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Identity a
forall a. a -> Identity a
Identity (Stream m a -> Stream m (Identity a))
-> Stream m a -> Stream m (Identity a)
forall a b. (a -> b) -> a -> b
$ a -> a -> Stream m a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
a -> a -> Stream m a
enumerateFromThen a
from a
next
    {-# INLINE enumerateFromTo #-}
    enumerateFromTo :: Identity a -> Identity a -> Stream m (Identity a)
enumerateFromTo (Identity a
from) (Identity a
to) =
        (a -> Identity a) -> Stream m a -> Stream m (Identity a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Identity a
forall a. a -> Identity a
Identity (Stream m a -> Stream m (Identity a))
-> Stream m a -> Stream m (Identity a)
forall a b. (a -> b) -> a -> b
$ a -> a -> Stream m a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
a -> a -> Stream m a
enumerateFromTo a
from a
to
    {-# INLINE enumerateFromThenTo #-}
    enumerateFromThenTo :: Identity a -> Identity a -> Identity a -> Stream m (Identity a)
enumerateFromThenTo (Identity a
from) (Identity a
next) (Identity a
to) =
          (a -> Identity a) -> Stream m a -> Stream m (Identity a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Identity a
forall a. a -> Identity a
Identity
        (Stream m a -> Stream m (Identity a))
-> Stream m a -> Stream m (Identity a)
forall a b. (a -> b) -> a -> b
$ a -> a -> a -> Stream m a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
a -> a -> a -> Stream m a
enumerateFromThenTo a
from a
next a
to

-- TODO
{-
instance Enumerable a => Enumerable (Last a)
instance Enumerable a => Enumerable (First a)
instance Enumerable a => Enumerable (Max a)
instance Enumerable a => Enumerable (Min a)
instance Enumerable a => Enumerable (Const a b)
instance Enumerable (f a) => Enumerable (Alt f a)
instance Enumerable (f a) => Enumerable (Ap f a)
-}
------------------------------------------------------------------------------
-- Time Enumeration
------------------------------------------------------------------------------

-- | @timesWith g@ returns a stream of time value tuples. The first component
-- of the tuple is an absolute time reference (epoch) denoting the start of the
-- stream and the second component is a time relative to the reference.
--
-- The argument @g@ specifies the granularity of the relative time in seconds.
-- A lower granularity clock gives higher precision but is more expensive in
-- terms of CPU usage. Any granularity lower than 1 ms is treated as 1 ms.
--
-- >>> import Control.Concurrent (threadDelay)
-- >>> f = Fold.drainMapM (\x -> print x >> threadDelay 1000000)
-- >>> Stream.fold f $ Stream.take 3 $ Stream.timesWith 0.01
-- (AbsTime (TimeSpec {sec = ..., nsec = ...}),RelTime64 (NanoSecond64 ...))
-- (AbsTime (TimeSpec {sec = ..., nsec = ...}),RelTime64 (NanoSecond64 ...))
-- (AbsTime (TimeSpec {sec = ..., nsec = ...}),RelTime64 (NanoSecond64 ...))
--
-- Note: This API is not safe on 32-bit machines.
--
-- /Pre-release/
--
{-# INLINE_NORMAL timesWith #-}
timesWith :: MonadIO m => Double -> Stream m (AbsTime, RelTime64)
timesWith :: Double -> Stream m (AbsTime, RelTime64)
timesWith Double
g = (State StreamK m (AbsTime, RelTime64)
 -> Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
 -> m (Step
         (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
         (AbsTime, RelTime64)))
-> Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
-> Stream m (AbsTime, RelTime64)
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m (AbsTime, RelTime64)
-> Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
-> m (Step
        (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
        (AbsTime, RelTime64))
forall (m :: * -> *) p.
MonadIO m =>
p
-> Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
-> m (Step
        (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
        (AbsTime, RelTime64))
step Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
forall a. Maybe a
Nothing

    where

    {-# INLINE_LATE step #-}
    step :: p
-> Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
-> m (Step
        (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
        (AbsTime, RelTime64))
step p
_ Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
Nothing = do
        (ThreadId, IORef MicroSecond64)
clock <- IO (ThreadId, IORef MicroSecond64)
-> m (ThreadId, IORef MicroSecond64)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (ThreadId, IORef MicroSecond64)
 -> m (ThreadId, IORef MicroSecond64))
-> IO (ThreadId, IORef MicroSecond64)
-> m (ThreadId, IORef MicroSecond64)
forall a b. (a -> b) -> a -> b
$ Clock -> Double -> IO (ThreadId, IORef MicroSecond64)
asyncClock Clock
Monotonic Double
g
        MicroSecond64
a <- IO MicroSecond64 -> m MicroSecond64
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO MicroSecond64 -> m MicroSecond64)
-> IO MicroSecond64 -> m MicroSecond64
forall a b. (a -> b) -> a -> b
$ (ThreadId, IORef MicroSecond64) -> IO MicroSecond64
readClock (ThreadId, IORef MicroSecond64)
clock
        Step
  (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
  (AbsTime, RelTime64)
-> m (Step
        (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
        (AbsTime, RelTime64))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step
   (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
   (AbsTime, RelTime64)
 -> m (Step
         (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
         (AbsTime, RelTime64)))
-> Step
     (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
     (AbsTime, RelTime64)
-> m (Step
        (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
        (AbsTime, RelTime64))
forall a b. (a -> b) -> a -> b
$ Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
-> Step
     (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
     (AbsTime, RelTime64)
forall s a. s -> Step s a
Skip (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
 -> Step
      (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
      (AbsTime, RelTime64))
-> Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
-> Step
     (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
     (AbsTime, RelTime64)
forall a b. (a -> b) -> a -> b
$ ((ThreadId, IORef MicroSecond64), MicroSecond64)
-> Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
forall a. a -> Maybe a
Just ((ThreadId, IORef MicroSecond64)
clock, MicroSecond64
a)

    step p
_ s :: Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
s@(Just ((ThreadId, IORef MicroSecond64)
clock, MicroSecond64
t0)) = do
        MicroSecond64
a <- IO MicroSecond64 -> m MicroSecond64
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO MicroSecond64 -> m MicroSecond64)
-> IO MicroSecond64 -> m MicroSecond64
forall a b. (a -> b) -> a -> b
$ (ThreadId, IORef MicroSecond64) -> IO MicroSecond64
readClock (ThreadId, IORef MicroSecond64)
clock
        -- XXX we can perhaps use an AbsTime64 using a 64 bit Int for
        -- efficiency.  or maybe we can use a representation using Double for
        -- floating precision time
        Step
  (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
  (AbsTime, RelTime64)
-> m (Step
        (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
        (AbsTime, RelTime64))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step
   (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
   (AbsTime, RelTime64)
 -> m (Step
         (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
         (AbsTime, RelTime64)))
-> Step
     (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
     (AbsTime, RelTime64)
-> m (Step
        (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
        (AbsTime, RelTime64))
forall a b. (a -> b) -> a -> b
$ (AbsTime, RelTime64)
-> Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
-> Step
     (Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64))
     (AbsTime, RelTime64)
forall s a. a -> s -> Step s a
Yield (MicroSecond64 -> AbsTime
forall a. TimeUnit a => a -> AbsTime
toAbsTime MicroSecond64
t0, MicroSecond64 -> RelTime64
forall a. TimeUnit64 a => a -> RelTime64
toRelTime64 (MicroSecond64
a MicroSecond64 -> MicroSecond64 -> MicroSecond64
forall a. Num a => a -> a -> a
- MicroSecond64
t0)) Maybe ((ThreadId, IORef MicroSecond64), MicroSecond64)
s

-- | @absTimesWith g@ returns a stream of absolute timestamps using a clock of
-- granularity @g@ specified in seconds. A low granularity clock is more
-- expensive in terms of CPU usage.  Any granularity lower than 1 ms is treated
-- as 1 ms.
--
-- >>> f = Fold.drainMapM print
-- >>> Stream.fold f $ Stream.delayPre 1 $ Stream.take 3 $ Stream.absTimesWith 0.01
-- AbsTime (TimeSpec {sec = ..., nsec = ...})
-- AbsTime (TimeSpec {sec = ..., nsec = ...})
-- AbsTime (TimeSpec {sec = ..., nsec = ...})
--
-- Note: This API is not safe on 32-bit machines.
--
-- /Pre-release/
--
{-# INLINE absTimesWith #-}
absTimesWith :: MonadIO m => Double -> Stream m AbsTime
absTimesWith :: Double -> Stream m AbsTime
absTimesWith = ((AbsTime, RelTime64) -> AbsTime)
-> Stream m (AbsTime, RelTime64) -> Stream m AbsTime
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((AbsTime -> RelTime64 -> AbsTime)
-> (AbsTime, RelTime64) -> AbsTime
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry AbsTime -> RelTime64 -> AbsTime
addToAbsTime64) (Stream m (AbsTime, RelTime64) -> Stream m AbsTime)
-> (Double -> Stream m (AbsTime, RelTime64))
-> Double
-> Stream m AbsTime
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Stream m (AbsTime, RelTime64)
forall (m :: * -> *).
MonadIO m =>
Double -> Stream m (AbsTime, RelTime64)
timesWith

-- | @relTimesWith g@ returns a stream of relative time values starting from 0,
-- using a clock of granularity @g@ specified in seconds. A low granularity
-- clock is more expensive in terms of CPU usage.  Any granularity lower than 1
-- ms is treated as 1 ms.
--
-- >>> f = Fold.drainMapM print
-- >>> Stream.fold f $ Stream.delayPre 1 $ Stream.take 3 $ Stream.relTimesWith 0.01
-- RelTime64 (NanoSecond64 ...)
-- RelTime64 (NanoSecond64 ...)
-- RelTime64 (NanoSecond64 ...)
--
-- Note: This API is not safe on 32-bit machines.
--
-- /Pre-release/
--
{-# INLINE relTimesWith #-}
relTimesWith :: MonadIO m => Double -> Stream m RelTime64
relTimesWith :: Double -> Stream m RelTime64
relTimesWith = ((AbsTime, RelTime64) -> RelTime64)
-> Stream m (AbsTime, RelTime64) -> Stream m RelTime64
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (AbsTime, RelTime64) -> RelTime64
forall a b. (a, b) -> b
snd (Stream m (AbsTime, RelTime64) -> Stream m RelTime64)
-> (Double -> Stream m (AbsTime, RelTime64))
-> Double
-> Stream m RelTime64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Stream m (AbsTime, RelTime64)
forall (m :: * -> *).
MonadIO m =>
Double -> Stream m (AbsTime, RelTime64)
timesWith

-- | @times@ returns a stream of time value tuples with clock of 10 ms
-- granularity. The first component of the tuple is an absolute time reference
-- (epoch) denoting the start of the stream and the second component is a time
-- relative to the reference.
--
-- >>> f = Fold.drainMapM (\x -> print x >> threadDelay 1000000)
-- >>> Stream.fold f $ Stream.take 3 $ Stream.times
-- (AbsTime (TimeSpec {sec = ..., nsec = ...}),RelTime64 (NanoSecond64 ...))
-- (AbsTime (TimeSpec {sec = ..., nsec = ...}),RelTime64 (NanoSecond64 ...))
-- (AbsTime (TimeSpec {sec = ..., nsec = ...}),RelTime64 (NanoSecond64 ...))
--
-- Note: This API is not safe on 32-bit machines.
--
-- /Pre-release/
--
{-# INLINE times #-}
times :: MonadIO m => Stream m (AbsTime, RelTime64)
times :: Stream m (AbsTime, RelTime64)
times = Double -> Stream m (AbsTime, RelTime64)
forall (m :: * -> *).
MonadIO m =>
Double -> Stream m (AbsTime, RelTime64)
timesWith Double
0.01

-- | @absTimes@ returns a stream of absolute timestamps using a clock of 10 ms
-- granularity.
--
-- >>> f = Fold.drainMapM print
-- >>> Stream.fold f $ Stream.delayPre 1 $ Stream.take 3 $ Stream.absTimes
-- AbsTime (TimeSpec {sec = ..., nsec = ...})
-- AbsTime (TimeSpec {sec = ..., nsec = ...})
-- AbsTime (TimeSpec {sec = ..., nsec = ...})
--
-- Note: This API is not safe on 32-bit machines.
--
-- /Pre-release/
--
{-# INLINE absTimes #-}
absTimes :: MonadIO m => Stream m AbsTime
absTimes :: Stream m AbsTime
absTimes = ((AbsTime, RelTime64) -> AbsTime)
-> Stream m (AbsTime, RelTime64) -> Stream m AbsTime
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((AbsTime -> RelTime64 -> AbsTime)
-> (AbsTime, RelTime64) -> AbsTime
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry AbsTime -> RelTime64 -> AbsTime
addToAbsTime64) Stream m (AbsTime, RelTime64)
forall (m :: * -> *). MonadIO m => Stream m (AbsTime, RelTime64)
times

-- | @relTimes@ returns a stream of relative time values starting from 0,
-- using a clock of granularity 10 ms.
--
-- >>> f = Fold.drainMapM print
-- >>> Stream.fold f $ Stream.delayPre 1 $ Stream.take 3 $ Stream.relTimes
-- RelTime64 (NanoSecond64 ...)
-- RelTime64 (NanoSecond64 ...)
-- RelTime64 (NanoSecond64 ...)
--
-- Note: This API is not safe on 32-bit machines.
--
-- /Pre-release/
--
{-# INLINE relTimes #-}
relTimes ::  MonadIO m => Stream m RelTime64
relTimes :: Stream m RelTime64
relTimes = ((AbsTime, RelTime64) -> RelTime64)
-> Stream m (AbsTime, RelTime64) -> Stream m RelTime64
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (AbsTime, RelTime64) -> RelTime64
forall a b. (a, b) -> b
snd Stream m (AbsTime, RelTime64)
forall (m :: * -> *). MonadIO m => Stream m (AbsTime, RelTime64)
times

-- | @durations g@ returns a stream of relative time values measuring the time
-- elapsed since the immediate predecessor element of the stream was generated.
-- The first element of the stream is always 0. @durations@ uses a clock of
-- granularity @g@ specified in seconds. A low granularity clock is more
-- expensive in terms of CPU usage. The minimum granularity is 1 millisecond.
-- Durations lower than 1 ms will be 0.
--
-- Note: This API is not safe on 32-bit machines.
--
-- /Unimplemented/
--
{-# INLINE durations #-}
durations :: -- Monad m =>
    Double -> t m RelTime64
durations :: Double -> t m RelTime64
durations = Double -> t m RelTime64
forall a. HasCallStack => a
undefined

-- | Generate a singleton event at or after the specified absolute time. Note
-- that this is different from a threadDelay, a threadDelay starts from the
-- time when the action is evaluated, whereas if we use AbsTime based timeout
-- it will immediately expire if the action is evaluated too late.
--
-- /Unimplemented/
--
{-# INLINE timeout #-}
timeout :: -- Monad m =>
    AbsTime -> t m ()
timeout :: AbsTime -> t m ()
timeout = AbsTime -> t m ()
forall a. HasCallStack => a
undefined

-------------------------------------------------------------------------------
-- From Generators
-------------------------------------------------------------------------------

{-# INLINE_NORMAL fromIndicesM #-}
fromIndicesM :: Monad m => (Int -> m a) -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
fromIndicesM gen = unfold (Unfold.fromIndicesM gen) 0
#else
fromIndicesM :: (Int -> m a) -> Stream m a
fromIndicesM Int -> m a
gen = (State StreamK m a -> Int -> m (Step Int a)) -> Int -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> Int -> m (Step Int a)
forall p. p -> Int -> m (Step Int a)
step Int
0
  where
    {-# INLINE_LATE step #-}
    step :: p -> Int -> m (Step Int a)
step p
_ Int
i = do
       a
x <- Int -> m a
gen Int
i
       Step Int a -> m (Step Int a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step Int a -> m (Step Int a)) -> Step Int a -> m (Step Int a)
forall a b. (a -> b) -> a -> b
$ a -> Int -> Step Int a
forall s a. a -> s -> Step s a
Yield a
x (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
#endif

{-# INLINE fromIndices #-}
fromIndices :: Monad m => (Int -> a) -> Stream m a
fromIndices :: (Int -> a) -> Stream m a
fromIndices Int -> a
gen = (Int -> m a) -> Stream m a
forall (m :: * -> *) a. Monad m => (Int -> m a) -> Stream m a
fromIndicesM (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> m a) -> (Int -> a) -> Int -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a
gen)

-- Adapted from the vector package
{-# INLINE_NORMAL generateM #-}
generateM :: Monad m => Int -> (Int -> m a) -> Stream m a
generateM :: Int -> (Int -> m a) -> Stream m a
generateM Int
n Int -> m a
gen = Int
n Int -> Stream m a -> Stream m a
`seq` (State StreamK m a -> Int -> m (Step Int a)) -> Int -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> Int -> m (Step Int a)
forall p. p -> Int -> m (Step Int a)
step Int
0
  where
    {-# INLINE_LATE step #-}
    step :: p -> Int -> m (Step Int a)
step p
_ Int
i | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n     = do
                           a
x <- Int -> m a
gen Int
i
                           Step Int a -> m (Step Int a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step Int a -> m (Step Int a)) -> Step Int a -> m (Step Int a)
forall a b. (a -> b) -> a -> b
$ a -> Int -> Step Int a
forall s a. a -> s -> Step s a
Yield a
x (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
             | Bool
otherwise = Step Int a -> m (Step Int a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step Int a
forall s a. Step s a
Stop

{-# INLINE generate #-}
generate :: Monad m => Int -> (Int -> a) -> Stream m a
generate :: Int -> (Int -> a) -> Stream m a
generate Int
n Int -> a
gen = Int -> (Int -> m a) -> Stream m a
forall (m :: * -> *) a.
Monad m =>
Int -> (Int -> m a) -> Stream m a
generateM Int
n (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> m a) -> (Int -> a) -> Int -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a
gen)

-------------------------------------------------------------------------------
-- Iteration
-------------------------------------------------------------------------------

-- |
-- >>> iterateM f m = m >>= \a -> return a `Stream.consM` iterateM f (f a)
--
-- Generate an infinite stream with the first element generated by the action
-- @m@ and each successive element derived by applying the monadic function
-- @f@ on the previous element.
--
-- >>> :{
-- Stream.iterateM (\x -> print x >> return (x + 1)) (return 0)
--     & Stream.take 3
--     & Stream.fold Fold.toList
-- :}
-- 0
-- 1
-- [0,1,2]
--
{-# INLINE_NORMAL iterateM #-}
iterateM :: Monad m => (a -> m a) -> m a -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
iterateM step = unfold (Unfold.iterateM step)
#else
iterateM :: (a -> m a) -> m a -> Stream m a
iterateM a -> m a
step = (State StreamK m a -> m a -> m (Step (m a) a)) -> m a -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream (\State StreamK m a
_ m a
st -> m a
st m a -> (a -> m (Step (m a) a)) -> m (Step (m a) a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \(!a
x) -> Step (m a) a -> m (Step (m a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (m a) a -> m (Step (m a) a))
-> Step (m a) a -> m (Step (m a) a)
forall a b. (a -> b) -> a -> b
$ a -> m a -> Step (m a) a
forall s a. a -> s -> Step s a
Yield a
x (a -> m a
step a
x))
#endif

-- |
-- >>> iterate f x = x `Stream.cons` iterate f x
--
-- Generate an infinite stream with @x@ as the first element and each
-- successive element derived by applying the function @f@ on the previous
-- element.
--
-- >>> Stream.fold Fold.toList $ Stream.take 5 $ Stream.iterate (+1) 1
-- [1,2,3,4,5]
--
{-# INLINE_NORMAL iterate #-}
iterate :: Monad m => (a -> a) -> a -> Stream m a
iterate :: (a -> a) -> a -> Stream m a
iterate a -> a
step a
st = (a -> m a) -> m a -> Stream m a
forall (m :: * -> *) a. Monad m => (a -> m a) -> m a -> Stream m a
iterateM (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> m a) -> (a -> a) -> a -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> a
step) (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
st)

-------------------------------------------------------------------------------
-- From containers
-------------------------------------------------------------------------------

-- | Convert a list of monadic actions to a 'Stream'
{-# INLINE_LATE fromListM #-}
fromListM :: Monad m => [m a] -> Stream m a
#ifdef USE_UNFOLDS_EVERYWHERE
fromListM = unfold Unfold.fromListM
#else
fromListM :: [m a] -> Stream m a
fromListM = (State StreamK m a -> [m a] -> m (Step [m a] a))
-> [m a] -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> [m a] -> m (Step [m a] a)
forall (m :: * -> *) p a. Monad m => p -> [m a] -> m (Step [m a] a)
step
  where
    {-# INLINE_LATE step #-}
    step :: p -> [m a] -> m (Step [m a] a)
step p
_ (m a
m:[m a]
ms) = m a
m m a -> (a -> m (Step [m a] a)) -> m (Step [m a] a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \a
x -> Step [m a] a -> m (Step [m a] a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step [m a] a -> m (Step [m a] a))
-> Step [m a] a -> m (Step [m a] a)
forall a b. (a -> b) -> a -> b
$ a -> [m a] -> Step [m a] a
forall s a. a -> s -> Step s a
Yield a
x [m a]
ms
    step p
_ []     = Step [m a] a -> m (Step [m a] a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step [m a] a
forall s a. Step s a
Stop
#endif

-- |
-- >>> fromFoldable = Prelude.foldr Stream.cons Stream.nil
--
-- Construct a stream from a 'Foldable' containing pure values:
--
-- /WARNING: O(n^2), suitable only for a small number of
-- elements in the stream/
--
{-# INLINE fromFoldable #-}
fromFoldable :: (Monad m, Foldable f) => f a -> Stream m a
fromFoldable :: f a -> Stream m a
fromFoldable = (a -> Stream m a -> Stream m a) -> Stream m a -> f a -> Stream m a
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Prelude.foldr a -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Applicative m =>
a -> Stream m a -> Stream m a
cons Stream m a
forall (m :: * -> *) a. Applicative m => Stream m a
nil

-- |
-- >>> fromFoldableM = Prelude.foldr Stream.consM Stream.nil
--
-- Construct a stream from a 'Foldable' containing pure values:
--
-- /WARNING: O(n^2), suitable only for a small number of
-- elements in the stream/
--
{-# INLINE fromFoldableM #-}
fromFoldableM :: (Monad m, Foldable f) => f (m a) -> Stream m a
fromFoldableM :: f (m a) -> Stream m a
fromFoldableM = (m a -> Stream m a -> Stream m a)
-> Stream m a -> f (m a) -> Stream m a
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Prelude.foldr m a -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Applicative m =>
m a -> Stream m a -> Stream m a
consM Stream m a
forall (m :: * -> *) a. Applicative m => Stream m a
nil

-------------------------------------------------------------------------------
-- From pointers
-------------------------------------------------------------------------------

-- | Keep reading 'Storable' elements from 'Ptr' onwards.
--
-- /Unsafe:/ The caller is responsible for safe addressing.
--
-- /Pre-release/
{-# INLINE fromPtr #-}
fromPtr :: forall m a. (MonadIO m, Storable a) => Ptr a -> Stream m a
fromPtr :: Ptr a -> Stream m a
fromPtr = (State StreamK m a -> Ptr a -> m (Step (Ptr a) a))
-> Ptr a -> Stream m a
forall (m :: * -> *) a s.
(State StreamK m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State StreamK m a -> Ptr a -> m (Step (Ptr a) a)
forall (m :: * -> *) a p b.
(MonadIO m, Storable a) =>
p -> Ptr a -> m (Step (Ptr b) a)
step

    where

    {-# INLINE_LATE step #-}
    step :: p -> Ptr a -> m (Step (Ptr b) a)
step p
_ Ptr a
p = do
        a
x <- IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Ptr a -> IO a
forall a. Storable a => Ptr a -> IO a
peek Ptr a
p
        Step (Ptr b) a -> m (Step (Ptr b) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Ptr b) a -> m (Step (Ptr b) a))
-> Step (Ptr b) a -> m (Step (Ptr b) a)
forall a b. (a -> b) -> a -> b
$ a -> Ptr b -> Step (Ptr b) a
forall s a. a -> s -> Step s a
Yield a
x (PTR_NEXT(p, a))

-- | Take @n@ 'Storable' elements starting from 'Ptr' onwards.
--
-- >>> fromPtrN n = Stream.take n . Stream.fromPtr
--
-- /Unsafe:/ The caller is responsible for safe addressing.
--
-- /Pre-release/
{-# INLINE fromPtrN #-}
fromPtrN :: (MonadIO m, Storable a) => Int -> Ptr a -> Stream m a
fromPtrN :: Int -> Ptr a -> Stream m a
fromPtrN Int
n = Int -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Applicative m =>
Int -> Stream m a -> Stream m a
take Int
n (Stream m a -> Stream m a)
-> (Ptr a -> Stream m a) -> Ptr a -> Stream m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ptr a -> Stream m a
forall (m :: * -> *) a.
(MonadIO m, Storable a) =>
Ptr a -> Stream m a
fromPtr

-- | Read bytes from an 'Addr#' until a 0 byte is encountered, the 0 byte is
-- not included in the stream.
--
-- >>> :set -XMagicHash
-- >>> fromByteStr# addr = Stream.takeWhile (/= 0) $ Stream.fromPtr $ Ptr addr
--
-- /Unsafe:/ The caller is responsible for safe addressing.
--
-- Note that this is completely safe when reading from Haskell string
-- literals because they are guaranteed to be NULL terminated:
--
-- >>> Stream.fold Fold.toList $ Stream.fromByteStr# "\1\2\3\0"#
-- [1,2,3]
--
{-# INLINE fromByteStr# #-}
fromByteStr# :: MonadIO m => Addr# -> Stream m Word8
fromByteStr# :: Addr# -> Stream m Word8
fromByteStr# Addr#
addr =
    (Word8 -> Bool) -> Stream m Word8 -> Stream m Word8
forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Stream m a -> Stream m a
takeWhile (Word8 -> Word8 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word8
0) (Stream m Word8 -> Stream m Word8)
-> Stream m Word8 -> Stream m Word8
forall a b. (a -> b) -> a -> b
$ Ptr Word8 -> Stream m Word8
forall (m :: * -> *) a.
(MonadIO m, Storable a) =>
Ptr a -> Stream m a
fromPtr (Ptr Word8 -> Stream m Word8) -> Ptr Word8 -> Stream m Word8
forall a b. (a -> b) -> a -> b
$ Addr# -> Ptr Word8
forall a. Addr# -> Ptr a
Ptr Addr#
addr