{-# LANGUAGE CPP #-}
-- |
-- Module      : Streamly.Internal.Data.Array.Type
-- Copyright   : (c) 2020 Composewell Technologies
--
-- License     : BSD3-3-Clause
-- Maintainer  : streamly@composewell.com
-- Stability   : experimental
-- Portability : GHC
--
-- See notes in "Streamly.Internal.Data.Array.Mut.Type"
--
module Streamly.Internal.Data.Array.Type
    (
    -- $arrayNotes
      Array (..)
    , asPtrUnsafe

    -- * Freezing and Thawing
    , unsafeFreeze
    , unsafeFreezeWithShrink
    , unsafeThaw

    -- * Pinning and Unpinning
    , pin
    , unpin

    -- * Construction
    , splice

    , fromList
    , fromListN
    , fromListRev
    , fromListRevN
    , fromStreamDN
    , fromStreamD

    -- * Split
    , breakOn

    -- * Elimination
    , unsafeIndexIO
    , unsafeIndex -- getIndexUnsafe
    , byteLength
    , length

    , foldl'
    , foldr
    , splitAt

    , toStreamD
    , toStreamDRev
    , toStreamK
    , toStreamKRev
    , toStream
    , toStreamRev
    , read
    , readRev
    , readerRev
    , toList

    -- * Folds
    , writeWith
    , writeN
    , writeNUnsafe
    , MA.ArrayUnsafe (..)
    , writeNAligned
    , write

    -- * Streams of arrays
    , chunksOf
    , bufferChunks
    , flattenArrays
    , flattenArraysRev
    )
where

#include "ArrayMacros.h"
#include "inline.hs"

import Control.Exception (assert)
import Control.Monad (replicateM)
import Control.Monad.IO.Class (MonadIO(..))
import Data.Functor.Identity (Identity(..))
import Data.Proxy (Proxy(..))
import Data.Word (Word8)
import GHC.Base (build)
import GHC.Exts (IsList, IsString(..))

import GHC.IO (unsafePerformIO)
import GHC.Ptr (Ptr(..))
import Streamly.Internal.Data.Array.Mut.Type (MutArray(..), MutableByteArray)
import Streamly.Internal.Data.Fold.Type (Fold(..))
import Streamly.Internal.Data.Stream.StreamD.Type (Stream)
import Streamly.Internal.Data.Unboxed (Unbox, peekWith, sizeOf)
import Streamly.Internal.Data.Unfold.Type (Unfold(..))
import Text.Read (readPrec)

import Prelude hiding (length, foldr, read, unlines, splitAt)

import qualified GHC.Exts as Exts
import qualified Streamly.Internal.Data.Array.Mut.Type as MA
import qualified Streamly.Internal.Data.Stream.StreamD.Type as D
import qualified Streamly.Internal.Data.Stream.StreamK.Type as K
import qualified Streamly.Internal.Data.Unboxed as Unboxed
import qualified Streamly.Internal.Data.Unfold.Type as Unfold
import qualified Text.ParserCombinators.ReadPrec as ReadPrec

import Streamly.Internal.System.IO (unsafeInlineIO, defaultChunkSize)

#include "DocTestDataArray.hs"

-------------------------------------------------------------------------------
-- Array Data Type
-------------------------------------------------------------------------------

-- $arrayNotes
--
-- We can use an 'Unbox' constraint in the Array type and the constraint can
-- be automatically provided to a function that pattern matches on the Array
-- type. However, it has huge performance cost, so we do not use it.
-- Investigate a GHC improvement possiblity.
--
data Array a =
#ifdef DEVBUILD
    Unbox a =>
#endif
    -- All offsets are in terms of bytes from the start of arraycontents
    Array
    { Array a -> MutableByteArray
arrContents :: {-# UNPACK #-} !MutableByteArray
    , Array a -> Int
arrStart :: {-# UNPACK #-} !Int -- offset
    , Array a -> Int
arrEnd   :: {-# UNPACK #-} !Int   -- offset + len
    }

-------------------------------------------------------------------------------
-- Utility functions
-------------------------------------------------------------------------------

-- | Use an @Array a@ as @Ptr a@.
--
-- See 'MA.asPtrUnsafe' in the Mutable array module for more details.
--
-- /Unsafe/
--
-- /Pre-release/
--
asPtrUnsafe :: MonadIO m => Array a -> (Ptr a -> m b) -> m b
asPtrUnsafe :: Array a -> (Ptr a -> m b) -> m b
asPtrUnsafe Array a
arr = MutArray a -> (Ptr a -> m b) -> m b
forall (m :: * -> *) a b.
MonadIO m =>
MutArray a -> (Ptr a -> m b) -> m b
MA.asPtrUnsafe (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr)

-------------------------------------------------------------------------------
-- Freezing and Thawing
-------------------------------------------------------------------------------

-- XXX For debugging we can track slices/references through a weak IORef.  Then
-- trigger a GC after freeze/thaw and assert that there are no references
-- remaining.

-- | Makes an immutable array using the underlying memory of the mutable
-- array.
--
-- Please make sure that there are no other references to the mutable array
-- lying around, so that it is never used after freezing it using
-- /unsafeFreeze/.  If the underlying array is mutated, the immutable promise
-- is lost.
--
-- /Pre-release/
{-# INLINE unsafeFreeze #-}
unsafeFreeze :: MutArray a -> Array a
unsafeFreeze :: MutArray a -> Array a
unsafeFreeze (MutArray MutableByteArray
ac Int
as Int
ae Int
_) = MutableByteArray -> Int -> Int -> Array a
forall a. MutableByteArray -> Int -> Int -> Array a
Array MutableByteArray
ac Int
as Int
ae

-- | Similar to 'unsafeFreeze' but uses 'MA.rightSize' on the mutable array
-- first.
{-# INLINE unsafeFreezeWithShrink #-}
unsafeFreezeWithShrink :: Unbox a => MutArray a -> Array a
unsafeFreezeWithShrink :: MutArray a -> Array a
unsafeFreezeWithShrink MutArray a
arr = IO (Array a) -> Array a
forall a. IO a -> a
unsafePerformIO (IO (Array a) -> Array a) -> IO (Array a) -> Array a
forall a b. (a -> b) -> a -> b
$ do
  MutArray MutableByteArray
ac Int
as Int
ae Int
_ <- MutArray a -> IO (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
MutArray a -> m (MutArray a)
MA.rightSize MutArray a
arr
  Array a -> IO (Array a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Array a -> IO (Array a)) -> Array a -> IO (Array a)
forall a b. (a -> b) -> a -> b
$ MutableByteArray -> Int -> Int -> Array a
forall a. MutableByteArray -> Int -> Int -> Array a
Array MutableByteArray
ac Int
as Int
ae

-- | Makes a mutable array using the underlying memory of the immutable array.
--
-- Please make sure that there are no other references to the immutable array
-- lying around, so that it is never used after thawing it using /unsafeThaw/.
-- If the resulting array is mutated, any references to the older immutable
-- array are mutated as well.
--
-- /Pre-release/
{-# INLINE unsafeThaw #-}
unsafeThaw :: Array a -> MutArray a
unsafeThaw :: Array a -> MutArray a
unsafeThaw (Array MutableByteArray
ac Int
as Int
ae) = MutableByteArray -> Int -> Int -> Int -> MutArray a
forall a. MutableByteArray -> Int -> Int -> Int -> MutArray a
MutArray MutableByteArray
ac Int
as Int
ae Int
ae

-------------------------------------------------------------------------------
-- Pinning & Unpinning
-------------------------------------------------------------------------------

{-# INLINE pin #-}
pin :: Array a -> IO (Array a)
pin :: Array a -> IO (Array a)
pin = (MutArray a -> Array a) -> IO (MutArray a) -> IO (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (IO (MutArray a) -> IO (Array a))
-> (Array a -> IO (MutArray a)) -> Array a -> IO (Array a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MutArray a -> IO (MutArray a)
forall a. MutArray a -> IO (MutArray a)
MA.pin (MutArray a -> IO (MutArray a))
-> (Array a -> MutArray a) -> Array a -> IO (MutArray a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw

{-# INLINE unpin #-}
unpin :: Array a -> IO (Array a)
unpin :: Array a -> IO (Array a)
unpin = (MutArray a -> Array a) -> IO (MutArray a) -> IO (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (IO (MutArray a) -> IO (Array a))
-> (Array a -> IO (MutArray a)) -> Array a -> IO (Array a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MutArray a -> IO (MutArray a)
forall a. MutArray a -> IO (MutArray a)
MA.unpin (MutArray a -> IO (MutArray a))
-> (Array a -> MutArray a) -> Array a -> IO (MutArray a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw

-------------------------------------------------------------------------------
-- Construction
-------------------------------------------------------------------------------

-- Splice two immutable arrays creating a new array.
{-# INLINE splice #-}
splice :: (MonadIO m, Unbox a) => Array a -> Array a -> m (Array a)
splice :: Array a -> Array a -> m (Array a)
splice Array a
arr1 Array a
arr2 =
    MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a) -> m (MutArray a) -> m (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MutArray a -> MutArray a -> m (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
MutArray a -> MutArray a -> m (MutArray a)
MA.splice (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr1) (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr2)

-- | Create an 'Array' from the first N elements of a list. The array is
-- allocated to size N, if the list terminates before N elements then the
-- array may hold less than N elements.
--
{-# INLINABLE fromListN #-}
fromListN :: Unbox a => Int -> [a] -> Array a
fromListN :: Int -> [a] -> Array a
fromListN Int
n [a]
xs = IO (Array a) -> Array a
forall a. IO a -> a
unsafePerformIO (IO (Array a) -> Array a) -> IO (Array a) -> Array a
forall a b. (a -> b) -> a -> b
$ MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a) -> IO (MutArray a) -> IO (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> [a] -> IO (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> [a] -> m (MutArray a)
MA.fromListN Int
n [a]
xs

-- | Create an 'Array' from the first N elements of a list in reverse order.
-- The array is allocated to size N, if the list terminates before N elements
-- then the array may hold less than N elements.
--
-- /Pre-release/
{-# INLINABLE fromListRevN #-}
fromListRevN :: Unbox a => Int -> [a] -> Array a
fromListRevN :: Int -> [a] -> Array a
fromListRevN Int
n [a]
xs = IO (Array a) -> Array a
forall a. IO a -> a
unsafePerformIO (IO (Array a) -> Array a) -> IO (Array a) -> Array a
forall a b. (a -> b) -> a -> b
$ MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a) -> IO (MutArray a) -> IO (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> [a] -> IO (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> [a] -> m (MutArray a)
MA.fromListRevN Int
n [a]
xs

-- | Create an 'Array' from a list. The list must be of finite size.
--
{-# INLINE fromList #-}
fromList :: Unbox a => [a] -> Array a
fromList :: [a] -> Array a
fromList [a]
xs = IO (Array a) -> Array a
forall a. IO a -> a
unsafePerformIO (IO (Array a) -> Array a) -> IO (Array a) -> Array a
forall a b. (a -> b) -> a -> b
$ MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a) -> IO (MutArray a) -> IO (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [a] -> IO (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
[a] -> m (MutArray a)
MA.fromList [a]
xs

-- | Create an 'Array' from a list in reverse order. The list must be of finite
-- size.
--
-- /Pre-release/
{-# INLINABLE fromListRev #-}
fromListRev :: Unbox a => [a] -> Array a
fromListRev :: [a] -> Array a
fromListRev [a]
xs = IO (Array a) -> Array a
forall a. IO a -> a
unsafePerformIO (IO (Array a) -> Array a) -> IO (Array a) -> Array a
forall a b. (a -> b) -> a -> b
$ MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a) -> IO (MutArray a) -> IO (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [a] -> IO (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
[a] -> m (MutArray a)
MA.fromListRev [a]
xs

{-# INLINE_NORMAL fromStreamDN #-}
fromStreamDN :: forall m a. (MonadIO m, Unbox a)
    => Int -> D.Stream m a -> m (Array a)
fromStreamDN :: Int -> Stream m a -> m (Array a)
fromStreamDN Int
limit Stream m a
str = MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a) -> m (MutArray a) -> m (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Stream m a -> m (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> Stream m a -> m (MutArray a)
MA.fromStreamDN Int
limit Stream m a
str

{-# INLINE_NORMAL fromStreamD #-}
fromStreamD :: forall m a. (MonadIO m, Unbox a)
    => D.Stream m a -> m (Array a)
fromStreamD :: Stream m a -> m (Array a)
fromStreamD Stream m a
str = MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a) -> m (MutArray a) -> m (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Stream m a -> m (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Stream m a -> m (MutArray a)
MA.fromStreamD Stream m a
str

-------------------------------------------------------------------------------
-- Streams of arrays
-------------------------------------------------------------------------------

{-# INLINE bufferChunks #-}
bufferChunks :: (MonadIO m, Unbox a) =>
    D.Stream m a -> m (K.StreamK m (Array a))
bufferChunks :: Stream m a -> m (StreamK m (Array a))
bufferChunks Stream m a
m = (Array a -> StreamK m (Array a) -> StreamK m (Array a))
-> StreamK m (Array a)
-> Stream m (Array a)
-> m (StreamK m (Array a))
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> b) -> b -> Stream m a -> m b
D.foldr Array a -> StreamK m (Array a) -> StreamK m (Array a)
forall a (m :: * -> *). a -> StreamK m a -> StreamK m a
K.cons StreamK m (Array a)
forall (m :: * -> *) a. StreamK m a
K.nil (Stream m (Array a) -> m (StreamK m (Array a)))
-> Stream m (Array a) -> m (StreamK m (Array a))
forall a b. (a -> b) -> a -> b
$ Int -> Stream m a -> Stream m (Array a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> Stream m a -> Stream m (Array a)
chunksOf Int
defaultChunkSize Stream m a
m

-- | @chunksOf n stream@ groups the elements in the input stream into arrays of
-- @n@ elements each.
--
-- Same as the following but may be more efficient:
--
-- >>> chunksOf n = Stream.foldMany (Array.writeN n)
--
-- /Pre-release/
{-# INLINE_NORMAL chunksOf #-}
chunksOf :: forall m a. (MonadIO m, Unbox a)
    => Int -> D.Stream m a -> D.Stream m (Array a)
chunksOf :: Int -> Stream m a -> Stream m (Array a)
chunksOf Int
n Stream m a
str = (MutArray a -> Array a)
-> Stream m (MutArray a) -> Stream m (Array a)
forall (m :: * -> *) a b.
Monad m =>
(a -> b) -> Stream m a -> Stream m b
D.map MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (Stream m (MutArray a) -> Stream m (Array a))
-> Stream m (MutArray a) -> Stream m (Array a)
forall a b. (a -> b) -> a -> b
$ Int -> Stream m a -> Stream m (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> Stream m a -> Stream m (MutArray a)
MA.chunksOf Int
n Stream m a
str

-- | Use the "read" unfold instead.
--
-- @flattenArrays = unfoldMany read@
--
-- We can try this if there are any fusion issues in the unfold.
--
{-# INLINE_NORMAL flattenArrays #-}
flattenArrays :: forall m a. (MonadIO m, Unbox a)
    => D.Stream m (Array a) -> D.Stream m a
flattenArrays :: Stream m (Array a) -> Stream m a
flattenArrays = Stream m (MutArray a) -> Stream m a
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Stream m (MutArray a) -> Stream m a
MA.flattenArrays (Stream m (MutArray a) -> Stream m a)
-> (Stream m (Array a) -> Stream m (MutArray a))
-> Stream m (Array a)
-> Stream m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Array a -> MutArray a)
-> Stream m (Array a) -> Stream m (MutArray a)
forall (m :: * -> *) a b.
Monad m =>
(a -> b) -> Stream m a -> Stream m b
D.map Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw

-- | Use the "readRev" unfold instead.
--
-- @flattenArrays = unfoldMany readRev@
--
-- We can try this if there are any fusion issues in the unfold.
--
{-# INLINE_NORMAL flattenArraysRev #-}
flattenArraysRev :: forall m a. (MonadIO m, Unbox a)
    => D.Stream m (Array a) -> D.Stream m a
flattenArraysRev :: Stream m (Array a) -> Stream m a
flattenArraysRev = Stream m (MutArray a) -> Stream m a
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Stream m (MutArray a) -> Stream m a
MA.flattenArraysRev (Stream m (MutArray a) -> Stream m a)
-> (Stream m (Array a) -> Stream m (MutArray a))
-> Stream m (Array a)
-> Stream m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Array a -> MutArray a)
-> Stream m (Array a) -> Stream m (MutArray a)
forall (m :: * -> *) a b.
Monad m =>
(a -> b) -> Stream m a -> Stream m b
D.map Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw

-- Drops the separator byte
{-# INLINE breakOn #-}
breakOn :: MonadIO m
    => Word8 -> Array Word8 -> m (Array Word8, Maybe (Array Word8))
breakOn :: Word8 -> Array Word8 -> m (Array Word8, Maybe (Array Word8))
breakOn Word8
sep Array Word8
arr = do
  (MutArray Word8
a, Maybe (MutArray Word8)
b) <- Word8
-> MutArray Word8 -> m (MutArray Word8, Maybe (MutArray Word8))
forall (m :: * -> *).
MonadIO m =>
Word8
-> MutArray Word8 -> m (MutArray Word8, Maybe (MutArray Word8))
MA.breakOn Word8
sep (Array Word8 -> MutArray Word8
forall a. Array a -> MutArray a
unsafeThaw Array Word8
arr)
  (Array Word8, Maybe (Array Word8))
-> m (Array Word8, Maybe (Array Word8))
forall (m :: * -> *) a. Monad m => a -> m a
return (MutArray Word8 -> Array Word8
forall a. MutArray a -> Array a
unsafeFreeze MutArray Word8
a, MutArray Word8 -> Array Word8
forall a. MutArray a -> Array a
unsafeFreeze (MutArray Word8 -> Array Word8)
-> Maybe (MutArray Word8) -> Maybe (Array Word8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (MutArray Word8)
b)

-------------------------------------------------------------------------------
-- Elimination
-------------------------------------------------------------------------------

-- | Return element at the specified index without checking the bounds.
--
-- Unsafe because it does not check the bounds of the array.
{-# INLINE_NORMAL unsafeIndexIO #-}
unsafeIndexIO :: forall a. Unbox a => Int -> Array a -> IO a
unsafeIndexIO :: Int -> Array a -> IO a
unsafeIndexIO Int
i Array a
arr = Int -> MutArray a -> IO a
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> MutArray a -> m a
MA.getIndexUnsafe Int
i (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr)

-- | Return element at the specified index without checking the bounds.
{-# INLINE_NORMAL unsafeIndex #-}
unsafeIndex :: forall a. Unbox a => Int -> Array a -> a
unsafeIndex :: Int -> Array a -> a
unsafeIndex Int
i Array a
arr = let !r :: a
r = IO a -> a
forall a. IO a -> a
unsafeInlineIO (IO a -> a) -> IO a -> a
forall a b. (a -> b) -> a -> b
$ Int -> Array a -> IO a
forall a. Unbox a => Int -> Array a -> IO a
unsafeIndexIO Int
i Array a
arr in a
r

-- | /O(1)/ Get the byte length of the array.
--
{-# INLINE byteLength #-}
byteLength :: Array a -> Int
byteLength :: Array a -> Int
byteLength = MutArray a -> Int
forall a. MutArray a -> Int
MA.byteLength (MutArray a -> Int) -> (Array a -> MutArray a) -> Array a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw

-- | /O(1)/ Get the length of the array i.e. the number of elements in the
-- array.
--
{-# INLINE length #-}
length :: Unbox a => Array a -> Int
length :: Array a -> Int
length Array a
arr = MutArray a -> Int
forall a. Unbox a => MutArray a -> Int
MA.length (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr)

-- | Unfold an array into a stream in reverse order.
--
{-# INLINE_NORMAL readerRev #-}
readerRev :: forall m a. (Monad m, Unbox a) => Unfold m (Array a) a
readerRev :: Unfold m (Array a) a
readerRev = (Array a -> MutArray a)
-> Unfold m (MutArray a) a -> Unfold m (Array a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
Unfold.lmap Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw (Unfold m (MutArray a) a -> Unfold m (Array a) a)
-> Unfold m (MutArray a) a -> Unfold m (Array a) a
forall a b. (a -> b) -> a -> b
$ (forall b. IO b -> m b) -> Unfold m (MutArray a) a
forall (m :: * -> *) a.
(Monad m, Unbox a) =>
(forall b. IO b -> m b) -> Unfold m (MutArray a) a
MA.readerRevWith (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> (IO b -> b) -> IO b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO b -> b
forall a. IO a -> a
unsafeInlineIO)

{-# INLINE_NORMAL toStreamD #-}
toStreamD :: forall m a. (Monad m, Unbox a) => Array a -> D.Stream m a
toStreamD :: Array a -> Stream m a
toStreamD Array a
arr = (forall b. IO b -> m b) -> MutArray a -> Stream m a
forall (m :: * -> *) a.
(Monad m, Unbox a) =>
(forall b. IO b -> m b) -> MutArray a -> Stream m a
MA.toStreamDWith (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> (IO b -> b) -> IO b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO b -> b
forall a. IO a -> a
unsafeInlineIO) (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr)

{-# INLINE toStreamK #-}
toStreamK :: forall m a. (Monad m, Unbox a) => Array a -> K.StreamK m a
toStreamK :: Array a -> StreamK m a
toStreamK Array a
arr = (forall b. IO b -> m b) -> MutArray a -> StreamK m a
forall (m :: * -> *) a.
(Monad m, Unbox a) =>
(forall b. IO b -> m b) -> MutArray a -> StreamK m a
MA.toStreamKWith (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> (IO b -> b) -> IO b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO b -> b
forall a. IO a -> a
unsafeInlineIO) (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr)

{-# INLINE_NORMAL toStreamDRev #-}
toStreamDRev :: forall m a. (Monad m, Unbox a) => Array a -> D.Stream m a
toStreamDRev :: Array a -> Stream m a
toStreamDRev Array a
arr =
    (forall b. IO b -> m b) -> MutArray a -> Stream m a
forall (m :: * -> *) a.
(Monad m, Unbox a) =>
(forall b. IO b -> m b) -> MutArray a -> Stream m a
MA.toStreamDRevWith (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> (IO b -> b) -> IO b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO b -> b
forall a. IO a -> a
unsafeInlineIO) (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr)

{-# INLINE toStreamKRev #-}
toStreamKRev :: forall m a. (Monad m, Unbox a) => Array a -> K.StreamK m a
toStreamKRev :: Array a -> StreamK m a
toStreamKRev Array a
arr =
    (forall b. IO b -> m b) -> MutArray a -> StreamK m a
forall (m :: * -> *) a.
(Monad m, Unbox a) =>
(forall b. IO b -> m b) -> MutArray a -> StreamK m a
MA.toStreamKRevWith (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> (IO b -> b) -> IO b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO b -> b
forall a. IO a -> a
unsafeInlineIO) (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr)

-- | Convert an 'Array' into a stream.
--
-- /Pre-release/
{-# INLINE_EARLY read #-}
read :: (Monad m, Unbox a) => Array a -> Stream m a
read :: Array a -> Stream m a
read = Array a -> Stream m a
forall (m :: * -> *) a. (Monad m, Unbox a) => Array a -> Stream m a
toStreamD

-- | Same as 'read'
--
{-# DEPRECATED toStream "Please use 'read' instead." #-}
{-# INLINE_EARLY toStream #-}
toStream :: (Monad m, Unbox a) => Array a -> Stream m a
toStream :: Array a -> Stream m a
toStream = Array a -> Stream m a
forall (m :: * -> *) a. (Monad m, Unbox a) => Array a -> Stream m a
read
-- XXX add fallback to StreamK rule
-- {-# RULES "Streamly.Array.read fallback to StreamK" [1]
--     forall a. S.readK (read a) = K.fromArray a #-}

-- | Convert an 'Array' into a stream in reverse order.
--
-- /Pre-release/
{-# INLINE_EARLY readRev #-}
readRev :: (Monad m, Unbox a) => Array a -> Stream m a
readRev :: Array a -> Stream m a
readRev = Array a -> Stream m a
forall (m :: * -> *) a. (Monad m, Unbox a) => Array a -> Stream m a
toStreamDRev

-- | Same as 'readRev'
--
{-# DEPRECATED toStreamRev "Please use 'readRev' instead." #-}
{-# INLINE_EARLY toStreamRev #-}
toStreamRev :: (Monad m, Unbox a) => Array a -> Stream m a
toStreamRev :: Array a -> Stream m a
toStreamRev = Array a -> Stream m a
forall (m :: * -> *) a. (Monad m, Unbox a) => Array a -> Stream m a
readRev

-- XXX add fallback to StreamK rule
-- {-# RULES "Streamly.Array.readRev fallback to StreamK" [1]
--     forall a. S.toStreamK (readRev a) = K.revFromArray a #-}

{-# INLINE_NORMAL foldl' #-}
foldl' :: forall a b. Unbox a => (b -> a -> b) -> b -> Array a -> b
foldl' :: (b -> a -> b) -> b -> Array a -> b
foldl' b -> a -> b
f b
z Array a
arr = Identity b -> b
forall a. Identity a -> a
runIdentity (Identity b -> b) -> Identity b -> b
forall a b. (a -> b) -> a -> b
$ (b -> a -> b) -> b -> Stream Identity a -> Identity b
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Stream m a -> m b
D.foldl' b -> a -> b
f b
z (Stream Identity a -> Identity b)
-> Stream Identity a -> Identity b
forall a b. (a -> b) -> a -> b
$ Array a -> Stream Identity a
forall (m :: * -> *) a. (Monad m, Unbox a) => Array a -> Stream m a
toStreamD Array a
arr

{-# INLINE_NORMAL foldr #-}
foldr :: Unbox a => (a -> b -> b) -> b -> Array a -> b
foldr :: (a -> b -> b) -> b -> Array a -> b
foldr a -> b -> b
f b
z Array a
arr = Identity b -> b
forall a. Identity a -> a
runIdentity (Identity b -> b) -> Identity b -> b
forall a b. (a -> b) -> a -> b
$ (a -> b -> b) -> b -> Stream Identity a -> Identity b
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> b) -> b -> Stream m a -> m b
D.foldr a -> b -> b
f b
z (Stream Identity a -> Identity b)
-> Stream Identity a -> Identity b
forall a b. (a -> b) -> a -> b
$ Array a -> Stream Identity a
forall (m :: * -> *) a. (Monad m, Unbox a) => Array a -> Stream m a
toStreamD Array a
arr

-- | Create two slices of an array without copying the original array. The
-- specified index @i@ is the first index of the second slice.
--
splitAt :: Unbox a => Int -> Array a -> (Array a, Array a)
splitAt :: Int -> Array a -> (Array a, Array a)
splitAt Int
i Array a
arr = (MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze MutArray a
a, MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze MutArray a
b)
  where
    (MutArray a
a, MutArray a
b) = Int -> MutArray a -> (MutArray a, MutArray a)
forall a. Unbox a => Int -> MutArray a -> (MutArray a, MutArray a)
MA.splitAt Int
i (Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr)

-- Use foldr/build fusion to fuse with list consumers
-- This can be useful when using the IsList instance
{-# INLINE_LATE toListFB #-}
toListFB :: forall a b. Unbox a => (a -> b -> b) -> b -> Array a -> b
toListFB :: (a -> b -> b) -> b -> Array a -> b
toListFB a -> b -> b
c b
n Array{Int
MutableByteArray
arrEnd :: Int
arrStart :: Int
arrContents :: MutableByteArray
arrEnd :: forall a. Array a -> Int
arrStart :: forall a. Array a -> Int
arrContents :: forall a. Array a -> MutableByteArray
..} = Int -> b
go Int
arrStart
    where

    go :: Int -> b
go Int
p | Bool -> Bool -> Bool
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
arrEnd) (Int
p Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
arrEnd) = b
n
    go Int
p =
        -- unsafeInlineIO allows us to run this in Identity monad for pure
        -- toList/foldr case which makes them much faster due to not
        -- accumulating the list and fusing better with the pure consumers.
        --
        -- This should be safe as the array contents are guaranteed to be
        -- evaluated/written to before we peekWith at them.
        let !x :: a
x = IO a -> a
forall a. IO a -> a
unsafeInlineIO (IO a -> a) -> IO a -> a
forall a b. (a -> b) -> a -> b
$ MutableByteArray -> Int -> IO a
forall a. Unbox a => MutableByteArray -> Int -> IO a
peekWith MutableByteArray
arrContents Int
p
        in a -> b -> b
c a
x (Int -> b
go (INDEX_NEXT(p,a)))

-- | Convert an 'Array' into a list.
--
{-# INLINE toList #-}
toList :: Unbox a => Array a -> [a]
toList :: Array a -> [a]
toList Array a
s = (forall b. (a -> b -> b) -> b -> b) -> [a]
forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
build (\a -> b -> b
c b
n -> (a -> b -> b) -> b -> Array a -> b
forall a b. Unbox a => (a -> b -> b) -> b -> Array a -> b
toListFB a -> b -> b
c b
n Array a
s)

-------------------------------------------------------------------------------
-- Folds
-------------------------------------------------------------------------------

-- | @writeN n@ folds a maximum of @n@ elements from the input stream to an
-- 'Array'.
--
{-# INLINE_NORMAL writeN #-}
writeN :: forall m a. (MonadIO m, Unbox a) => Int -> Fold m a (Array a)
writeN :: Int -> Fold m a (Array a)
writeN = (MutArray a -> Array a)
-> Fold m a (MutArray a) -> Fold m a (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (Fold m a (MutArray a) -> Fold m a (Array a))
-> (Int -> Fold m a (MutArray a)) -> Int -> Fold m a (Array a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Fold m a (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> Fold m a (MutArray a)
MA.writeN

-- | @writeNAligned alignment n@ folds a maximum of @n@ elements from the input
-- stream to an 'Array' aligned to the given size.
--
-- /Pre-release/
--
{-# INLINE_NORMAL writeNAligned #-}
writeNAligned :: forall m a. (MonadIO m, Unbox a)
    => Int -> Int -> Fold m a (Array a)
writeNAligned :: Int -> Int -> Fold m a (Array a)
writeNAligned Int
alignSize = (MutArray a -> Array a)
-> Fold m a (MutArray a) -> Fold m a (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (Fold m a (MutArray a) -> Fold m a (Array a))
-> (Int -> Fold m a (MutArray a)) -> Int -> Fold m a (Array a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Int -> Fold m a (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> Int -> Fold m a (MutArray a)
MA.writeNAligned Int
alignSize

-- | Like 'writeN' but does not check the array bounds when writing. The fold
-- driver must not call the step function more than 'n' times otherwise it will
-- corrupt the memory and crash. This function exists mainly because any
-- conditional in the step function blocks fusion causing 10x performance
-- slowdown.
--
{-# INLINE_NORMAL writeNUnsafe #-}
writeNUnsafe :: forall m a. (MonadIO m, Unbox a)
    => Int -> Fold m a (Array a)
writeNUnsafe :: Int -> Fold m a (Array a)
writeNUnsafe Int
n = MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a)
-> Fold m a (MutArray a) -> Fold m a (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Fold m a (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> Fold m a (MutArray a)
MA.writeNUnsafe Int
n

{-# INLINE_NORMAL writeWith #-}
writeWith :: forall m a. (MonadIO m, Unbox a)
    => Int -> Fold m a (Array a)
-- writeWith n = FL.rmapM spliceArrays $ toArraysOf n
writeWith :: Int -> Fold m a (Array a)
writeWith Int
elemCount = MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze (MutArray a -> Array a)
-> Fold m a (MutArray a) -> Fold m a (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Fold m a (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> Fold m a (MutArray a)
MA.writeWith Int
elemCount

-- | Fold the whole input to a single array.
--
-- /Caution! Do not use this on infinite streams./
--
{-# INLINE write #-}
write :: forall m a. (MonadIO m, Unbox a) => Fold m a (Array a)
write :: Fold m a (Array a)
write = (MutArray a -> Array a)
-> Fold m a (MutArray a) -> Fold m a (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap MutArray a -> Array a
forall a. MutArray a -> Array a
unsafeFreeze Fold m a (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Fold m a (MutArray a)
MA.write

-------------------------------------------------------------------------------
-- Instances
-------------------------------------------------------------------------------

instance (Show a, Unbox a) => Show (Array a) where
    {-# INLINE show #-}
    show :: Array a -> String
show Array a
arr = String
"fromList " String -> ShowS
forall a. [a] -> [a] -> [a]
++ [a] -> String
forall a. Show a => a -> String
show (Array a -> [a]
forall a. Unbox a => Array a -> [a]
toList Array a
arr)

instance (Unbox a, Read a, Show a) => Read (Array a) where
    {-# INLINE readPrec #-}
    readPrec :: ReadPrec (Array a)
readPrec = do
        String
fromListWord <- Int -> ReadPrec Char -> ReadPrec String
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM Int
9 ReadPrec Char
ReadPrec.get
        if String
fromListWord String -> String -> Bool
forall a. Eq a => a -> a -> Bool
== String
"fromList "
        then [a] -> Array a
forall a. Unbox a => [a] -> Array a
fromList ([a] -> Array a) -> ReadPrec [a] -> ReadPrec (Array a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadPrec [a]
forall a. Read a => ReadPrec a
readPrec
        else ReadPrec (Array a)
forall a. ReadPrec a
ReadPrec.pfail

instance (a ~ Char) => IsString (Array a) where
    {-# INLINE fromString #-}
    fromString :: String -> Array a
fromString = String -> Array a
forall a. Unbox a => [a] -> Array a
fromList

-- GHC versions 8.0 and below cannot derive IsList
instance Unbox a => IsList (Array a) where
    type (Item (Array a)) = a
    {-# INLINE fromList #-}
    fromList :: [Item (Array a)] -> Array a
fromList = [Item (Array a)] -> Array a
forall a. Unbox a => [a] -> Array a
fromList
    {-# INLINE fromListN #-}
    fromListN :: Int -> [Item (Array a)] -> Array a
fromListN = Int -> [Item (Array a)] -> Array a
forall a. Unbox a => Int -> [a] -> Array a
fromListN
    {-# INLINE toList #-}
    toList :: Array a -> [Item (Array a)]
toList = Array a -> [Item (Array a)]
forall a. Unbox a => Array a -> [a]
toList

-- XXX we are assuming that Unboxed equality means element equality. This may
-- or may not be correct? arrcmp is 40% faster compared to stream equality.
instance (Unbox a, Eq a) => Eq (Array a) where
    {-# INLINE (==) #-}
    Array a
arr1 == :: Array a -> Array a -> Bool
== Array a
arr2 =
        Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
(==) Ordering
EQ (Ordering -> Bool) -> Ordering -> Bool
forall a b. (a -> b) -> a -> b
$ IO Ordering -> Ordering
forall a. IO a -> a
unsafeInlineIO (IO Ordering -> Ordering) -> IO Ordering -> Ordering
forall a b. (a -> b) -> a -> b
$! Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr1 MutArray a -> MutArray a -> IO Ordering
forall (m :: * -> *) a.
MonadIO m =>
MutArray a -> MutArray a -> m Ordering
`MA.cmp` Array a -> MutArray a
forall a. Array a -> MutArray a
unsafeThaw Array a
arr2

instance (Unbox a, Ord a) => Ord (Array a) where
    {-# INLINE compare #-}
    compare :: Array a -> Array a -> Ordering
compare Array a
arr1 Array a
arr2 = Identity Ordering -> Ordering
forall a. Identity a -> a
runIdentity (Identity Ordering -> Ordering) -> Identity Ordering -> Ordering
forall a b. (a -> b) -> a -> b
$
        (a -> a -> Ordering)
-> Stream Identity a -> Stream Identity a -> Identity Ordering
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> Ordering) -> Stream m a -> Stream m b -> m Ordering
D.cmpBy a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Array a -> Stream Identity a
forall (m :: * -> *) a. (Monad m, Unbox a) => Array a -> Stream m a
toStreamD Array a
arr1) (Array a -> Stream Identity a
forall (m :: * -> *) a. (Monad m, Unbox a) => Array a -> Stream m a
toStreamD Array a
arr2)

    -- Default definitions defined in base do not have an INLINE on them, so we
    -- replicate them here with an INLINE.
    {-# INLINE (<) #-}
    Array a
x < :: Array a -> Array a -> Bool
<  Array a
y = case Array a -> Array a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Array a
x Array a
y of { Ordering
LT -> Bool
True;  Ordering
_ -> Bool
False }

    {-# INLINE (<=) #-}
    Array a
x <= :: Array a -> Array a -> Bool
<= Array a
y = case Array a -> Array a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Array a
x Array a
y of { Ordering
GT -> Bool
False; Ordering
_ -> Bool
True }

    {-# INLINE (>) #-}
    Array a
x > :: Array a -> Array a -> Bool
>  Array a
y = case Array a -> Array a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Array a
x Array a
y of { Ordering
GT -> Bool
True;  Ordering
_ -> Bool
False }

    {-# INLINE (>=) #-}
    Array a
x >= :: Array a -> Array a -> Bool
>= Array a
y = case Array a -> Array a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Array a
x Array a
y of { Ordering
LT -> Bool
False; Ordering
_ -> Bool
True }

    -- These two default methods use '<=' rather than 'compare'
    -- because the latter is often more expensive
    {-# INLINE max #-}
    max :: Array a -> Array a -> Array a
max Array a
x Array a
y = if Array a
x Array a -> Array a -> Bool
forall a. Ord a => a -> a -> Bool
<= Array a
y then Array a
y else Array a
x

    {-# INLINE min #-}
    min :: Array a -> Array a -> Array a
min Array a
x Array a
y = if Array a
x Array a -> Array a -> Bool
forall a. Ord a => a -> a -> Bool
<= Array a
y then Array a
x else Array a
y

#ifdef DEVBUILD
-- Definitions using the Unboxed constraint from the Array type. These are to
-- make the Foldable instance possible though it is much slower (7x slower).
--
{-# INLINE_NORMAL _toStreamD_ #-}
_toStreamD_ :: forall m a. MonadIO m => Int -> Array a -> D.Stream m a
_toStreamD_ size Array{..} = D.Stream step arrStart

    where

    {-# INLINE_LATE step #-}
    step _ p | p == arrEnd = return D.Stop
    step _ p = liftIO $ do
        x <- peekWith arrContents p
        return $ D.Yield x (p + size)

{-
XXX Why isn't Unboxed implicit? This does not compile unless I use the Unboxed
contraint.
{-# INLINE_NORMAL _foldr #-}
_foldr :: forall a b. (a -> b -> b) -> b -> Array a -> b
_foldr f z arr =
    let !n = SIZE_OF(a)
    in unsafePerformIO $ D.foldr f z $ toStreamD_ n arr
-- | Note that the 'Foldable' instance is 7x slower than the direct
-- operations.
instance Foldable Array where
  foldr = _foldr
-}

#endif

-------------------------------------------------------------------------------
-- Semigroup and Monoid
-------------------------------------------------------------------------------

instance Unbox a => Semigroup (Array a) where
    Array a
arr1 <> :: Array a -> Array a -> Array a
<> Array a
arr2 = IO (Array a) -> Array a
forall a. IO a -> a
unsafePerformIO (IO (Array a) -> Array a) -> IO (Array a) -> Array a
forall a b. (a -> b) -> a -> b
$ Array a -> Array a -> IO (Array a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Array a -> Array a -> m (Array a)
splice Array a
arr1 Array a
arr2

nil ::
#ifdef DEVBUILD
    Unbox a =>
#endif
    Array a
nil :: Array a
nil = MutableByteArray -> Int -> Int -> Array a
forall a. MutableByteArray -> Int -> Int -> Array a
Array MutableByteArray
Unboxed.nil Int
0 Int
0

instance Unbox a => Monoid (Array a) where
    mempty :: Array a
mempty = Array a
forall a. Array a
nil
    mappend :: Array a -> Array a -> Array a
mappend = Array a -> Array a -> Array a
forall a. Semigroup a => a -> a -> a
(<>)