{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
#include "inline.hs"
module Streamly.Internal.Data.Array
( Array(..)
, foldl'
, foldr
, length
, writeN
, write
, toStreamD
, toStreamDRev
, toStream
, toStreamRev
, read
, fromListN
, fromList
, fromStreamDN
, fromStreamD
, fromStreamN
, fromStream
, streamFold
, fold
)
where
import Prelude hiding (foldr, length, read)
import Control.DeepSeq (NFData(..))
import Control.Monad (when)
import Control.Monad.IO.Class (liftIO, MonadIO)
import GHC.IO (unsafePerformIO)
import GHC.Base (Int(..))
import Data.Functor.Identity (runIdentity)
import Data.Primitive.Array hiding (fromList, fromListN)
import qualified GHC.Exts as Exts
import Streamly.Internal.Data.Unfold.Types (Unfold(..))
import Streamly.Internal.Data.Fold.Types (Fold(..))
import Streamly.Internal.Data.Stream.StreamK.Type (IsStream)
import Streamly.Internal.Data.Stream.Serial (SerialT)
import qualified Streamly.Internal.Data.Stream.StreamD as D
{-# NOINLINE bottomElement #-}
bottomElement :: a
bottomElement = undefined
{-# INLINE_NORMAL toStreamD #-}
toStreamD :: Monad m => Array a -> D.Stream m a
toStreamD arr = D.Stream step 0
where
{-# INLINE_LATE step #-}
step _ i
| i == length arr = return D.Stop
step _ (I# i) =
return $
case Exts.indexArray# (array# arr) i of
(# x #) -> D.Yield x ((I# i) + 1)
{-# INLINE length #-}
length :: Array a -> Int
length arr = sizeofArray arr
{-# INLINE_NORMAL toStreamDRev #-}
toStreamDRev :: Monad m => Array a -> D.Stream m a
toStreamDRev arr = D.Stream step (length arr - 1)
where
{-# INLINE_LATE step #-}
step _ i
| i < 0 = return D.Stop
step _ (I# i) =
return $
case Exts.indexArray# (array# arr) i of
(# x #) -> D.Yield x ((I# i) - 1)
{-# INLINE_NORMAL foldl' #-}
foldl' :: (b -> a -> b) -> b -> Array a -> b
foldl' f z arr = runIdentity $ D.foldl' f z $ toStreamD arr
{-# INLINE_NORMAL foldr #-}
foldr :: (a -> b -> b) -> b -> Array a -> b
foldr f z arr = runIdentity $ D.foldr f z $ toStreamD arr
{-# INLINE_NORMAL writeN #-}
writeN :: MonadIO m => Int -> Fold m a (Array a)
writeN limit = Fold step initial extract
where
initial = do
marr <- liftIO $ newArray limit bottomElement
return (marr, 0)
step (marr, i) x
| i == limit = return (marr, i)
| otherwise = do
liftIO $ writeArray marr i x
return (marr, i + 1)
extract (marr, len) = liftIO $ freezeArray marr 0 len
{-# INLINE_NORMAL write #-}
write :: MonadIO m => Fold m a (Array a)
write = Fold step initial extract
where
initial = do
marr <- liftIO $ newArray 0 bottomElement
return (marr, 0, 0)
step (marr, i, capacity) x
| i == capacity =
let newCapacity = max (capacity * 2) 1
in do newMarr <- liftIO $ newArray newCapacity bottomElement
liftIO $ copyMutableArray newMarr 0 marr 0 i
liftIO $ writeArray newMarr i x
return (newMarr, i + 1, newCapacity)
| otherwise = do
liftIO $ writeArray marr i x
return (marr, i + 1, capacity)
extract (marr, len, _) = liftIO $ freezeArray marr 0 len
{-# INLINE_NORMAL fromStreamDN #-}
fromStreamDN :: MonadIO m => Int -> D.Stream m a -> m (Array a)
fromStreamDN limit str = do
marr <- liftIO $ newArray (max limit 0) bottomElement
i <-
D.foldlM'
(\i x -> i `seq` (liftIO $ writeArray marr i x) >> return (i + 1))
0 $
D.take limit str
liftIO $ freezeArray marr 0 i
{-# INLINE fromStreamD #-}
fromStreamD :: MonadIO m => D.Stream m a -> m (Array a)
fromStreamD str = D.runFold write str
{-# INLINABLE fromListN #-}
fromListN :: Int -> [a] -> Array a
fromListN n xs = unsafePerformIO $ fromStreamDN n $ D.fromList xs
{-# INLINABLE fromList #-}
fromList :: [a] -> Array a
fromList xs = unsafePerformIO $ fromStreamD $ D.fromList xs
instance NFData a => NFData (Array a) where
{-# INLINE rnf #-}
rnf = foldl' (\_ x -> rnf x) ()
{-# INLINE fromStreamN #-}
fromStreamN :: MonadIO m => Int -> SerialT m a -> m (Array a)
fromStreamN n m = do
when (n < 0) $ error "fromStreamN: negative write count specified"
fromStreamDN n $ D.toStreamD m
{-# INLINE fromStream #-}
fromStream :: MonadIO m => SerialT m a -> m (Array a)
fromStream m = fromStreamD $ D.toStreamD m
{-# INLINE_EARLY toStream #-}
toStream :: (Monad m, IsStream t) => Array a -> t m a
toStream = D.fromStreamD . toStreamD
{-# INLINE_EARLY toStreamRev #-}
toStreamRev :: (Monad m, IsStream t) => Array a -> t m a
toStreamRev = D.fromStreamD . toStreamDRev
{-# INLINE fold #-}
fold :: Monad m => Fold m a b -> Array a -> m b
fold f arr = D.runFold f (toStreamD arr)
{-# INLINE streamFold #-}
streamFold :: Monad m => (SerialT m a -> m b) -> Array a -> m b
streamFold f arr = f (toStream arr)
{-# INLINE_NORMAL read #-}
read :: Monad m => Unfold m (Array a) a
read = Unfold step inject
where
inject arr = return (arr, 0)
step (arr, i)
| i == length arr = return D.Stop
step (arr, (I# i)) =
return $
case Exts.indexArray# (array# arr) i of
(# x #) -> D.Yield x (arr, I# i + 1)