module Streamly.Internal.Data.Fold.Tee
( Tee(..)
)
where
import Control.Applicative (liftA2)
#if __GLASGOW_HASKELL__ < 808
import Data.Semigroup (Semigroup(..))
#endif
import Streamly.Internal.Data.Fold.Type (Fold)
import qualified Streamly.Internal.Data.Fold.Type as Fold
newtype Tee m a b =
Tee { Tee m a b -> Fold m a b
toFold :: Fold m a b }
deriving (a -> Tee m a b -> Tee m a a
(a -> b) -> Tee m a a -> Tee m a b
(forall a b. (a -> b) -> Tee m a a -> Tee m a b)
-> (forall a b. a -> Tee m a b -> Tee m a a) -> Functor (Tee m a)
forall a b. a -> Tee m a b -> Tee m a a
forall a b. (a -> b) -> Tee m a a -> Tee m a b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
forall (m :: * -> *) a a b.
Functor m =>
a -> Tee m a b -> Tee m a a
forall (m :: * -> *) a a b.
Functor m =>
(a -> b) -> Tee m a a -> Tee m a b
<$ :: a -> Tee m a b -> Tee m a a
$c<$ :: forall (m :: * -> *) a a b.
Functor m =>
a -> Tee m a b -> Tee m a a
fmap :: (a -> b) -> Tee m a a -> Tee m a b
$cfmap :: forall (m :: * -> *) a a b.
Functor m =>
(a -> b) -> Tee m a a -> Tee m a b
Functor)
instance Monad m => Applicative (Tee m a) where
{-# INLINE pure #-}
pure :: a -> Tee m a a
pure a
a = Fold m a a -> Tee m a a
forall (m :: * -> *) a b. Fold m a b -> Tee m a b
Tee (a -> Fold m a a
forall (m :: * -> *) b a. Applicative m => b -> Fold m a b
Fold.fromPure a
a)
{-# INLINE (<*>) #-}
<*> :: Tee m a (a -> b) -> Tee m a a -> Tee m a b
(<*>) Tee m a (a -> b)
a Tee m a a
b = Fold m a b -> Tee m a b
forall (m :: * -> *) a b. Fold m a b -> Tee m a b
Tee (((a -> b) -> a -> b)
-> Fold m a (a -> b) -> Fold m a a -> Fold m a b
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
Fold.teeWith (a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
($) (Tee m a (a -> b) -> Fold m a (a -> b)
forall (m :: * -> *) a b. Tee m a b -> Fold m a b
toFold Tee m a (a -> b)
a) (Tee m a a -> Fold m a a
forall (m :: * -> *) a b. Tee m a b -> Fold m a b
toFold Tee m a a
b))
instance (Semigroup b, Monad m) => Semigroup (Tee m a b) where
{-# INLINE (<>) #-}
<> :: Tee m a b -> Tee m a b -> Tee m a b
(<>) = (b -> b -> b) -> Tee m a b -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Semigroup a => a -> a -> a
(<>)
instance (Semigroup b, Monoid b, Monad m) => Monoid (Tee m a b) where
{-# INLINE mempty #-}
mempty :: Tee m a b
mempty = b -> Tee m a b
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
forall a. Monoid a => a
mempty
{-# INLINE mappend #-}
mappend :: Tee m a b -> Tee m a b -> Tee m a b
mappend = Tee m a b -> Tee m a b -> Tee m a b
forall a. Semigroup a => a -> a -> a
(<>)
instance (Monad m, Num b) => Num (Tee m a b) where
{-# INLINE fromInteger #-}
fromInteger :: Integer -> Tee m a b
fromInteger = b -> Tee m a b
forall (f :: * -> *) a. Applicative f => a -> f a
pure (b -> Tee m a b) -> (Integer -> b) -> Integer -> Tee m a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> b
forall a. Num a => Integer -> a
fromInteger
{-# INLINE negate #-}
negate :: Tee m a b -> Tee m a b
negate = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Num a => a -> a
negate
{-# INLINE abs #-}
abs :: Tee m a b -> Tee m a b
abs = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Num a => a -> a
abs
{-# INLINE signum #-}
signum :: Tee m a b -> Tee m a b
signum = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Num a => a -> a
signum
{-# INLINE (+) #-}
+ :: Tee m a b -> Tee m a b -> Tee m a b
(+) = (b -> b -> b) -> Tee m a b -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Num a => a -> a -> a
(+)
{-# INLINE (*) #-}
* :: Tee m a b -> Tee m a b -> Tee m a b
(*) = (b -> b -> b) -> Tee m a b -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Num a => a -> a -> a
(*)
{-# INLINE (-) #-}
(-) = (b -> b -> b) -> Tee m a b -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (-)
instance (Monad m, Fractional b) => Fractional (Tee m a b) where
{-# INLINE fromRational #-}
fromRational :: Rational -> Tee m a b
fromRational = b -> Tee m a b
forall (f :: * -> *) a. Applicative f => a -> f a
pure (b -> Tee m a b) -> (Rational -> b) -> Rational -> Tee m a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rational -> b
forall a. Fractional a => Rational -> a
fromRational
{-# INLINE recip #-}
recip :: Tee m a b -> Tee m a b
recip = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Fractional a => a -> a
recip
{-# INLINE (/) #-}
/ :: Tee m a b -> Tee m a b -> Tee m a b
(/) = (b -> b -> b) -> Tee m a b -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Fractional a => a -> a -> a
(/)
instance (Monad m, Floating b) => Floating (Tee m a b) where
{-# INLINE pi #-}
pi :: Tee m a b
pi = b -> Tee m a b
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
forall a. Floating a => a
pi
{-# INLINE exp #-}
exp :: Tee m a b -> Tee m a b
exp = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
exp
{-# INLINE sqrt #-}
sqrt :: Tee m a b -> Tee m a b
sqrt = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
sqrt
{-# INLINE log #-}
log :: Tee m a b -> Tee m a b
log = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
log
{-# INLINE sin #-}
sin :: Tee m a b -> Tee m a b
sin = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
sin
{-# INLINE tan #-}
tan :: Tee m a b -> Tee m a b
tan = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
tan
{-# INLINE cos #-}
cos :: Tee m a b -> Tee m a b
cos = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
cos
{-# INLINE asin #-}
asin :: Tee m a b -> Tee m a b
asin = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
asin
{-# INLINE atan #-}
atan :: Tee m a b -> Tee m a b
atan = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
atan
{-# INLINE acos #-}
acos :: Tee m a b -> Tee m a b
acos = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
acos
{-# INLINE sinh #-}
sinh :: Tee m a b -> Tee m a b
sinh = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
sinh
{-# INLINE tanh #-}
tanh :: Tee m a b -> Tee m a b
tanh = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
tanh
{-# INLINE cosh #-}
cosh :: Tee m a b -> Tee m a b
cosh = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
cosh
{-# INLINE asinh #-}
asinh :: Tee m a b -> Tee m a b
asinh = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
asinh
{-# INLINE atanh #-}
atanh :: Tee m a b -> Tee m a b
atanh = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
atanh
{-# INLINE acosh #-}
acosh :: Tee m a b -> Tee m a b
acosh = (b -> b) -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
acosh
{-# INLINE (**) #-}
** :: Tee m a b -> Tee m a b -> Tee m a b
(**) = (b -> b -> b) -> Tee m a b -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Floating a => a -> a -> a
(**)
{-# INLINE logBase #-}
logBase :: Tee m a b -> Tee m a b -> Tee m a b
logBase = (b -> b -> b) -> Tee m a b -> Tee m a b -> Tee m a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Floating a => a -> a -> a
logBase