{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE MagicHash #-}
#if __GLASGOW_HASKELL__ >= 801
{-# LANGUAGE TypeApplications #-}
#endif
#include "inline.hs"
module Streamly.Streams.StreamD
(
Step (..)
, Stream (..)
, nil
, nilM
, cons
, uncons
, unfoldr
, unfoldrM
, unfold
, repeat
, repeatM
, replicate
, replicateM
, fromIndices
, fromIndicesM
, generate
, generateM
, enumerateFromStepIntegral
, enumerateFromIntegral
, enumerateFromThenIntegral
, enumerateFromToIntegral
, enumerateFromThenToIntegral
, enumerateFromStepNum
, numFrom
, numFromThen
, enumerateFromToFractional
, enumerateFromThenToFractional
, yield
, yieldM
, fromList
, fromListM
, fromStreamK
, fromStreamD
, foldrS
, foldrT
, foldrM
, foldrMx
, foldr
, foldr1
, foldl'
, foldlM'
, foldlS
, foldlT
, reverse
, reverse'
, foldlx'
, foldlMx'
, tap
, drain
, null
, head
, tail
, last
, elem
, notElem
, all
, any
, maximum
, maximumBy
, minimum
, minimumBy
, findIndices
, lookup
, findM
, find
, (!!)
, concatMapM
, concatMap
, ConcatMapUState (..)
, concatMapU
, ConcatUnfoldInterleaveState (..)
, concatUnfoldInterleave
, concatUnfoldRoundrobin
, AppendState(..)
, append
, InterleaveState(..)
, interleave
, interleaveMin
, interleaveSuffix
, interleaveInfix
, roundRobin
, gintercalateSuffix
, interposeSuffix
, gintercalate
, interpose
, groupsOf
, groupsOf2
, groupsBy
, groupsRollingBy
, splitBy
, splitSuffixBy
, wordsBy
, splitSuffixBy'
, splitOn
, splitSuffixOn
, splitInnerBy
, splitInnerBySuffix
, isPrefixOf
, isSubsequenceOf
, stripPrefix
, mapM_
, toList
, toListRev
, toStreamK
, toStreamD
, hoist
, generally
, liftInner
, runReaderT
, evalStateT
, runStateT
, transform
, scanlM'
, scanl'
, scanlM
, scanl
, scanl1M'
, scanl1'
, scanl1M
, scanl1
, prescanl'
, prescanlM'
, postscanl
, postscanlM
, postscanl'
, postscanlM'
, postscanlx'
, postscanlMx'
, scanlMx'
, scanlx'
, filter
, filterM
, uniq
, take
, takeWhile
, takeWhileM
, drop
, dropWhile
, dropWhileM
, map
, mapM
, sequence
, intersperseM
, intersperse
, intersperseSuffix
, insertBy
, deleteBy
, mapMaybe
, mapMaybeM
, indexed
, indexedR
, zipWith
, zipWithM
, eqBy
, cmpBy
, mergeBy
, mergeByM
, the
, gbracket
, before
, after
, bracket
, onException
, finally
, handle
, DecodeError(..)
, DecodeState
, CodePoint
, decodeUtf8
, encodeUtf8
, decodeUtf8Lenient
, decodeUtf8Either
, resumeDecodeUtf8Either
, decodeUtf8Arrays
, decodeUtf8ArraysLenient
)
where
import Control.Exception (Exception, SomeException)
import Control.Monad (void)
import Control.Monad.Catch (MonadCatch)
import Control.Monad.IO.Class (MonadIO(..))
import Control.Monad.Reader (ReaderT)
import Control.Monad.State.Strict (StateT)
import Control.Monad.Trans (MonadTrans(lift))
import Data.Bits (shiftR, shiftL, (.|.), (.&.))
import Data.Functor.Identity (Identity(..))
import Data.Maybe (fromJust, isJust)
import Data.Word (Word32)
import Foreign.Ptr (Ptr)
import Foreign.Storable (Storable(..))
import GHC.Base (assert, unsafeChr, ord)
import GHC.IO.Encoding.Failure (isSurrogate)
import GHC.ForeignPtr (ForeignPtr (..))
import GHC.Ptr (Ptr (..))
import GHC.Types (SPEC(..))
import GHC.Word (Word8(..))
import System.IO.Unsafe (unsafePerformIO)
import Prelude
hiding (map, mapM, mapM_, repeat, foldr, last, take, filter,
takeWhile, drop, dropWhile, all, any, maximum, minimum, elem,
notElem, null, head, tail, zipWith, lookup, foldr1, sequence,
(!!), scanl, scanl1, concatMap, replicate, enumFromTo, concat,
reverse)
import qualified Control.Monad.Catch as MC
import qualified Control.Monad.Reader as Reader
import qualified Control.Monad.State.Strict as State
import Streamly.Internal.Memory.Array.Types (Array(..))
import Streamly.Internal.Data.Fold.Types (Fold(..))
import Streamly.Internal.Data.Pipe.Types (Pipe(..), PipeState(..))
import Streamly.Internal.Data.SVar (MonadAsync, defState, adaptState)
import Streamly.Internal.Data.Unfold.Types (Unfold(..))
import Streamly.Internal.Data.Strict (Tuple'(..))
import Streamly.Internal.Data.Stream.StreamD.Type
import qualified Streamly.Internal.Data.Pipe.Types as Pipe
import qualified Streamly.Internal.Memory.Array.Types as A
import qualified Streamly.Memory.Ring as RB
import qualified Streamly.Streams.StreamK as K
import Foreign.Ptr (plusPtr)
import Foreign.ForeignPtr.Unsafe (unsafeForeignPtrToPtr)
import Foreign.ForeignPtr (touchForeignPtr)
{-# INLINE_NORMAL nil #-}
nil :: Monad m => Stream m a
nil = Stream (\_ _ -> return Stop) ()
{-# INLINE_NORMAL nilM #-}
nilM :: Monad m => m b -> Stream m a
nilM m = Stream (\_ _ -> m >> return Stop) ()
{-# INLINE_NORMAL consM #-}
consM :: Monad m => m a -> Stream m a -> Stream m a
consM m (Stream step state) = Stream step1 Nothing
where
{-# INLINE_LATE step1 #-}
step1 _ Nothing = m >>= \x -> return $ Yield x (Just state)
step1 gst (Just st) = do
r <- step gst st
return $
case r of
Yield a s -> Yield a (Just s)
Skip s -> Skip (Just s)
Stop -> Stop
{-# INLINE_NORMAL cons #-}
cons :: Monad m => a -> Stream m a -> Stream m a
cons x (Stream step state) = Stream step1 Nothing
where
{-# INLINE_LATE step1 #-}
step1 _ Nothing = return $ Yield x (Just state)
step1 gst (Just st) = do
r <- step gst st
return $
case r of
Yield a s -> Yield a (Just s)
Skip s -> Skip (Just s)
Stop -> Stop
{-# INLINE_NORMAL uncons #-}
uncons :: Monad m => Stream m a -> m (Maybe (a, Stream m a))
uncons (UnStream step state) = go state
where
go st = do
r <- step defState st
case r of
Yield x s -> return $ Just (x, Stream step s)
Skip s -> go s
Stop -> return Nothing
{-# INLINE_NORMAL unfoldrM #-}
unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Stream m a
unfoldrM next state = Stream step state
where
{-# INLINE_LATE step #-}
step _ st = do
r <- next st
return $ case r of
Just (x, s) -> Yield x s
Nothing -> Stop
{-# INLINE_LATE unfoldr #-}
unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Stream m a
unfoldr f = unfoldrM (return . f)
{-# INLINE_NORMAL unfold #-}
unfold :: Monad m => Unfold m a b -> a -> Stream m b
unfold (Unfold ustep inject) seed = Stream step Nothing
where
{-# INLINE_LATE step #-}
step _ Nothing = inject seed >>= return . Skip . Just
step _ (Just st) = do
r <- ustep st
return $ case r of
Yield x s -> Yield x (Just s)
Skip s -> Skip (Just s)
Stop -> Stop
repeatM :: Monad m => m a -> Stream m a
repeatM x = Stream (\_ _ -> x >>= \r -> return $ Yield r ()) ()
repeat :: Monad m => a -> Stream m a
repeat x = Stream (\_ _ -> return $ Yield x ()) ()
{-# INLINE_NORMAL replicateM #-}
replicateM :: forall m a. Monad m => Int -> m a -> Stream m a
replicateM n p = Stream step n
where
{-# INLINE_LATE step #-}
step _ (i :: Int)
| i <= 0 = return Stop
| otherwise = do
x <- p
return $ Yield x (i - 1)
{-# INLINE_NORMAL replicate #-}
replicate :: Monad m => Int -> a -> Stream m a
replicate n x = replicateM n (return x)
{-# INLINE_NORMAL enumerateFromStepIntegral #-}
enumerateFromStepIntegral :: (Integral a, Monad m) => a -> a -> Stream m a
enumerateFromStepIntegral from stride =
from `seq` stride `seq` Stream step from
where
{-# INLINE_LATE step #-}
step _ !x = return $ Yield x $! (x + stride)
{-# INLINE enumerateFromToIntegral #-}
enumerateFromToIntegral :: (Monad m, Integral a) => a -> a -> Stream m a
enumerateFromToIntegral from to =
takeWhile (<= to) $ enumerateFromStepIntegral from 1
{-# INLINE enumerateFromIntegral #-}
enumerateFromIntegral :: (Monad m, Integral a, Bounded a) => a -> Stream m a
enumerateFromIntegral from = enumerateFromToIntegral from maxBound
data EnumState a = EnumInit | EnumYield a a a | EnumStop
{-# INLINE_NORMAL enumerateFromThenToIntegralUp #-}
enumerateFromThenToIntegralUp
:: (Monad m, Integral a)
=> a -> a -> a -> Stream m a
enumerateFromThenToIntegralUp from next to = Stream step EnumInit
where
{-# INLINE_LATE step #-}
step _ EnumInit =
return $
if to < next
then if to < from
then Stop
else Yield from EnumStop
else
let stride = next - from
in Skip $ EnumYield from stride (to - stride)
step _ (EnumYield x stride toMinus) =
return $
if x > toMinus
then Yield x EnumStop
else Yield x $ EnumYield (x + stride) stride toMinus
step _ EnumStop = return Stop
{-# INLINE_NORMAL enumerateFromThenToIntegralDn #-}
enumerateFromThenToIntegralDn
:: (Monad m, Integral a)
=> a -> a -> a -> Stream m a
enumerateFromThenToIntegralDn from next to = Stream step EnumInit
where
{-# INLINE_LATE step #-}
step _ EnumInit =
return $ if to > next
then if to > from
then Stop
else Yield from EnumStop
else
let stride = next - from
in Skip $ EnumYield from stride (to - stride)
step _ (EnumYield x stride toMinus) =
return $
if x < toMinus
then Yield x EnumStop
else Yield x $ EnumYield (x + stride) stride toMinus
step _ EnumStop = return Stop
{-# INLINE_NORMAL enumerateFromThenToIntegral #-}
enumerateFromThenToIntegral
:: (Monad m, Integral a)
=> a -> a -> a -> Stream m a
enumerateFromThenToIntegral from next to
| next >= from = enumerateFromThenToIntegralUp from next to
| otherwise = enumerateFromThenToIntegralDn from next to
{-# INLINE_NORMAL enumerateFromThenIntegral #-}
enumerateFromThenIntegral
:: (Monad m, Integral a, Bounded a)
=> a -> a -> Stream m a
enumerateFromThenIntegral from next =
if next > from
then enumerateFromThenToIntegralUp from next maxBound
else enumerateFromThenToIntegralDn from next minBound
{-# INLINE_NORMAL enumerateFromStepNum #-}
enumerateFromStepNum :: (Monad m, Num a) => a -> a -> Stream m a
enumerateFromStepNum from stride = Stream step 0
where
{-# INLINE_LATE step #-}
step _ !i = return $ (Yield $! (from + i * stride)) $! (i + 1)
{-# INLINE_NORMAL numFrom #-}
numFrom :: (Monad m, Num a) => a -> Stream m a
numFrom from = enumerateFromStepNum from 1
{-# INLINE_NORMAL numFromThen #-}
numFromThen :: (Monad m, Num a) => a -> a -> Stream m a
numFromThen from next = enumerateFromStepNum from (next - from)
{-# INLINE_NORMAL enumerateFromToFractional #-}
enumerateFromToFractional
:: (Monad m, Fractional a, Ord a)
=> a -> a -> Stream m a
enumerateFromToFractional from to =
takeWhile (<= to + 1 / 2) $ enumerateFromStepNum from 1
{-# INLINE_NORMAL enumerateFromThenToFractional #-}
enumerateFromThenToFractional
:: (Monad m, Fractional a, Ord a)
=> a -> a -> a -> Stream m a
enumerateFromThenToFractional from next to =
takeWhile predicate $ numFromThen from next
where
mid = (next - from) / 2
predicate | next >= from = (<= to + mid)
| otherwise = (>= to + mid)
{-# INLINE_NORMAL fromIndicesM #-}
fromIndicesM :: Monad m => (Int -> m a) -> Stream m a
fromIndicesM gen = Stream step 0
where
{-# INLINE_LATE step #-}
step _ i = do
x <- gen i
return $ Yield x (i + 1)
{-# INLINE fromIndices #-}
fromIndices :: Monad m => (Int -> a) -> Stream m a
fromIndices gen = fromIndicesM (return . gen)
{-# INLINE_NORMAL generateM #-}
generateM :: Monad m => Int -> (Int -> m a) -> Stream m a
generateM n gen = n `seq` Stream step 0
where
{-# INLINE_LATE step #-}
step _ i | i < n = do
x <- gen i
return $ Yield x (i + 1)
| otherwise = return Stop
{-# INLINE generate #-}
generate :: Monad m => Int -> (Int -> a) -> Stream m a
generate n gen = generateM n (return . gen)
{-# INLINE_LATE fromListM #-}
fromListM :: MonadAsync m => [m a] -> Stream m a
fromListM = Stream step
where
{-# INLINE_LATE step #-}
step _ (m:ms) = m >>= \x -> return $ Yield x ms
step _ [] = return Stop
{-# INLINE toStreamD #-}
toStreamD :: (K.IsStream t, Monad m) => t m a -> Stream m a
toStreamD = fromStreamK . K.toStream
{-# INLINE_NORMAL hoist #-}
hoist :: Monad n => (forall x. m x -> n x) -> Stream m a -> Stream n a
hoist f (Stream step state) = (Stream step' state)
where
step' gst st = do
r <- f $ step (adaptState gst) st
return $ case r of
Yield x s -> Yield x s
Skip s -> Skip s
Stop -> Stop
{-# INLINE_NORMAL generally #-}
generally :: Monad m => Stream Identity a -> Stream m a
generally = hoist (return . runIdentity)
{-# INLINE_NORMAL liftInner #-}
liftInner :: (Monad m, MonadTrans t, Monad (t m))
=> Stream m a -> Stream (t m) a
liftInner (Stream step state) = Stream step' state
where
step' gst st = do
r <- lift $ step (adaptState gst) st
return $ case r of
Yield x s -> Yield x s
Skip s -> Skip s
Stop -> Stop
{-# INLINE_NORMAL runReaderT #-}
runReaderT :: Monad m => s -> Stream (ReaderT s m) a -> Stream m a
runReaderT sval (Stream step state) = Stream step' state
where
step' gst st = do
r <- Reader.runReaderT (step (adaptState gst) st) sval
return $ case r of
Yield x s -> Yield x s
Skip s -> Skip s
Stop -> Stop
{-# INLINE_NORMAL evalStateT #-}
evalStateT :: Monad m => s -> Stream (StateT s m) a -> Stream m a
evalStateT sval (Stream step state) = Stream step' (state, sval)
where
step' gst (st, sv) = do
(r, sv') <- State.runStateT (step (adaptState gst) st) sv
return $ case r of
Yield x s -> Yield x (s, sv')
Skip s -> Skip (s, sv')
Stop -> Stop
{-# INLINE_NORMAL runStateT #-}
runStateT :: Monad m => s -> Stream (StateT s m) a -> Stream m (s, a)
runStateT sval (Stream step state) = Stream step' (state, sval)
where
step' gst (st, sv) = do
(r, sv') <- State.runStateT (step (adaptState gst) st) sv
return $ case r of
Yield x s -> Yield (sv', x) (s, sv')
Skip s -> Skip (s, sv')
Stop -> Stop
{-# INLINE_NORMAL foldr1 #-}
foldr1 :: Monad m => (a -> a -> a) -> Stream m a -> m (Maybe a)
foldr1 f m = do
r <- uncons m
case r of
Nothing -> return Nothing
Just (h, t) -> fmap Just (foldr f h t)
{-# INLINE_NORMAL foldlT #-}
foldlT :: (Monad m, Monad (s m), MonadTrans s)
=> (s m b -> a -> s m b) -> s m b -> Stream m a -> s m b
foldlT fstep begin (Stream step state) = go SPEC begin state
where
go !_ acc st = do
r <- lift $ step defState st
case r of
Yield x s -> go SPEC (fstep acc x) s
Skip s -> go SPEC acc s
Stop -> acc
{-# INLINE_NORMAL foldlS #-}
foldlS :: Monad m
=> (Stream m b -> a -> Stream m b) -> Stream m b -> Stream m a -> Stream m b
foldlS fstep begin (Stream step state) = Stream step' (Left (state, begin))
where
step' gst (Left (st, acc)) = do
r <- step (adaptState gst) st
return $ case r of
Yield x s -> Skip (Left (s, fstep acc x))
Skip s -> Skip (Left (s, acc))
Stop -> Skip (Right acc)
step' gst (Right (Stream stp stt)) = do
r <- stp (adaptState gst) stt
return $ case r of
Yield x s -> Yield x (Right (Stream stp s))
Skip s -> Skip (Right (Stream stp s))
Stop -> Stop
{-# INLINE_LATE drain #-}
drain :: Monad m => Stream m a -> m ()
drain (Stream step state) = go SPEC state
where
go !_ st = do
r <- step defState st
case r of
Yield _ s -> go SPEC s
Skip s -> go SPEC s
Stop -> return ()
{-# INLINE_NORMAL null #-}
null :: Monad m => Stream m a -> m Bool
null m = foldrM (\_ _ -> return False) (return True) m
{-# INLINE_NORMAL head #-}
head :: Monad m => Stream m a -> m (Maybe a)
head m = foldrM (\x _ -> return (Just x)) (return Nothing) m
{-# INLINE_NORMAL tail #-}
tail :: Monad m => Stream m a -> m (Maybe (Stream m a))
tail (UnStream step state) = go state
where
go st = do
r <- step defState st
case r of
Yield _ s -> return (Just $ Stream step s)
Skip s -> go s
Stop -> return Nothing
{-# INLINE_NORMAL last #-}
last :: Monad m => Stream m a -> m (Maybe a)
last = foldl' (\_ y -> Just y) Nothing
{-# INLINE_NORMAL elem #-}
elem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
elem e (Stream step state) = go state
where
go st = do
r <- step defState st
case r of
Yield x s
| x == e -> return True
| otherwise -> go s
Skip s -> go s
Stop -> return False
{-# INLINE_NORMAL notElem #-}
notElem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
notElem e s = fmap not (elem e s)
{-# INLINE_NORMAL all #-}
all :: Monad m => (a -> Bool) -> Stream m a -> m Bool
all p (Stream step state) = go state
where
go st = do
r <- step defState st
case r of
Yield x s
| p x -> go s
| otherwise -> return False
Skip s -> go s
Stop -> return True
{-# INLINE_NORMAL any #-}
any :: Monad m => (a -> Bool) -> Stream m a -> m Bool
any p (Stream step state) = go state
where
go st = do
r <- step defState st
case r of
Yield x s
| p x -> return True
| otherwise -> go s
Skip s -> go s
Stop -> return False
{-# INLINE_NORMAL maximum #-}
maximum :: (Monad m, Ord a) => Stream m a -> m (Maybe a)
maximum (Stream step state) = go Nothing state
where
go Nothing st = do
r <- step defState st
case r of
Yield x s -> go (Just x) s
Skip s -> go Nothing s
Stop -> return Nothing
go (Just acc) st = do
r <- step defState st
case r of
Yield x s
| acc <= x -> go (Just x) s
| otherwise -> go (Just acc) s
Skip s -> go (Just acc) s
Stop -> return (Just acc)
{-# INLINE_NORMAL maximumBy #-}
maximumBy :: Monad m => (a -> a -> Ordering) -> Stream m a -> m (Maybe a)
maximumBy cmp (Stream step state) = go Nothing state
where
go Nothing st = do
r <- step defState st
case r of
Yield x s -> go (Just x) s
Skip s -> go Nothing s
Stop -> return Nothing
go (Just acc) st = do
r <- step defState st
case r of
Yield x s -> case cmp acc x of
GT -> go (Just acc) s
_ -> go (Just x) s
Skip s -> go (Just acc) s
Stop -> return (Just acc)
{-# INLINE_NORMAL minimum #-}
minimum :: (Monad m, Ord a) => Stream m a -> m (Maybe a)
minimum (Stream step state) = go Nothing state
where
go Nothing st = do
r <- step defState st
case r of
Yield x s -> go (Just x) s
Skip s -> go Nothing s
Stop -> return Nothing
go (Just acc) st = do
r <- step defState st
case r of
Yield x s
| acc <= x -> go (Just acc) s
| otherwise -> go (Just x) s
Skip s -> go (Just acc) s
Stop -> return (Just acc)
{-# INLINE_NORMAL minimumBy #-}
minimumBy :: Monad m => (a -> a -> Ordering) -> Stream m a -> m (Maybe a)
minimumBy cmp (Stream step state) = go Nothing state
where
go Nothing st = do
r <- step defState st
case r of
Yield x s -> go (Just x) s
Skip s -> go Nothing s
Stop -> return Nothing
go (Just acc) st = do
r <- step defState st
case r of
Yield x s -> case cmp acc x of
GT -> go (Just x) s
_ -> go (Just acc) s
Skip s -> go (Just acc) s
Stop -> return (Just acc)
{-# INLINE_NORMAL (!!) #-}
(!!) :: (Monad m) => Stream m a -> Int -> m (Maybe a)
(Stream step state) !! i = go i state
where
go n st = do
r <- step defState st
case r of
Yield x s | n < 0 -> return Nothing
| n == 0 -> return $ Just x
| otherwise -> go (n - 1) s
Skip s -> go n s
Stop -> return Nothing
{-# INLINE_NORMAL lookup #-}
lookup :: (Monad m, Eq a) => a -> Stream m (a, b) -> m (Maybe b)
lookup e m = foldrM (\(a, b) xs -> if e == a then return (Just b) else xs)
(return Nothing) m
{-# INLINE_NORMAL findM #-}
findM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe a)
findM p m = foldrM (\x xs -> p x >>= \r -> if r then return (Just x) else xs)
(return Nothing) m
{-# INLINE find #-}
find :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe a)
find p = findM (return . p)
{-# INLINE_NORMAL findIndices #-}
findIndices :: Monad m => (a -> Bool) -> Stream m a -> Stream m Int
findIndices p (Stream step state) = Stream step' (state, 0)
where
{-# INLINE_LATE step' #-}
step' gst (st, i) = do
r <- step (adaptState gst) st
return $ case r of
Yield x s -> if p x then Yield i (s, i+1) else Skip (s, i+1)
Skip s -> Skip (s, i+1)
Stop -> Stop
{-# INLINE toListRev #-}
toListRev :: Monad m => Stream m a -> m [a]
toListRev = foldl' (flip (:)) []
{-# INLINE_NORMAL reverse #-}
reverse :: Monad m => Stream m a -> Stream m a
reverse m = Stream step Nothing
where
{-# INLINE_LATE step #-}
step _ Nothing = do
xs <- toListRev m
return $ Skip (Just xs)
step _ (Just (x:xs)) = return $ Yield x (Just xs)
step _ (Just []) = return Stop
{-# INLINE_NORMAL reverse' #-}
reverse' :: forall m a. (MonadIO m, Storable a) => Stream m a -> Stream m a
reverse' m =
A.flattenArraysRev
$ fromStreamK
$ K.reverse
$ toStreamK
$ A.fromStreamDArraysOf A.defaultChunkSize m
{-# INLINE_NORMAL splitSuffixBy' #-}
splitSuffixBy' :: Monad m
=> (a -> Bool) -> Fold m a b -> Stream m a -> Stream m b
splitSuffixBy' predicate f (Stream step state) =
Stream (stepOuter f) (Just state)
where
{-# INLINE_LATE stepOuter #-}
stepOuter (Fold fstep initial done) gst (Just st) = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
acc <- initial
acc' <- fstep acc x
if (predicate x)
then done acc' >>= \val -> return $ Yield val (Just s)
else go SPEC s acc'
Skip s -> return $ Skip $ Just s
Stop -> return Stop
where
go !_ stt !acc = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
acc' <- fstep acc x
if (predicate x)
then done acc' >>= \val -> return $ Yield val (Just s)
else go SPEC s acc'
Skip s -> go SPEC s acc
Stop -> done acc >>= \val -> return $ Yield val Nothing
stepOuter _ _ Nothing = return Stop
{-# INLINE_NORMAL groupsBy #-}
groupsBy :: Monad m
=> (a -> a -> Bool)
-> Fold m a b
-> Stream m a
-> Stream m b
groupsBy cmp f (Stream step state) = Stream (stepOuter f) (Just state, Nothing)
where
{-# INLINE_LATE stepOuter #-}
stepOuter (Fold fstep initial done) gst (Just st, Nothing) = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
acc <- initial
acc' <- fstep acc x
go SPEC x s acc'
Skip s -> return $ Skip $ (Just s, Nothing)
Stop -> return Stop
where
go !_ prev stt !acc = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
if cmp x prev
then do
acc' <- fstep acc x
go SPEC prev s acc'
else done acc >>= \r -> return $ Yield r (Just s, Just x)
Skip s -> go SPEC prev s acc
Stop -> done acc >>= \r -> return $ Yield r (Nothing, Nothing)
stepOuter (Fold fstep initial done) gst (Just st, Just prev) = do
acc <- initial
acc' <- fstep acc prev
go SPEC st acc'
where
go !_ stt !acc = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
if cmp x prev
then do
acc' <- fstep acc x
go SPEC s acc'
else done acc >>= \r -> return $ Yield r (Just s, Just x)
Skip s -> go SPEC s acc
Stop -> done acc >>= \r -> return $ Yield r (Nothing, Nothing)
stepOuter _ _ (Nothing,_) = return Stop
{-# INLINE_NORMAL groupsRollingBy #-}
groupsRollingBy :: Monad m
=> (a -> a -> Bool)
-> Fold m a b
-> Stream m a
-> Stream m b
groupsRollingBy cmp f (Stream step state) =
Stream (stepOuter f) (Just state, Nothing)
where
{-# INLINE_LATE stepOuter #-}
stepOuter (Fold fstep initial done) gst (Just st, Nothing) = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
acc <- initial
acc' <- fstep acc x
go SPEC x s acc'
Skip s -> return $ Skip $ (Just s, Nothing)
Stop -> return Stop
where
go !_ prev stt !acc = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
if cmp prev x
then do
acc' <- fstep acc x
go SPEC x s acc'
else
done acc >>= \r -> return $ Yield r (Just s, Just x)
Skip s -> go SPEC prev s acc
Stop -> done acc >>= \r -> return $ Yield r (Nothing, Nothing)
stepOuter (Fold fstep initial done) gst (Just st, Just prev') = do
acc <- initial
acc' <- fstep acc prev'
go SPEC prev' st acc'
where
go !_ prevv stt !acc = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
if cmp prevv x
then do
acc' <- fstep acc x
go SPEC x s acc'
else done acc >>= \r -> return $ Yield r (Just s, Just x)
Skip s -> go SPEC prevv s acc
Stop -> done acc >>= \r -> return $ Yield r (Nothing, Nothing)
stepOuter _ _ (Nothing, _) = return Stop
{-# INLINE_NORMAL splitBy #-}
splitBy :: Monad m => (a -> Bool) -> Fold m a b -> Stream m a -> Stream m b
splitBy predicate f (Stream step state) = Stream (step' f) (Just state)
where
{-# INLINE_LATE step' #-}
step' (Fold fstep initial done) gst (Just st) = initial >>= go SPEC st
where
go !_ stt !acc = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
if predicate x
then done acc >>= \r -> return $ Yield r (Just s)
else do
acc' <- fstep acc x
go SPEC s acc'
Skip s -> go SPEC s acc
Stop -> done acc >>= \r -> return $ Yield r Nothing
step' _ _ Nothing = return Stop
{-# INLINE_NORMAL splitSuffixBy #-}
splitSuffixBy :: Monad m
=> (a -> Bool) -> Fold m a b -> Stream m a -> Stream m b
splitSuffixBy predicate f (Stream step state) = Stream (step' f) (Just state)
where
{-# INLINE_LATE step' #-}
step' (Fold fstep initial done) gst (Just st) = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
acc <- initial
if predicate x
then done acc >>= \val -> return $ Yield val (Just s)
else do
acc' <- fstep acc x
go SPEC s acc'
Skip s -> return $ Skip $ Just s
Stop -> return Stop
where
go !_ stt !acc = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
if predicate x
then done acc >>= \r -> return $ Yield r (Just s)
else do
acc' <- fstep acc x
go SPEC s acc'
Skip s -> go SPEC s acc
Stop -> done acc >>= \r -> return $ Yield r Nothing
step' _ _ Nothing = return Stop
{-# INLINE_NORMAL wordsBy #-}
wordsBy :: Monad m => (a -> Bool) -> Fold m a b -> Stream m a -> Stream m b
wordsBy predicate f (Stream step state) = Stream (stepOuter f) (Just state)
where
{-# INLINE_LATE stepOuter #-}
stepOuter (Fold fstep initial done) gst (Just st) = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
if predicate x
then return $ Skip (Just s)
else do
acc <- initial
acc' <- fstep acc x
go SPEC s acc'
Skip s -> return $ Skip $ Just s
Stop -> return Stop
where
go !_ stt !acc = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
if predicate x
then done acc >>= \r -> return $ Yield r (Just s)
else do
acc' <- fstep acc x
go SPEC s acc'
Skip s -> go SPEC s acc
Stop -> done acc >>= \r -> return $ Yield r Nothing
stepOuter _ _ Nothing = return Stop
data SplitOnState s a =
GO_START
| GO_EMPTY_PAT s
| GO_SINGLE_PAT s a
| GO_SHORT_PAT s
| GO_KARP_RABIN s !(RB.Ring a) !(Ptr a)
| GO_DONE
{-# INLINE_NORMAL splitOn #-}
splitOn
:: forall m a b. (MonadIO m, Storable a, Enum a, Eq a)
=> Array a
-> Fold m a b
-> Stream m a
-> Stream m b
splitOn patArr@Array{..} (Fold fstep initial done) (Stream step state) =
Stream stepOuter GO_START
where
patLen = A.length patArr
maxIndex = patLen - 1
elemBits = sizeOf (undefined :: a) * 8
{-# INLINE_LATE stepOuter #-}
stepOuter _ GO_START =
if patLen == 0
then return $ Skip $ GO_EMPTY_PAT state
else if patLen == 1
then do
r <- liftIO $ (A.unsafeIndexIO patArr 0)
return $ Skip $ GO_SINGLE_PAT state r
else if sizeOf (undefined :: a) * patLen
<= sizeOf (undefined :: Word)
then return $ Skip $ GO_SHORT_PAT state
else do
(rb, rhead) <- liftIO $ RB.new patLen
return $ Skip $ GO_KARP_RABIN state rb rhead
stepOuter gst (GO_SINGLE_PAT stt pat) = initial >>= go SPEC stt
where
go !_ st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
if pat == x
then do
r <- done acc
return $ Yield r (GO_SINGLE_PAT s pat)
else fstep acc x >>= go SPEC s
Skip s -> go SPEC s acc
Stop -> done acc >>= \r -> return $ Yield r GO_DONE
stepOuter gst (GO_SHORT_PAT stt) = initial >>= go0 SPEC 0 (0 :: Word) stt
where
mask :: Word
mask = (1 `shiftL` (elemBits * patLen)) - 1
addToWord wrd a = (wrd `shiftL` elemBits) .|. fromIntegral (fromEnum a)
patWord :: Word
patWord = mask .&. A.foldl' addToWord 0 patArr
go0 !_ !idx wrd st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
let wrd' = addToWord wrd x
if idx == maxIndex
then do
if wrd' .&. mask == patWord
then do
r <- done acc
return $ Yield r (GO_SHORT_PAT s)
else go1 SPEC wrd' s acc
else go0 SPEC (idx + 1) wrd' s acc
Skip s -> go0 SPEC idx wrd s acc
Stop -> do
acc' <- if idx /= 0
then go2 wrd idx acc
else return acc
done acc' >>= \r -> return $ Yield r GO_DONE
{-# INLINE go1 #-}
go1 !_ wrd st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
let wrd' = addToWord wrd x
old = (mask .&. wrd) `shiftR` (elemBits * (patLen - 1))
acc' <- fstep acc (toEnum $ fromIntegral old)
if wrd' .&. mask == patWord
then done acc' >>= \r -> return $ Yield r (GO_SHORT_PAT s)
else go1 SPEC wrd' s acc'
Skip s -> go1 SPEC wrd s acc
Stop -> do
acc' <- go2 wrd patLen acc
done acc' >>= \r -> return $ Yield r GO_DONE
go2 !wrd !n !acc | n > 0 = do
let old = (mask .&. wrd) `shiftR` (elemBits * (n - 1))
fstep acc (toEnum $ fromIntegral old) >>= go2 wrd (n - 1)
go2 _ _ acc = return acc
stepOuter gst (GO_KARP_RABIN stt rb rhead) = do
initial >>= go0 SPEC 0 rhead stt
where
k = 2891336453 :: Word32
coeff = k ^ patLen
addCksum cksum a = cksum * k + fromIntegral (fromEnum a)
deltaCksum cksum old new =
addCksum cksum new - coeff * fromIntegral (fromEnum old)
patHash = A.foldl' addCksum 0 patArr
go0 !_ !idx !rh st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
rh' <- liftIO $ RB.unsafeInsert rb rh x
if idx == maxIndex
then do
let fold = RB.unsafeFoldRing (RB.ringBound rb)
let !ringHash = fold addCksum 0 rb
if ringHash == patHash
then go2 SPEC ringHash rh' s acc
else go1 SPEC ringHash rh' s acc
else go0 SPEC (idx + 1) rh' s acc
Skip s -> go0 SPEC idx rh s acc
Stop -> do
!acc' <- if idx /= 0
then RB.unsafeFoldRingM rh fstep acc rb
else return acc
done acc' >>= \r -> return $ Yield r GO_DONE
{-# INLINE go1 #-}
go1 !_ !cksum !rh st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
old <- liftIO $ peek rh
let cksum' = deltaCksum cksum old x
acc' <- fstep acc old
if (cksum' == patHash)
then do
rh' <- liftIO (RB.unsafeInsert rb rh x)
go2 SPEC cksum' rh' s acc'
else do
rh' <- liftIO (RB.unsafeInsert rb rh x)
go1 SPEC cksum' rh' s acc'
Skip s -> go1 SPEC cksum rh s acc
Stop -> do
acc' <- RB.unsafeFoldRingFullM rh fstep acc rb
done acc' >>= \r -> return $ Yield r GO_DONE
go2 !_ !cksum' !rh' s !acc' = do
if RB.unsafeEqArray rb rh' patArr
then do
r <- done acc'
return $ Yield r (GO_KARP_RABIN s rb rhead)
else go1 SPEC cksum' rh' s acc'
stepOuter gst (GO_EMPTY_PAT st) = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
acc <- initial
acc' <- fstep acc x
done acc' >>= \r -> return $ Yield r (GO_EMPTY_PAT s)
Skip s -> return $ Skip (GO_EMPTY_PAT s)
Stop -> return Stop
stepOuter _ GO_DONE = return Stop
{-# INLINE_NORMAL splitSuffixOn #-}
splitSuffixOn
:: forall m a b. (MonadIO m, Storable a, Enum a, Eq a)
=> Bool
-> Array a
-> Fold m a b
-> Stream m a
-> Stream m b
splitSuffixOn withSep patArr@Array{..} (Fold fstep initial done)
(Stream step state) =
Stream stepOuter GO_START
where
patLen = A.length patArr
maxIndex = patLen - 1
elemBits = sizeOf (undefined :: a) * 8
{-# INLINE_LATE stepOuter #-}
stepOuter _ GO_START =
if patLen == 0
then return $ Skip $ GO_EMPTY_PAT state
else if patLen == 1
then do
r <- liftIO $ (A.unsafeIndexIO patArr 0)
return $ Skip $ GO_SINGLE_PAT state r
else if sizeOf (undefined :: a) * patLen
<= sizeOf (undefined :: Word)
then return $ Skip $ GO_SHORT_PAT state
else do
(rb, rhead) <- liftIO $ RB.new patLen
return $ Skip $ GO_KARP_RABIN state rb rhead
stepOuter gst (GO_SINGLE_PAT stt pat) = do
res <- step (adaptState gst) stt
case res of
Yield x s -> do
acc <- initial
if pat == x
then do
acc' <- if withSep then fstep acc x else return acc
done acc' >>= \r -> return $ Yield r (GO_SINGLE_PAT s pat)
else fstep acc x >>= go SPEC s
Skip s -> return $ Skip $ (GO_SINGLE_PAT s pat)
Stop -> return Stop
where
go !_ st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
if pat == x
then do
acc' <- if withSep then fstep acc x else return acc
r <- done acc'
return $ Yield r (GO_SINGLE_PAT s pat)
else fstep acc x >>= go SPEC s
Skip s -> go SPEC s acc
Stop -> done acc >>= \r -> return $ Yield r GO_DONE
stepOuter gst (GO_SHORT_PAT stt) = do
let idx = 0
let wrd = 0
res <- step (adaptState gst) stt
case res of
Yield x s -> do
acc <- initial
let wrd' = addToWord wrd x
acc' <- if withSep then fstep acc x else return acc
if idx == maxIndex
then do
if wrd' .&. mask == patWord
then done acc' >>= \r -> return $ Yield r (GO_SHORT_PAT s)
else go0 SPEC (idx + 1) wrd' s acc'
else go0 SPEC (idx + 1) wrd' s acc'
Skip s -> return $ Skip (GO_SHORT_PAT s)
Stop -> return Stop
where
mask :: Word
mask = (1 `shiftL` (elemBits * patLen)) - 1
addToWord wrd a = (wrd `shiftL` elemBits) .|. fromIntegral (fromEnum a)
patWord :: Word
patWord = mask .&. A.foldl' addToWord 0 patArr
go0 !_ !idx wrd st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
let wrd' = addToWord wrd x
acc' <- if withSep then fstep acc x else return acc
if idx == maxIndex
then do
if wrd' .&. mask == patWord
then do
r <- done acc'
return $ Yield r (GO_SHORT_PAT s)
else go1 SPEC wrd' s acc'
else go0 SPEC (idx + 1) wrd' s acc'
Skip s -> go0 SPEC idx wrd s acc
Stop -> do
if (idx == maxIndex) && (wrd .&. mask == patWord)
then return Stop
else do
acc' <- if idx /= 0 && not withSep
then go2 wrd idx acc
else return acc
done acc' >>= \r -> return $ Yield r GO_DONE
{-# INLINE go1 #-}
go1 !_ wrd st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
let wrd' = addToWord wrd x
old = (mask .&. wrd) `shiftR` (elemBits * (patLen - 1))
acc' <- if withSep
then fstep acc x
else fstep acc (toEnum $ fromIntegral old)
if wrd' .&. mask == patWord
then done acc' >>= \r -> return $ Yield r (GO_SHORT_PAT s)
else go1 SPEC wrd' s acc'
Skip s -> go1 SPEC wrd s acc
Stop ->
if wrd .&. mask == patWord
then return Stop
else do
acc' <- if withSep
then return acc
else go2 wrd patLen acc
done acc' >>= \r -> return $ Yield r GO_DONE
go2 !wrd !n !acc | n > 0 = do
let old = (mask .&. wrd) `shiftR` (elemBits * (n - 1))
fstep acc (toEnum $ fromIntegral old) >>= go2 wrd (n - 1)
go2 _ _ acc = return acc
stepOuter gst (GO_KARP_RABIN stt rb rhead) = do
let idx = 0
res <- step (adaptState gst) stt
case res of
Yield x s -> do
acc <- initial
acc' <- if withSep then fstep acc x else return acc
rh' <- liftIO (RB.unsafeInsert rb rhead x)
if idx == maxIndex
then do
let fold = RB.unsafeFoldRing (RB.ringBound rb)
let !ringHash = fold addCksum 0 rb
if ringHash == patHash
then go2 SPEC ringHash rh' s acc'
else go0 SPEC (idx + 1) rh' s acc'
else go0 SPEC (idx + 1) rh' s acc'
Skip s -> return $ Skip (GO_KARP_RABIN s rb rhead)
Stop -> return Stop
where
k = 2891336453 :: Word32
coeff = k ^ patLen
addCksum cksum a = cksum * k + fromIntegral (fromEnum a)
deltaCksum cksum old new =
addCksum cksum new - coeff * fromIntegral (fromEnum old)
patHash = A.foldl' addCksum 0 patArr
go0 !_ !idx !rh st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
acc' <- if withSep then fstep acc x else return acc
rh' <- liftIO (RB.unsafeInsert rb rh x)
if idx == maxIndex
then do
let fold = RB.unsafeFoldRing (RB.ringBound rb)
let !ringHash = fold addCksum 0 rb
if ringHash == patHash
then go2 SPEC ringHash rh' s acc'
else go1 SPEC ringHash rh' s acc'
else go0 SPEC (idx + 1) rh' s acc'
Skip s -> go0 SPEC idx rh s acc
Stop -> do
if (idx == maxIndex) && RB.unsafeEqArray rb rh patArr
then return Stop
else do
!acc' <- if idx /= 0 && not withSep
then RB.unsafeFoldRingM rh fstep acc rb
else return acc
done acc' >>= \r -> return $ Yield r GO_DONE
{-# INLINE go1 #-}
go1 !_ !cksum !rh st !acc = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
old <- liftIO $ peek rh
let cksum' = deltaCksum cksum old x
acc' <- if withSep
then fstep acc x
else fstep acc old
if (cksum' == patHash)
then do
rh' <- liftIO (RB.unsafeInsert rb rh x)
go2 SPEC cksum' rh' s acc'
else do
rh' <- liftIO (RB.unsafeInsert rb rh x)
go1 SPEC cksum' rh' s acc'
Skip s -> go1 SPEC cksum rh s acc
Stop -> do
if RB.unsafeEqArray rb rh patArr
then return Stop
else do
acc' <- if withSep
then return acc
else RB.unsafeFoldRingFullM rh fstep acc rb
done acc' >>= \r -> return $ Yield r GO_DONE
go2 !_ !cksum' !rh' s !acc' = do
if RB.unsafeEqArray rb rh' patArr
then do
r <- done acc'
return $ Yield r (GO_KARP_RABIN s rb rhead)
else go1 SPEC cksum' rh' s acc'
stepOuter gst (GO_EMPTY_PAT st) = do
res <- step (adaptState gst) st
case res of
Yield x s -> do
acc <- initial
acc' <- fstep acc x
done acc' >>= \r -> return $ Yield r (GO_EMPTY_PAT s)
Skip s -> return $ Skip (GO_EMPTY_PAT s)
Stop -> return Stop
stepOuter _ GO_DONE = return Stop
data SplitState s arr
= SplitInitial s
| SplitBuffering s arr
| SplitSplitting s arr
| SplitYielding arr (SplitState s arr)
| SplitFinishing
{-# INLINE_NORMAL splitInnerBy #-}
splitInnerBy
:: Monad m
=> (f a -> m (f a, Maybe (f a)))
-> (f a -> f a -> m (f a))
-> Stream m (f a)
-> Stream m (f a)
splitInnerBy splitter joiner (Stream step1 state1) =
(Stream step (SplitInitial state1))
where
{-# INLINE_LATE step #-}
step gst (SplitInitial st) = do
r <- step1 gst st
case r of
Yield x s -> do
(x1, mx2) <- splitter x
return $ case mx2 of
Nothing -> Skip (SplitBuffering s x1)
Just x2 -> Skip (SplitYielding x1 (SplitSplitting s x2))
Skip s -> return $ Skip (SplitInitial s)
Stop -> return $ Stop
step gst (SplitBuffering st buf) = do
r <- step1 gst st
case r of
Yield x s -> do
(x1, mx2) <- splitter x
buf' <- joiner buf x1
return $ case mx2 of
Nothing -> Skip (SplitBuffering s buf')
Just x2 -> Skip (SplitYielding buf' (SplitSplitting s x2))
Skip s -> return $ Skip (SplitBuffering s buf)
Stop -> return $ Skip (SplitYielding buf SplitFinishing)
step _ (SplitSplitting st buf) = do
(x1, mx2) <- splitter buf
return $ case mx2 of
Nothing -> Skip $ SplitBuffering st x1
Just x2 -> Skip $ SplitYielding x1 (SplitSplitting st x2)
step _ (SplitYielding x next) = return $ Yield x next
step _ SplitFinishing = return $ Stop
{-# INLINE_NORMAL splitInnerBySuffix #-}
splitInnerBySuffix
:: (Monad m, Eq (f a), Monoid (f a))
=> (f a -> m (f a, Maybe (f a)))
-> (f a -> f a -> m (f a))
-> Stream m (f a)
-> Stream m (f a)
splitInnerBySuffix splitter joiner (Stream step1 state1) =
(Stream step (SplitInitial state1))
where
{-# INLINE_LATE step #-}
step gst (SplitInitial st) = do
r <- step1 gst st
case r of
Yield x s -> do
(x1, mx2) <- splitter x
return $ case mx2 of
Nothing -> Skip (SplitBuffering s x1)
Just x2 -> Skip (SplitYielding x1 (SplitSplitting s x2))
Skip s -> return $ Skip (SplitInitial s)
Stop -> return $ Stop
step gst (SplitBuffering st buf) = do
r <- step1 gst st
case r of
Yield x s -> do
(x1, mx2) <- splitter x
buf' <- joiner buf x1
return $ case mx2 of
Nothing -> Skip (SplitBuffering s buf')
Just x2 -> Skip (SplitYielding buf' (SplitSplitting s x2))
Skip s -> return $ Skip (SplitBuffering s buf)
Stop -> return $
if buf == mempty
then Stop
else Skip (SplitYielding buf SplitFinishing)
step _ (SplitSplitting st buf) = do
(x1, mx2) <- splitter buf
return $ case mx2 of
Nothing -> Skip $ SplitBuffering st x1
Just x2 -> Skip $ SplitYielding x1 (SplitSplitting st x2)
step _ (SplitYielding x next) = return $ Yield x next
step _ SplitFinishing = return $ Stop
{-# INLINE_NORMAL isPrefixOf #-}
isPrefixOf :: (Eq a, Monad m) => Stream m a -> Stream m a -> m Bool
isPrefixOf (Stream stepa ta) (Stream stepb tb) = go (ta, tb, Nothing)
where
go (sa, sb, Nothing) = do
r <- stepa defState sa
case r of
Yield x sa' -> go (sa', sb, Just x)
Skip sa' -> go (sa', sb, Nothing)
Stop -> return True
go (sa, sb, Just x) = do
r <- stepb defState sb
case r of
Yield y sb' ->
if x == y
then go (sa, sb', Nothing)
else return False
Skip sb' -> go (sa, sb', Just x)
Stop -> return False
{-# INLINE_NORMAL isSubsequenceOf #-}
isSubsequenceOf :: (Eq a, Monad m) => Stream m a -> Stream m a -> m Bool
isSubsequenceOf (Stream stepa ta) (Stream stepb tb) = go (ta, tb, Nothing)
where
go (sa, sb, Nothing) = do
r <- stepa defState sa
case r of
Yield x sa' -> go (sa', sb, Just x)
Skip sa' -> go (sa', sb, Nothing)
Stop -> return True
go (sa, sb, Just x) = do
r <- stepb defState sb
case r of
Yield y sb' ->
if x == y
then go (sa, sb', Nothing)
else go (sa, sb', Just x)
Skip sb' -> go (sa, sb', Just x)
Stop -> return False
{-# INLINE_NORMAL stripPrefix #-}
stripPrefix
:: (Eq a, Monad m)
=> Stream m a -> Stream m a -> m (Maybe (Stream m a))
stripPrefix (Stream stepa ta) (Stream stepb tb) = go (ta, tb, Nothing)
where
go (sa, sb, Nothing) = do
r <- stepa defState sa
case r of
Yield x sa' -> go (sa', sb, Just x)
Skip sa' -> go (sa', sb, Nothing)
Stop -> return $ Just (Stream stepb sb)
go (sa, sb, Just x) = do
r <- stepb defState sb
case r of
Yield y sb' ->
if x == y
then go (sa, sb', Nothing)
else return Nothing
Skip sb' -> go (sa, sb', Just x)
Stop -> return Nothing
{-# INLINE_NORMAL mapM_ #-}
mapM_ :: Monad m => (a -> m b) -> Stream m a -> m ()
mapM_ m = drain . mapM m
data ConcatMapUState o i =
ConcatMapUOuter o
| ConcatMapUInner o i
{-# INLINE_NORMAL concatMapU #-}
concatMapU :: Monad m => Unfold m a b -> Stream m a -> Stream m b
concatMapU (Unfold istep inject) (Stream ostep ost) =
Stream step (ConcatMapUOuter ost)
where
{-# INLINE_LATE step #-}
step gst (ConcatMapUOuter o) = do
r <- ostep (adaptState gst) o
case r of
Yield a o' -> do
i <- inject a
i `seq` return (Skip (ConcatMapUInner o' i))
Skip o' -> return $ Skip (ConcatMapUOuter o')
Stop -> return $ Stop
step _ (ConcatMapUInner o i) = do
r <- istep i
return $ case r of
Yield x i' -> Yield x (ConcatMapUInner o i')
Skip i' -> Skip (ConcatMapUInner o i')
Stop -> Skip (ConcatMapUOuter o)
data ConcatUnfoldInterleaveState o i =
ConcatUnfoldInterleaveOuter o [i]
| ConcatUnfoldInterleaveInner o [i]
| ConcatUnfoldInterleaveInnerL [i] [i]
| ConcatUnfoldInterleaveInnerR [i] [i]
{-# INLINE_NORMAL concatUnfoldInterleave #-}
concatUnfoldInterleave :: Monad m => Unfold m a b -> Stream m a -> Stream m b
concatUnfoldInterleave (Unfold istep inject) (Stream ostep ost) =
Stream step (ConcatUnfoldInterleaveOuter ost [])
where
{-# INLINE_LATE step #-}
step gst (ConcatUnfoldInterleaveOuter o ls) = do
r <- ostep (adaptState gst) o
case r of
Yield a o' -> do
i <- inject a
i `seq` return (Skip (ConcatUnfoldInterleaveInner o' (i : ls)))
Skip o' -> return $ Skip (ConcatUnfoldInterleaveOuter o' ls)
Stop -> return $ Skip (ConcatUnfoldInterleaveInnerL ls [])
step _ (ConcatUnfoldInterleaveInner _ []) = undefined
step _ (ConcatUnfoldInterleaveInner o (st:ls)) = do
r <- istep st
return $ case r of
Yield x s -> Yield x (ConcatUnfoldInterleaveOuter o (s:ls))
Skip s -> Skip (ConcatUnfoldInterleaveInner o (s:ls))
Stop -> Skip (ConcatUnfoldInterleaveOuter o ls)
step _ (ConcatUnfoldInterleaveInnerL [] []) = return Stop
step _ (ConcatUnfoldInterleaveInnerL [] rs) =
return $ Skip (ConcatUnfoldInterleaveInnerR [] rs)
step _ (ConcatUnfoldInterleaveInnerL (st:ls) rs) = do
r <- istep st
return $ case r of
Yield x s -> Yield x (ConcatUnfoldInterleaveInnerL ls (s:rs))
Skip s -> Skip (ConcatUnfoldInterleaveInnerL (s:ls) rs)
Stop -> Skip (ConcatUnfoldInterleaveInnerL ls rs)
step _ (ConcatUnfoldInterleaveInnerR [] []) = return Stop
step _ (ConcatUnfoldInterleaveInnerR ls []) =
return $ Skip (ConcatUnfoldInterleaveInnerL ls [])
step _ (ConcatUnfoldInterleaveInnerR ls (st:rs)) = do
r <- istep st
return $ case r of
Yield x s -> Yield x (ConcatUnfoldInterleaveInnerR (s:ls) rs)
Skip s -> Skip (ConcatUnfoldInterleaveInnerR ls (s:rs))
Stop -> Skip (ConcatUnfoldInterleaveInnerR ls rs)
{-# INLINE_NORMAL concatUnfoldRoundrobin #-}
concatUnfoldRoundrobin :: Monad m => Unfold m a b -> Stream m a -> Stream m b
concatUnfoldRoundrobin (Unfold istep inject) (Stream ostep ost) =
Stream step (ConcatUnfoldInterleaveOuter ost [])
where
{-# INLINE_LATE step #-}
step gst (ConcatUnfoldInterleaveOuter o ls) = do
r <- ostep (adaptState gst) o
case r of
Yield a o' -> do
i <- inject a
i `seq` return (Skip (ConcatUnfoldInterleaveInner o' (i : ls)))
Skip o' -> return $ Skip (ConcatUnfoldInterleaveInner o' ls)
Stop -> return $ Skip (ConcatUnfoldInterleaveInnerL ls [])
step _ (ConcatUnfoldInterleaveInner o []) =
return $ Skip (ConcatUnfoldInterleaveOuter o [])
step _ (ConcatUnfoldInterleaveInner o (st:ls)) = do
r <- istep st
return $ case r of
Yield x s -> Yield x (ConcatUnfoldInterleaveOuter o (s:ls))
Skip s -> Skip (ConcatUnfoldInterleaveOuter o (s:ls))
Stop -> Skip (ConcatUnfoldInterleaveOuter o ls)
step _ (ConcatUnfoldInterleaveInnerL [] []) = return Stop
step _ (ConcatUnfoldInterleaveInnerL [] rs) =
return $ Skip (ConcatUnfoldInterleaveInnerR [] rs)
step _ (ConcatUnfoldInterleaveInnerL (st:ls) rs) = do
r <- istep st
return $ case r of
Yield x s -> Yield x (ConcatUnfoldInterleaveInnerL ls (s:rs))
Skip s -> Skip (ConcatUnfoldInterleaveInnerL ls (s:rs))
Stop -> Skip (ConcatUnfoldInterleaveInnerL ls rs)
step _ (ConcatUnfoldInterleaveInnerR [] []) = return Stop
step _ (ConcatUnfoldInterleaveInnerR ls []) =
return $ Skip (ConcatUnfoldInterleaveInnerL ls [])
step _ (ConcatUnfoldInterleaveInnerR ls (st:rs)) = do
r <- istep st
return $ case r of
Yield x s -> Yield x (ConcatUnfoldInterleaveInnerR (s:ls) rs)
Skip s -> Skip (ConcatUnfoldInterleaveInnerR (s:ls) rs)
Stop -> Skip (ConcatUnfoldInterleaveInnerR ls rs)
data AppendState s1 s2 = AppendFirst s1 | AppendSecond s2
{-# INLINE_NORMAL append #-}
append :: Monad m => Stream m a -> Stream m a -> Stream m a
append (Stream step1 state1) (Stream step2 state2) =
Stream step (AppendFirst state1)
where
{-# INLINE_LATE step #-}
step gst (AppendFirst st) = do
r <- step1 gst st
return $ case r of
Yield a s -> Yield a (AppendFirst s)
Skip s -> Skip (AppendFirst s)
Stop -> Skip (AppendSecond state2)
step gst (AppendSecond st) = do
r <- step2 gst st
return $ case r of
Yield a s -> Yield a (AppendSecond s)
Skip s -> Skip (AppendSecond s)
Stop -> Stop
data InterleaveState s1 s2 = InterleaveFirst s1 s2 | InterleaveSecond s1 s2
| InterleaveSecondOnly s2 | InterleaveFirstOnly s1
{-# INLINE_NORMAL interleave #-}
interleave :: Monad m => Stream m a -> Stream m a -> Stream m a
interleave (Stream step1 state1) (Stream step2 state2) =
Stream step (InterleaveFirst state1 state2)
where
{-# INLINE_LATE step #-}
step gst (InterleaveFirst st1 st2) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveSecond s st2)
Skip s -> Skip (InterleaveFirst s st2)
Stop -> Skip (InterleaveSecondOnly st2)
step gst (InterleaveSecond st1 st2) = do
r <- step2 gst st2
return $ case r of
Yield a s -> Yield a (InterleaveFirst st1 s)
Skip s -> Skip (InterleaveSecond st1 s)
Stop -> Skip (InterleaveFirstOnly st1)
step gst (InterleaveFirstOnly st1) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveFirstOnly s)
Skip s -> Skip (InterleaveFirstOnly s)
Stop -> Stop
step gst (InterleaveSecondOnly st2) = do
r <- step2 gst st2
return $ case r of
Yield a s -> Yield a (InterleaveSecondOnly s)
Skip s -> Skip (InterleaveSecondOnly s)
Stop -> Stop
{-# INLINE_NORMAL interleaveMin #-}
interleaveMin :: Monad m => Stream m a -> Stream m a -> Stream m a
interleaveMin (Stream step1 state1) (Stream step2 state2) =
Stream step (InterleaveFirst state1 state2)
where
{-# INLINE_LATE step #-}
step gst (InterleaveFirst st1 st2) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveSecond s st2)
Skip s -> Skip (InterleaveFirst s st2)
Stop -> Stop
step gst (InterleaveSecond st1 st2) = do
r <- step2 gst st2
return $ case r of
Yield a s -> Yield a (InterleaveFirst st1 s)
Skip s -> Skip (InterleaveSecond st1 s)
Stop -> Stop
step _ (InterleaveFirstOnly _) = undefined
step _ (InterleaveSecondOnly _) = undefined
{-# INLINE_NORMAL interleaveSuffix #-}
interleaveSuffix :: Monad m => Stream m a -> Stream m a -> Stream m a
interleaveSuffix (Stream step1 state1) (Stream step2 state2) =
Stream step (InterleaveFirst state1 state2)
where
{-# INLINE_LATE step #-}
step gst (InterleaveFirst st1 st2) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveSecond s st2)
Skip s -> Skip (InterleaveFirst s st2)
Stop -> Stop
step gst (InterleaveSecond st1 st2) = do
r <- step2 gst st2
return $ case r of
Yield a s -> Yield a (InterleaveFirst st1 s)
Skip s -> Skip (InterleaveSecond st1 s)
Stop -> Skip (InterleaveFirstOnly st1)
step gst (InterleaveFirstOnly st1) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveFirstOnly s)
Skip s -> Skip (InterleaveFirstOnly s)
Stop -> Stop
step _ (InterleaveSecondOnly _) = undefined
data InterleaveInfixState s1 s2 a
= InterleaveInfixFirst s1 s2
| InterleaveInfixSecondBuf s1 s2
| InterleaveInfixSecondYield s1 s2 a
| InterleaveInfixFirstYield s1 s2 a
| InterleaveInfixFirstOnly s1
{-# INLINE_NORMAL interleaveInfix #-}
interleaveInfix :: Monad m => Stream m a -> Stream m a -> Stream m a
interleaveInfix (Stream step1 state1) (Stream step2 state2) =
Stream step (InterleaveInfixFirst state1 state2)
where
{-# INLINE_LATE step #-}
step gst (InterleaveInfixFirst st1 st2) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveInfixSecondBuf s st2)
Skip s -> Skip (InterleaveInfixFirst s st2)
Stop -> Stop
step gst (InterleaveInfixSecondBuf st1 st2) = do
r <- step2 gst st2
return $ case r of
Yield a s -> Skip (InterleaveInfixSecondYield st1 s a)
Skip s -> Skip (InterleaveInfixSecondBuf st1 s)
Stop -> Skip (InterleaveInfixFirstOnly st1)
step gst (InterleaveInfixSecondYield st1 st2 x) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield x (InterleaveInfixFirstYield s st2 a)
Skip s -> Skip (InterleaveInfixSecondYield s st2 x)
Stop -> Stop
step _ (InterleaveInfixFirstYield st1 st2 x) = do
return $ Yield x (InterleaveInfixSecondBuf st1 st2)
step gst (InterleaveInfixFirstOnly st1) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveInfixFirstOnly s)
Skip s -> Skip (InterleaveInfixFirstOnly s)
Stop -> Stop
{-# INLINE_NORMAL roundRobin #-}
roundRobin :: Monad m => Stream m a -> Stream m a -> Stream m a
roundRobin (Stream step1 state1) (Stream step2 state2) =
Stream step (InterleaveFirst state1 state2)
where
{-# INLINE_LATE step #-}
step gst (InterleaveFirst st1 st2) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveSecond s st2)
Skip s -> Skip (InterleaveSecond s st2)
Stop -> Skip (InterleaveSecondOnly st2)
step gst (InterleaveSecond st1 st2) = do
r <- step2 gst st2
return $ case r of
Yield a s -> Yield a (InterleaveFirst st1 s)
Skip s -> Skip (InterleaveFirst st1 s)
Stop -> Skip (InterleaveFirstOnly st1)
step gst (InterleaveSecondOnly st2) = do
r <- step2 gst st2
return $ case r of
Yield a s -> Yield a (InterleaveSecondOnly s)
Skip s -> Skip (InterleaveSecondOnly s)
Stop -> Stop
step gst (InterleaveFirstOnly st1) = do
r <- step1 gst st1
return $ case r of
Yield a s -> Yield a (InterleaveFirstOnly s)
Skip s -> Skip (InterleaveFirstOnly s)
Stop -> Stop
data ICUState s1 s2 i1 i2 =
ICUFirst s1 s2
| ICUSecond s1 s2
| ICUSecondOnly s2
| ICUFirstOnly s1
| ICUFirstInner s1 s2 i1
| ICUSecondInner s1 s2 i2
| ICUFirstOnlyInner s1 i1
| ICUSecondOnlyInner s2 i2
{-# INLINE_NORMAL gintercalateSuffix #-}
gintercalateSuffix
:: Monad m
=> Unfold m a c -> Stream m a -> Unfold m b c -> Stream m b -> Stream m c
gintercalateSuffix
(Unfold istep1 inject1) (Stream step1 state1)
(Unfold istep2 inject2) (Stream step2 state2) =
Stream step (ICUFirst state1 state2)
where
{-# INLINE_LATE step #-}
step gst (ICUFirst s1 s2) = do
r <- step1 (adaptState gst) s1
case r of
Yield a s -> do
i <- inject1 a
i `seq` return (Skip (ICUFirstInner s s2 i))
Skip s -> return $ Skip (ICUFirst s s2)
Stop -> return Stop
step gst (ICUFirstOnly s1) = do
r <- step1 (adaptState gst) s1
case r of
Yield a s -> do
i <- inject1 a
i `seq` return (Skip (ICUFirstOnlyInner s i))
Skip s -> return $ Skip (ICUFirstOnly s)
Stop -> return Stop
step _ (ICUFirstInner s1 s2 i1) = do
r <- istep1 i1
return $ case r of
Yield x i' -> Yield x (ICUFirstInner s1 s2 i')
Skip i' -> Skip (ICUFirstInner s1 s2 i')
Stop -> Skip (ICUSecond s1 s2)
step _ (ICUFirstOnlyInner s1 i1) = do
r <- istep1 i1
return $ case r of
Yield x i' -> Yield x (ICUFirstOnlyInner s1 i')
Skip i' -> Skip (ICUFirstOnlyInner s1 i')
Stop -> Skip (ICUFirstOnly s1)
step gst (ICUSecond s1 s2) = do
r <- step2 (adaptState gst) s2
case r of
Yield a s -> do
i <- inject2 a
i `seq` return (Skip (ICUSecondInner s1 s i))
Skip s -> return $ Skip (ICUSecond s1 s)
Stop -> return $ Skip (ICUFirstOnly s1)
step _ (ICUSecondInner s1 s2 i2) = do
r <- istep2 i2
return $ case r of
Yield x i' -> Yield x (ICUSecondInner s1 s2 i')
Skip i' -> Skip (ICUSecondInner s1 s2 i')
Stop -> Skip (ICUFirst s1 s2)
step _ (ICUSecondOnly _s2) = undefined
step _ (ICUSecondOnlyInner _s2 _i2) = undefined
data InterposeSuffixState s1 i1 =
InterposeSuffixFirst s1
| InterposeSuffixFirstInner s1 i1
| InterposeSuffixSecond s1
{-# INLINE_NORMAL interposeSuffix #-}
interposeSuffix
:: Monad m
=> m c -> Unfold m b c -> Stream m b -> Stream m c
interposeSuffix
action
(Unfold istep1 inject1) (Stream step1 state1) =
Stream step (InterposeSuffixFirst state1)
where
{-# INLINE_LATE step #-}
step gst (InterposeSuffixFirst s1) = do
r <- step1 (adaptState gst) s1
case r of
Yield a s -> do
i <- inject1 a
i `seq` return (Skip (InterposeSuffixFirstInner s i))
Skip s -> return $ Skip (InterposeSuffixFirst s)
Stop -> return Stop
step _ (InterposeSuffixFirstInner s1 i1) = do
r <- istep1 i1
return $ case r of
Yield x i' -> Yield x (InterposeSuffixFirstInner s1 i')
Skip i' -> Skip (InterposeSuffixFirstInner s1 i')
Stop -> Skip (InterposeSuffixSecond s1)
step _ (InterposeSuffixSecond s1) = do
r <- action
return $ Yield r (InterposeSuffixFirst s1)
data ICALState s1 s2 i1 i2 a =
ICALFirst s1 s2
| ICALFirstInner s1 s2 i1
| ICALFirstOnly s1
| ICALFirstOnlyInner s1 i1
| ICALSecondInject s1 s2
| ICALFirstInject s1 s2 i2
| ICALSecondInner s1 s2 i1 i2
{-# INLINE_NORMAL gintercalate #-}
gintercalate
:: Monad m
=> Unfold m a c -> Stream m a -> Unfold m b c -> Stream m b -> Stream m c
gintercalate
(Unfold istep1 inject1) (Stream step1 state1)
(Unfold istep2 inject2) (Stream step2 state2) =
Stream step (ICALFirst state1 state2)
where
{-# INLINE_LATE step #-}
step gst (ICALFirst s1 s2) = do
r <- step1 (adaptState gst) s1
case r of
Yield a s -> do
i <- inject1 a
i `seq` return (Skip (ICALFirstInner s s2 i))
Skip s -> return $ Skip (ICALFirst s s2)
Stop -> return Stop
step _ (ICALFirstInner s1 s2 i1) = do
r <- istep1 i1
return $ case r of
Yield x i' -> Yield x (ICALFirstInner s1 s2 i')
Skip i' -> Skip (ICALFirstInner s1 s2 i')
Stop -> Skip (ICALSecondInject s1 s2)
step gst (ICALFirstOnly s1) = do
r <- step1 (adaptState gst) s1
case r of
Yield a s -> do
i <- inject1 a
i `seq` return (Skip (ICALFirstOnlyInner s i))
Skip s -> return $ Skip (ICALFirstOnly s)
Stop -> return Stop
step _ (ICALFirstOnlyInner s1 i1) = do
r <- istep1 i1
return $ case r of
Yield x i' -> Yield x (ICALFirstOnlyInner s1 i')
Skip i' -> Skip (ICALFirstOnlyInner s1 i')
Stop -> Skip (ICALFirstOnly s1)
step gst (ICALSecondInject s1 s2) = do
r <- step2 (adaptState gst) s2
case r of
Yield a s -> do
i <- inject2 a
i `seq` return (Skip (ICALFirstInject s1 s i))
Skip s -> return $ Skip (ICALSecondInject s1 s)
Stop -> return $ Skip (ICALFirstOnly s1)
step gst (ICALFirstInject s1 s2 i2) = do
r <- step1 (adaptState gst) s1
case r of
Yield a s -> do
i <- inject1 a
i `seq` return (Skip (ICALSecondInner s s2 i i2))
Skip s -> return $ Skip (ICALFirstInject s s2 i2)
Stop -> return Stop
step _ (ICALSecondInner s1 s2 i1 i2) = do
r <- istep2 i2
return $ case r of
Yield x i' -> Yield x (ICALSecondInner s1 s2 i1 i')
Skip i' -> Skip (ICALSecondInner s1 s2 i1 i')
Stop -> Skip (ICALFirstInner s1 s2 i1)
data InterposeState s1 i1 a =
InterposeFirst s1
| InterposeFirstInner s1 i1
| InterposeFirstInject s1
| InterposeSecondYield s1 i1
{-# INLINE_NORMAL interpose #-}
interpose :: Monad m => m c -> Unfold m b c -> Stream m b -> Stream m c
interpose
action
(Unfold istep1 inject1) (Stream step1 state1) =
Stream step (InterposeFirst state1)
where
{-# INLINE_LATE step #-}
step gst (InterposeFirst s1) = do
r <- step1 (adaptState gst) s1
case r of
Yield a s -> do
i <- inject1 a
i `seq` return (Skip (InterposeFirstInner s i))
Skip s -> return $ Skip (InterposeFirst s)
Stop -> return Stop
step _ (InterposeFirstInner s1 i1) = do
r <- istep1 i1
return $ case r of
Yield x i' -> Yield x (InterposeFirstInner s1 i')
Skip i' -> Skip (InterposeFirstInner s1 i')
Stop -> Skip (InterposeFirstInject s1)
step gst (InterposeFirstInject s1) = do
r <- step1 (adaptState gst) s1
case r of
Yield a s -> do
i <- inject1 a
i `seq` return (Skip (InterposeSecondYield s i))
Skip s -> return $ Skip (InterposeFirstInject s)
Stop -> return Stop
step _ (InterposeSecondYield s1 i1) = do
r <- action
return $ Yield r (InterposeFirstInner s1 i1)
data GbracketState s1 s2 v
= GBracketInit
| GBracketNormal s1 v
| GBracketException s2
{-# INLINE_NORMAL gbracket #-}
gbracket
:: Monad m
=> m c
-> (forall s. m s -> m (Either e s))
-> (c -> m d)
-> (c -> e -> Stream m b)
-> (c -> Stream m b)
-> Stream m b
gbracket bef exc aft fexc fnormal =
Stream step GBracketInit
where
{-# INLINE_LATE step #-}
step _ GBracketInit = do
r <- bef
return $ Skip $ GBracketNormal (fnormal r) r
step gst (GBracketNormal (UnStream step1 st) v) = do
res <- exc $ step1 gst st
case res of
Right r -> case r of
Yield x s ->
return $ Yield x (GBracketNormal (Stream step1 s) v)
Skip s -> return $ Skip (GBracketNormal (Stream step1 s) v)
Stop -> aft v >> return Stop
Left e -> return $ Skip (GBracketException (fexc v e))
step gst (GBracketException (UnStream step1 st)) = do
res <- step1 gst st
case res of
Yield x s -> return $ Yield x (GBracketException (Stream step1 s))
Skip s -> return $ Skip (GBracketException (Stream step1 s))
Stop -> return Stop
{-# INLINE_NORMAL before #-}
before :: Monad m => m b -> Stream m a -> Stream m a
before action (Stream step state) = Stream step' Nothing
where
{-# INLINE_LATE step' #-}
step' _ Nothing = action >> return (Skip (Just state))
step' gst (Just st) = do
res <- step gst st
case res of
Yield x s -> return $ Yield x (Just s)
Skip s -> return $ Skip (Just s)
Stop -> return Stop
{-# INLINE_NORMAL after #-}
after :: Monad m => m b -> Stream m a -> Stream m a
after action (Stream step state) = Stream step' state
where
{-# INLINE_LATE step' #-}
step' gst st = do
res <- step gst st
case res of
Yield x s -> return $ Yield x s
Skip s -> return $ Skip s
Stop -> action >> return Stop
{-# INLINE_NORMAL onException #-}
onException :: MonadCatch m => m b -> Stream m a -> Stream m a
onException action str =
gbracket (return ()) MC.try return
(\_ (e :: MC.SomeException) -> nilM (action >> MC.throwM e))
(\_ -> str)
{-# INLINE_NORMAL _onException #-}
_onException :: MonadCatch m => m b -> Stream m a -> Stream m a
_onException action (Stream step state) = Stream step' state
where
{-# INLINE_LATE step' #-}
step' gst st = do
res <- step gst st `MC.onException` action
case res of
Yield x s -> return $ Yield x s
Skip s -> return $ Skip s
Stop -> return Stop
{-# INLINE_NORMAL bracket #-}
bracket :: MonadCatch m => m b -> (b -> m c) -> (b -> Stream m a) -> Stream m a
bracket bef aft bet =
gbracket bef MC.try aft
(\a (e :: SomeException) -> nilM (aft a >> MC.throwM e)) bet
data BracketState s v = BracketInit | BracketRun s v
{-# INLINE_NORMAL _bracket #-}
_bracket :: MonadCatch m => m b -> (b -> m c) -> (b -> Stream m a) -> Stream m a
_bracket bef aft bet = Stream step' BracketInit
where
{-# INLINE_LATE step' #-}
step' _ BracketInit = bef >>= \x -> return (Skip (BracketRun (bet x) x))
step' gst (BracketRun (UnStream step state) v) = do
res <- MC.try $ step gst state
case res of
Left (e :: SomeException) -> aft v >> MC.throwM e >> return Stop
Right r -> case r of
Yield x s -> return $ Yield x (BracketRun (Stream step s) v)
Skip s -> return $ Skip (BracketRun (Stream step s) v)
Stop -> aft v >> return Stop
{-# INLINE finally #-}
finally :: MonadCatch m => m b -> Stream m a -> Stream m a
finally action xs = bracket (return ()) (\_ -> action) (const xs)
{-# INLINE_NORMAL handle #-}
handle :: (MonadCatch m, Exception e)
=> (e -> Stream m a) -> Stream m a -> Stream m a
handle f str =
gbracket (return ()) MC.try return (\_ e -> f e) (\_ -> str)
{-# INLINE_NORMAL _handle #-}
_handle :: (MonadCatch m, Exception e)
=> (e -> Stream m a) -> Stream m a -> Stream m a
_handle f (Stream step state) = Stream step' (Left state)
where
{-# INLINE_LATE step' #-}
step' gst (Left st) = do
res <- MC.try $ step gst st
case res of
Left e -> return $ Skip $ Right (f e)
Right r -> case r of
Yield x s -> return $ Yield x (Left s)
Skip s -> return $ Skip (Left s)
Stop -> return Stop
step' gst (Right (UnStream step1 st)) = do
res <- step1 gst st
case res of
Yield x s -> return $ Yield x (Right (Stream step1 s))
Skip s -> return $ Skip (Right (Stream step1 s))
Stop -> return Stop
{-# INLINE_NORMAL transform #-}
transform :: Monad m => Pipe m a b -> Stream m a -> Stream m b
transform (Pipe pstep1 pstep2 pstate) (Stream step state) =
Stream step' (Consume pstate, state)
where
{-# INLINE_LATE step' #-}
step' gst (Consume pst, st) = pst `seq` do
r <- step (adaptState gst) st
case r of
Yield x s -> do
res <- pstep1 pst x
case res of
Pipe.Yield b pst' -> return $ Yield b (pst', s)
Pipe.Continue pst' -> return $ Skip (pst', s)
Skip s -> return $ Skip (Consume pst, s)
Stop -> return Stop
step' _ (Produce pst, st) = pst `seq` do
res <- pstep2 pst
case res of
Pipe.Yield b pst' -> return $ Yield b (pst', st)
Pipe.Continue pst' -> return $ Skip (pst', st)
{-# INLINE_NORMAL prescanlM' #-}
prescanlM' :: Monad m => (b -> a -> m b) -> m b -> Stream m a -> Stream m b
prescanlM' f mz (Stream step state) = Stream step' (state, mz)
where
{-# INLINE_LATE step' #-}
step' gst (st, prev) = do
r <- step (adaptState gst) st
case r of
Yield x s -> do
acc <- prev
return $ Yield acc (s, f acc x)
Skip s -> return $ Skip (s, prev)
Stop -> return Stop
{-# INLINE prescanl' #-}
prescanl' :: Monad m => (b -> a -> b) -> b -> Stream m a -> Stream m b
prescanl' f z = prescanlM' (\a b -> return (f a b)) (return z)
{-# INLINE_NORMAL postscanlMx' #-}
postscanlMx' :: Monad m
=> (x -> a -> m x) -> m x -> (x -> m b) -> Stream m a -> Stream m b
postscanlMx' fstep begin done (Stream step state) = do
Stream step' (state, begin)
where
{-# INLINE_LATE step' #-}
step' gst (st, acc) = do
r <- step (adaptState gst) st
case r of
Yield x s -> do
old <- acc
y <- fstep old x
v <- done y
v `seq` y `seq` return (Yield v (s, return y))
Skip s -> return $ Skip (s, acc)
Stop -> return Stop
{-# INLINE_NORMAL postscanlx' #-}
postscanlx' :: Monad m
=> (x -> a -> x) -> x -> (x -> b) -> Stream m a -> Stream m b
postscanlx' fstep begin done s =
postscanlMx' (\b a -> return (fstep b a)) (return begin) (return . done) s
{-# INLINE scanlMx' #-}
scanlMx' :: Monad m
=> (x -> a -> m x) -> m x -> (x -> m b) -> Stream m a -> Stream m b
scanlMx' fstep begin done s =
(begin >>= \x -> x `seq` done x) `consM` postscanlMx' fstep begin done s
{-# INLINE scanlx' #-}
scanlx' :: Monad m
=> (x -> a -> x) -> x -> (x -> b) -> Stream m a -> Stream m b
scanlx' fstep begin done s =
scanlMx' (\b a -> return (fstep b a)) (return begin) (return . done) s
{-# INLINE_NORMAL postscanlM' #-}
postscanlM' :: Monad m => (b -> a -> m b) -> b -> Stream m a -> Stream m b
postscanlM' fstep begin (Stream step state) =
begin `seq` Stream step' (state, begin)
where
{-# INLINE_LATE step' #-}
step' gst (st, acc) = acc `seq` do
r <- step (adaptState gst) st
case r of
Yield x s -> do
y <- fstep acc x
y `seq` return (Yield y (s, y))
Skip s -> return $ Skip (s, acc)
Stop -> return Stop
{-# INLINE_NORMAL postscanl' #-}
postscanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
postscanl' f = postscanlM' (\a b -> return (f a b))
{-# INLINE_NORMAL postscanlM #-}
postscanlM :: Monad m => (b -> a -> m b) -> b -> Stream m a -> Stream m b
postscanlM fstep begin (Stream step state) = Stream step' (state, begin)
where
{-# INLINE_LATE step' #-}
step' gst (st, acc) = do
r <- step (adaptState gst) st
case r of
Yield x s -> do
y <- fstep acc x
return (Yield y (s, y))
Skip s -> return $ Skip (s, acc)
Stop -> return Stop
{-# INLINE_NORMAL postscanl #-}
postscanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
postscanl f = postscanlM (\a b -> return (f a b))
{-# INLINE_NORMAL scanlM' #-}
scanlM' :: Monad m => (b -> a -> m b) -> b -> Stream m a -> Stream m b
scanlM' fstep begin s = begin `seq` (begin `cons` postscanlM' fstep begin s)
{-# INLINE scanl' #-}
scanl' :: Monad m => (b -> a -> b) -> b -> Stream m a -> Stream m b
scanl' f = scanlM' (\a b -> return (f a b))
{-# INLINE_NORMAL scanlM #-}
scanlM :: Monad m => (b -> a -> m b) -> b -> Stream m a -> Stream m b
scanlM fstep begin s = begin `cons` postscanlM fstep begin s
{-# INLINE scanl #-}
scanl :: Monad m => (b -> a -> b) -> b -> Stream m a -> Stream m b
scanl f = scanlM (\a b -> return (f a b))
{-# INLINE_NORMAL scanl1M #-}
scanl1M :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
scanl1M fstep (Stream step state) = Stream step' (state, Nothing)
where
{-# INLINE_LATE step' #-}
step' gst (st, Nothing) = do
r <- step gst st
case r of
Yield x s -> return $ Yield x (s, Just x)
Skip s -> return $ Skip (s, Nothing)
Stop -> return Stop
step' gst (st, Just acc) = do
r <- step gst st
case r of
Yield y s -> do
z <- fstep acc y
return $ Yield z (s, Just z)
Skip s -> return $ Skip (s, Just acc)
Stop -> return Stop
{-# INLINE scanl1 #-}
scanl1 :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
scanl1 f = scanl1M (\x y -> return (f x y))
{-# INLINE_NORMAL scanl1M' #-}
scanl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
scanl1M' fstep (Stream step state) = Stream step' (state, Nothing)
where
{-# INLINE_LATE step' #-}
step' gst (st, Nothing) = do
r <- step gst st
case r of
Yield x s -> x `seq` return $ Yield x (s, Just x)
Skip s -> return $ Skip (s, Nothing)
Stop -> return Stop
step' gst (st, Just acc) = acc `seq` do
r <- step gst st
case r of
Yield y s -> do
z <- fstep acc y
z `seq` return $ Yield z (s, Just z)
Skip s -> return $ Skip (s, Just acc)
Stop -> return Stop
{-# INLINE scanl1' #-}
scanl1' :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
scanl1' f = scanl1M' (\x y -> return (f x y))
{-# INLINE tap #-}
tap :: Monad m => Fold m a b -> Stream m a -> Stream m a
tap (Fold fstep initial extract) (Stream step state) = Stream step' Nothing
where
step' _ Nothing = do
r <- initial
return $ Skip (Just (r, state))
step' gst (Just (acc, st)) = do
r <- step gst st
case r of
Yield x s -> do
acc' <- fstep acc x
return $ Yield x (Just (acc', s))
Skip s -> return $ Skip (Just (acc, s))
Stop -> do
void $ extract acc
return $ Stop
{-# INLINE_NORMAL takeWhileM #-}
takeWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
takeWhileM f (Stream step state) = Stream step' state
where
{-# INLINE_LATE step' #-}
step' gst st = do
r <- step gst st
case r of
Yield x s -> do
b <- f x
return $ if b then Yield x s else Stop
Skip s -> return $ Skip s
Stop -> return Stop
{-# INLINE takeWhile #-}
takeWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
takeWhile f = takeWhileM (return . f)
{-# INLINE_NORMAL drop #-}
drop :: Monad m => Int -> Stream m a -> Stream m a
drop n (Stream step state) = Stream step' (state, Just n)
where
{-# INLINE_LATE step' #-}
step' gst (st, Just i)
| i > 0 = do
r <- step gst st
return $
case r of
Yield _ s -> Skip (s, Just (i - 1))
Skip s -> Skip (s, Just i)
Stop -> Stop
| otherwise = return $ Skip (st, Nothing)
step' gst (st, Nothing) = do
r <- step gst st
return $
case r of
Yield x s -> Yield x (s, Nothing)
Skip s -> Skip (s, Nothing)
Stop -> Stop
data DropWhileState s a
= DropWhileDrop s
| DropWhileYield a s
| DropWhileNext s
{-# INLINE_NORMAL dropWhileM #-}
dropWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
dropWhileM f (Stream step state) = Stream step' (DropWhileDrop state)
where
{-# INLINE_LATE step' #-}
step' gst (DropWhileDrop st) = do
r <- step gst st
case r of
Yield x s -> do
b <- f x
if b
then return $ Skip (DropWhileDrop s)
else return $ Skip (DropWhileYield x s)
Skip s -> return $ Skip (DropWhileDrop s)
Stop -> return Stop
step' gst (DropWhileNext st) = do
r <- step gst st
case r of
Yield x s -> return $ Skip (DropWhileYield x s)
Skip s -> return $ Skip (DropWhileNext s)
Stop -> return Stop
step' _ (DropWhileYield x st) = return $ Yield x (DropWhileNext st)
{-# INLINE dropWhile #-}
dropWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
dropWhile f = dropWhileM (return . f)
{-# INLINE_NORMAL filterM #-}
filterM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
filterM f (Stream step state) = Stream step' state
where
{-# INLINE_LATE step' #-}
step' gst st = do
r <- step gst st
case r of
Yield x s -> do
b <- f x
return $ if b
then Yield x s
else Skip s
Skip s -> return $ Skip s
Stop -> return Stop
{-# INLINE filter #-}
filter :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
filter f = filterM (return . f)
{-# INLINE_NORMAL uniq #-}
uniq :: (Eq a, Monad m) => Stream m a -> Stream m a
uniq (Stream step state) = Stream step' (Nothing, state)
where
{-# INLINE_LATE step' #-}
step' gst (Nothing, st) = do
r <- step gst st
case r of
Yield x s -> return $ Yield x (Just x, s)
Skip s -> return $ Skip (Nothing, s)
Stop -> return Stop
step' gst (Just x, st) = do
r <- step gst st
case r of
Yield y s | x == y -> return $ Skip (Just x, s)
| otherwise -> return $ Yield y (Just y, s)
Skip s -> return $ Skip (Just x, s)
Stop -> return Stop
{-# INLINE_NORMAL sequence #-}
sequence :: Monad m => Stream m (m a) -> Stream m a
sequence (Stream step state) = Stream step' state
where
{-# INLINE_LATE step' #-}
step' gst st = do
r <- step (adaptState gst) st
case r of
Yield x s -> x >>= \a -> return (Yield a s)
Skip s -> return $ Skip s
Stop -> return Stop
data LoopState x s = FirstYield s
| InterspersingYield s
| YieldAndCarry x s
{-# INLINE_NORMAL intersperseM #-}
intersperseM :: Monad m => m a -> Stream m a -> Stream m a
intersperseM m (Stream step state) = Stream step' (FirstYield state)
where
{-# INLINE_LATE step' #-}
step' gst (FirstYield st) = do
r <- step gst st
return $
case r of
Yield x s -> Skip (YieldAndCarry x s)
Skip s -> Skip (FirstYield s)
Stop -> Stop
step' gst (InterspersingYield st) = do
r <- step gst st
case r of
Yield x s -> do
a <- m
return $ Yield a (YieldAndCarry x s)
Skip s -> return $ Skip $ InterspersingYield s
Stop -> return Stop
step' _ (YieldAndCarry x st) = return $ Yield x (InterspersingYield st)
data SuffixState s a
= SuffixElem s
| SuffixSuffix s
| SuffixYield a (SuffixState s a)
{-# INLINE_NORMAL intersperseSuffix #-}
intersperseSuffix :: forall m a. Monad m => m a -> Stream m a -> Stream m a
intersperseSuffix action (Stream step state) = Stream step' (SuffixElem state)
where
{-# INLINE_LATE step' #-}
step' gst (SuffixElem st) = do
r <- step gst st
return $ case r of
Yield x s -> Skip (SuffixYield x (SuffixSuffix s))
Skip s -> Skip (SuffixElem s)
Stop -> Stop
step' _ (SuffixSuffix st) = do
action >>= \r -> return $ Skip (SuffixYield r (SuffixElem st))
step' _ (SuffixYield x next) = return $ Yield x next
{-# INLINE intersperse #-}
intersperse :: Monad m => a -> Stream m a -> Stream m a
intersperse a = intersperseM (return a)
{-# INLINE_NORMAL insertBy #-}
insertBy :: Monad m => (a -> a -> Ordering) -> a -> Stream m a -> Stream m a
insertBy cmp a (Stream step state) = Stream step' (state, False, Nothing)
where
{-# INLINE_LATE step' #-}
step' gst (st, False, _) = do
r <- step gst st
case r of
Yield x s -> case cmp a x of
GT -> return $ Yield x (s, False, Nothing)
_ -> return $ Yield a (s, True, Just x)
Skip s -> return $ Skip (s, False, Nothing)
Stop -> return $ Yield a (st, True, Nothing)
step' _ (_, True, Nothing) = return Stop
step' gst (st, True, Just prev) = do
r <- step gst st
case r of
Yield x s -> return $ Yield prev (s, True, Just x)
Skip s -> return $ Skip (s, True, Just prev)
Stop -> return $ Yield prev (st, True, Nothing)
{-# INLINE_NORMAL deleteBy #-}
deleteBy :: Monad m => (a -> a -> Bool) -> a -> Stream m a -> Stream m a
deleteBy eq x (Stream step state) = Stream step' (state, False)
where
{-# INLINE_LATE step' #-}
step' gst (st, False) = do
r <- step gst st
case r of
Yield y s -> return $
if eq x y then Skip (s, True) else Yield y (s, False)
Skip s -> return $ Skip (s, False)
Stop -> return Stop
step' gst (st, True) = do
r <- step gst st
case r of
Yield y s -> return $ Yield y (s, True)
Skip s -> return $ Skip (s, True)
Stop -> return Stop
{-# INLINE_NORMAL mapMaybe #-}
mapMaybe :: Monad m => (a -> Maybe b) -> Stream m a -> Stream m b
mapMaybe f = fmap fromJust . filter isJust . map f
{-# INLINE_NORMAL mapMaybeM #-}
mapMaybeM :: Monad m => (a -> m (Maybe b)) -> Stream m a -> Stream m b
mapMaybeM f = fmap fromJust . filter isJust . mapM f
{-# INLINE_NORMAL indexed #-}
indexed :: Monad m => Stream m a -> Stream m (Int, a)
indexed (Stream step state) = Stream step' (state, 0)
where
{-# INLINE_LATE step' #-}
step' gst (st, i) = i `seq` do
r <- step (adaptState gst) st
case r of
Yield x s -> return $ Yield (i, x) (s, i+1)
Skip s -> return $ Skip (s, i)
Stop -> return Stop
{-# INLINE_NORMAL indexedR #-}
indexedR :: Monad m => Int -> Stream m a -> Stream m (Int, a)
indexedR m (Stream step state) = Stream step' (state, m)
where
{-# INLINE_LATE step' #-}
step' gst (st, i) = i `seq` do
r <- step (adaptState gst) st
case r of
Yield x s -> let i' = i - 1
in return $ Yield (i, x) (s, i')
Skip s -> return $ Skip (s, i)
Stop -> return Stop
{-# INLINE_NORMAL zipWithM #-}
zipWithM :: Monad m
=> (a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
zipWithM f (Stream stepa ta) (Stream stepb tb) = Stream step (ta, tb, Nothing)
where
{-# INLINE_LATE step #-}
step gst (sa, sb, Nothing) = do
r <- stepa (adaptState gst) sa
return $
case r of
Yield x sa' -> Skip (sa', sb, Just x)
Skip sa' -> Skip (sa', sb, Nothing)
Stop -> Stop
step gst (sa, sb, Just x) = do
r <- stepb (adaptState gst) sb
case r of
Yield y sb' -> do
z <- f x y
return $ Yield z (sa, sb', Nothing)
Skip sb' -> return $ Skip (sa, sb', Just x)
Stop -> return Stop
#if __GLASGOW_HASKELL__ >= 801
{-# RULES "zipWithM xs xs"
forall f xs. zipWithM @Identity f xs xs = mapM (\x -> f x x) xs #-}
#endif
{-# INLINE zipWith #-}
zipWith :: Monad m => (a -> b -> c) -> Stream m a -> Stream m b -> Stream m c
zipWith f = zipWithM (\a b -> return (f a b))
{-# INLINE_NORMAL mergeByM #-}
mergeByM
:: (Monad m)
=> (a -> a -> m Ordering) -> Stream m a -> Stream m a -> Stream m a
mergeByM cmp (Stream stepa ta) (Stream stepb tb) =
Stream step (Just ta, Just tb, Nothing, Nothing)
where
{-# INLINE_LATE step #-}
step gst (Just sa, sb, Nothing, b) = do
r <- stepa gst sa
return $ case r of
Yield a sa' -> Skip (Just sa', sb, Just a, b)
Skip sa' -> Skip (Just sa', sb, Nothing, b)
Stop -> Skip (Nothing, sb, Nothing, b)
step gst (sa, Just sb, a, Nothing) = do
r <- stepb gst sb
return $ case r of
Yield b sb' -> Skip (sa, Just sb', a, Just b)
Skip sb' -> Skip (sa, Just sb', a, Nothing)
Stop -> Skip (sa, Nothing, a, Nothing)
step _ (sa, sb, Just a, Just b) = do
res <- cmp a b
return $ case res of
GT -> Yield b (sa, sb, Just a, Nothing)
_ -> Yield a (sa, sb, Nothing, Just b)
step _ (Nothing, sb, Nothing, Just b) =
return $ Yield b (Nothing, sb, Nothing, Nothing)
step _ (sa, Nothing, Just a, Nothing) =
return $ Yield a (sa, Nothing, Nothing, Nothing)
step _ (Nothing, Nothing, Nothing, Nothing) = return Stop
{-# INLINE mergeBy #-}
mergeBy
:: (Monad m)
=> (a -> a -> Ordering) -> Stream m a -> Stream m a -> Stream m a
mergeBy cmp = mergeByM (\a b -> return $ cmp a b)
{-# INLINE_NORMAL the #-}
the :: (Eq a, Monad m) => Stream m a -> m (Maybe a)
the (Stream step state) = go state
where
go st = do
r <- step defState st
case r of
Yield x s -> go' x s
Skip s -> go s
Stop -> return Nothing
go' n st = do
r <- step defState st
case r of
Yield x s | x == n -> go' n s
| otherwise -> return Nothing
Skip s -> go' n s
Stop -> return (Just n)
{-# INLINE ord2 #-}
ord2 :: Char -> WList
ord2 c = assert (n >= 0x80 && n <= 0x07ff) (WCons x1 (WCons x2 WNil))
where
n = ord c
x1 = fromIntegral $ (n `shiftR` 6) + 0xC0
x2 = fromIntegral $ (n .&. 0x3F) + 0x80
{-# INLINE ord3 #-}
ord3 :: Char -> WList
ord3 c = assert (n >= 0x0800 && n <= 0xffff) (WCons x1 (WCons x2 (WCons x3 WNil)))
where
n = ord c
x1 = fromIntegral $ (n `shiftR` 12) + 0xE0
x2 = fromIntegral $ ((n `shiftR` 6) .&. 0x3F) + 0x80
x3 = fromIntegral $ (n .&. 0x3F) + 0x80
{-# INLINE ord4 #-}
ord4 :: Char -> WList
ord4 c = assert (n >= 0x10000) (WCons x1 (WCons x2 (WCons x3 (WCons x4 WNil))))
where
n = ord c
x1 = fromIntegral $ (n `shiftR` 18) + 0xF0
x2 = fromIntegral $ ((n `shiftR` 12) .&. 0x3F) + 0x80
x3 = fromIntegral $ ((n `shiftR` 6) .&. 0x3F) + 0x80
x4 = fromIntegral $ (n .&. 0x3F) + 0x80
data CodingFailureMode
= TransliterateCodingFailure
| ErrorOnCodingFailure
deriving (Show)
{-# INLINE replacementChar #-}
replacementChar :: Char
replacementChar = '\xFFFD'
type CodePoint = Int
type DecodeState = Word8
{-# INLINE runFold #-}
runFold :: (Monad m) => Fold m a b -> Stream m a -> m b
runFold (Fold step begin done) = foldlMx' step begin done
decodeTable :: [Word8]
decodeTable = [
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
10,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3, 11,6,6,6,5,8,8,8,8,8,8,8,8,8,8,8,
0,12,24,36,60,96,84,12,12,12,48,72, 12,12,12,12,12,12,12,12,12,12,12,12,
12, 0,12,12,12,12,12, 0,12, 0,12,12, 12,24,12,12,12,12,12,24,12,24,12,12,
12,12,12,12,12,12,12,24,12,12,12,12, 12,24,12,12,12,12,12,12,12,24,12,12,
12,12,12,12,12,12,12,36,12,36,12,12, 12,36,12,12,12,12,12,36,12,36,12,12,
12,36,12,12,12,12,12,12,12,12,12,12
]
utf8d :: A.Array Word8
utf8d =
unsafePerformIO
$ runFold (A.writeNAlignedUnmanaged 64 (length decodeTable))
(fromList decodeTable)
{-# INLINE_NORMAL unsafePeekElemOff #-}
unsafePeekElemOff :: forall a. Storable a => Ptr a -> Int -> a
unsafePeekElemOff p i = let !x = A.unsafeInlineIO $ peekElemOff p i in x
{-# INLINE decode0 #-}
decode0 :: Ptr Word8 -> Word8 -> Tuple' DecodeState CodePoint
decode0 table byte =
let !t = table `unsafePeekElemOff` fromIntegral byte
!codep' = (0xff `shiftR` (fromIntegral t)) .&. fromIntegral byte
!state' = table `unsafePeekElemOff` (256 + fromIntegral t)
in assert ((byte > 0x7f || error showByte)
&& (state' /= 0 || error (showByte ++ showTable)))
(Tuple' state' codep')
where
utf8table =
let !(Ptr addr) = table
end = table `plusPtr` 364
in A.Array (ForeignPtr addr undefined) end end :: A.Array Word8
showByte = "Streamly: decode0: byte: " ++ show byte
showTable = " table: " ++ show utf8table
{-# INLINE decode1 #-}
decode1
:: Ptr Word8
-> DecodeState
-> CodePoint
-> Word8
-> Tuple' DecodeState CodePoint
decode1 table state codep byte =
let !t = table `unsafePeekElemOff` fromIntegral byte
!codep' = (fromIntegral byte .&. 0x3f) .|. (codep `shiftL` 6)
!state' = table `unsafePeekElemOff`
(256 + fromIntegral state + fromIntegral t)
in assert (codep' <= 0x10FFFF
|| error (showByte ++ showState state codep))
(Tuple' state' codep')
where
utf8table =
let !(Ptr addr) = table
end = table `plusPtr` 364
in A.Array (ForeignPtr addr undefined) end end :: A.Array Word8
showByte = "Streamly: decode1: byte: " ++ show byte
showState st cp =
" state: " ++ show st ++
" codepoint: " ++ show cp ++
" table: " ++ show utf8table
data DecodeError = DecodeError !DecodeState !CodePoint deriving Show
data FreshPoint s a
= FreshPointDecodeInit s
| FreshPointDecodeInit1 s Word8
| FreshPointDecodeFirst s Word8
| FreshPointDecoding s !DecodeState !CodePoint
| YieldAndContinue a (FreshPoint s a)
| Done
{-# INLINE_NORMAL decodeUtf8With #-}
decodeUtf8With :: Monad m => CodingFailureMode -> Stream m Word8 -> Stream m Char
decodeUtf8With cfm (Stream step state) =
let Array p _ _ = utf8d
!ptr = (unsafeForeignPtrToPtr p)
in Stream (step' ptr) (FreshPointDecodeInit state)
where
{-# INLINE transliterateOrError #-}
transliterateOrError e s =
case cfm of
ErrorOnCodingFailure -> error e
TransliterateCodingFailure -> YieldAndContinue replacementChar s
{-# INLINE inputUnderflow #-}
inputUnderflow =
case cfm of
ErrorOnCodingFailure ->
error "Streamly.Streams.StreamD.decodeUtf8With: Input Underflow"
TransliterateCodingFailure -> YieldAndContinue replacementChar Done
{-# INLINE_LATE step' #-}
step' _ gst (FreshPointDecodeInit st) = do
r <- step (adaptState gst) st
return $ case r of
Yield x s -> Skip (FreshPointDecodeInit1 s x)
Skip s -> Skip (FreshPointDecodeInit s)
Stop -> Skip Done
step' _ _ (FreshPointDecodeInit1 st x) = do
case x > 0x7f of
False ->
return $ Skip $ YieldAndContinue
(unsafeChr (fromIntegral x))
(FreshPointDecodeInit st)
True -> return $ Skip $ FreshPointDecodeFirst st x
step' table _ (FreshPointDecodeFirst st x) = do
let (Tuple' sv cp) = decode0 table x
return $
case sv of
12 ->
Skip $
transliterateOrError
"Streamly.Streams.StreamD.decodeUtf8With: Invalid UTF8 codepoint encountered"
(FreshPointDecodeInit st)
0 -> error "unreachable state"
_ -> Skip (FreshPointDecoding st sv cp)
step' table gst (FreshPointDecoding st statePtr codepointPtr) = do
r <- step (adaptState gst) st
case r of
Yield x s -> do
let (Tuple' sv cp) = decode1 table statePtr codepointPtr x
return $
case sv of
0 -> Skip $ YieldAndContinue (unsafeChr cp)
(FreshPointDecodeInit s)
12 ->
Skip $
transliterateOrError
"Streamly.Streams.StreamD.decodeUtf8With: Invalid UTF8 codepoint encountered"
(FreshPointDecodeInit1 s x)
_ -> Skip (FreshPointDecoding s sv cp)
Skip s -> return $ Skip (FreshPointDecoding s statePtr codepointPtr)
Stop -> return $ Skip inputUnderflow
step' _ _ (YieldAndContinue c s) = return $ Yield c s
step' _ _ Done = return Stop
{-# INLINE decodeUtf8 #-}
decodeUtf8 :: Monad m => Stream m Word8 -> Stream m Char
decodeUtf8 = decodeUtf8With ErrorOnCodingFailure
{-# INLINE decodeUtf8Lenient #-}
decodeUtf8Lenient :: Monad m => Stream m Word8 -> Stream m Char
decodeUtf8Lenient = decodeUtf8With TransliterateCodingFailure
{-# INLINE_NORMAL resumeDecodeUtf8Either #-}
resumeDecodeUtf8Either
:: Monad m
=> DecodeState
-> CodePoint
-> Stream m Word8
-> Stream m (Either DecodeError Char)
resumeDecodeUtf8Either dst codep (Stream step state) =
let Array p _ _ = utf8d
!ptr = (unsafeForeignPtrToPtr p)
stt =
if dst == 0
then FreshPointDecodeInit state
else FreshPointDecoding state dst codep
in Stream (step' ptr) stt
where
{-# INLINE_LATE step' #-}
step' _ gst (FreshPointDecodeInit st) = do
r <- step (adaptState gst) st
return $ case r of
Yield x s -> Skip (FreshPointDecodeInit1 s x)
Skip s -> Skip (FreshPointDecodeInit s)
Stop -> Skip Done
step' _ _ (FreshPointDecodeInit1 st x) = do
case x > 0x7f of
False ->
return $ Skip $ YieldAndContinue
(Right $ unsafeChr (fromIntegral x))
(FreshPointDecodeInit st)
True -> return $ Skip $ FreshPointDecodeFirst st x
step' table _ (FreshPointDecodeFirst st x) = do
let (Tuple' sv cp) = decode0 table x
return $
case sv of
12 ->
Skip $ YieldAndContinue (Left $ DecodeError 0 (fromIntegral x))
(FreshPointDecodeInit st)
0 -> error "unreachable state"
_ -> Skip (FreshPointDecoding st sv cp)
step' table gst (FreshPointDecoding st statePtr codepointPtr) = do
r <- step (adaptState gst) st
case r of
Yield x s -> do
let (Tuple' sv cp) = decode1 table statePtr codepointPtr x
return $
case sv of
0 -> Skip $ YieldAndContinue (Right $ unsafeChr cp)
(FreshPointDecodeInit s)
12 ->
Skip $ YieldAndContinue (Left $ DecodeError statePtr codepointPtr)
(FreshPointDecodeInit1 s x)
_ -> Skip (FreshPointDecoding s sv cp)
Skip s -> return $ Skip (FreshPointDecoding s statePtr codepointPtr)
Stop -> return $ Skip $ YieldAndContinue (Left $ DecodeError statePtr codepointPtr) Done
step' _ _ (YieldAndContinue c s) = return $ Yield c s
step' _ _ Done = return Stop
{-# INLINE_NORMAL decodeUtf8Either #-}
decodeUtf8Either :: Monad m
=> Stream m Word8 -> Stream m (Either DecodeError Char)
decodeUtf8Either = resumeDecodeUtf8Either 0 0
data FlattenState s a
= OuterLoop s !(Maybe (DecodeState, CodePoint))
| InnerLoopDecodeInit s (ForeignPtr a) !(Ptr a) !(Ptr a)
| InnerLoopDecodeFirst s (ForeignPtr a) !(Ptr a) !(Ptr a) Word8
| InnerLoopDecoding s (ForeignPtr a) !(Ptr a) !(Ptr a)
!DecodeState !CodePoint
| YAndC !Char (FlattenState s a)
| D
{-# INLINE_NORMAL decodeUtf8ArraysWith #-}
decodeUtf8ArraysWith ::
MonadIO m
=> CodingFailureMode
-> Stream m (A.Array Word8)
-> Stream m Char
decodeUtf8ArraysWith cfm (Stream step state) =
let Array p _ _ = utf8d
!ptr = (unsafeForeignPtrToPtr p)
in Stream (step' ptr) (OuterLoop state Nothing)
where
{-# INLINE transliterateOrError #-}
transliterateOrError e s =
case cfm of
ErrorOnCodingFailure -> error e
TransliterateCodingFailure -> YAndC replacementChar s
{-# INLINE inputUnderflow #-}
inputUnderflow =
case cfm of
ErrorOnCodingFailure ->
error
"Streamly.Streams.StreamD.decodeUtf8ArraysWith: Input Underflow"
TransliterateCodingFailure -> YAndC replacementChar D
{-# INLINE_LATE step' #-}
step' _ gst (OuterLoop st Nothing) = do
r <- step (adaptState gst) st
return $
case r of
Yield A.Array {..} s ->
let p = unsafeForeignPtrToPtr aStart
in Skip (InnerLoopDecodeInit s aStart p aEnd)
Skip s -> Skip (OuterLoop s Nothing)
Stop -> Skip D
step' _ gst (OuterLoop st dst@(Just (ds, cp))) = do
r <- step (adaptState gst) st
return $
case r of
Yield A.Array {..} s ->
let p = unsafeForeignPtrToPtr aStart
in Skip (InnerLoopDecoding s aStart p aEnd ds cp)
Skip s -> Skip (OuterLoop s dst)
Stop -> Skip inputUnderflow
step' _ _ (InnerLoopDecodeInit st startf p end)
| p == end = do
liftIO $ touchForeignPtr startf
return $ Skip $ OuterLoop st Nothing
step' _ _ (InnerLoopDecodeInit st startf p end) = do
x <- liftIO $ peek p
case x > 0x7f of
False ->
return $ Skip $ YAndC
(unsafeChr (fromIntegral x))
(InnerLoopDecodeInit st startf (p `plusPtr` 1) end)
True -> return $ Skip $ InnerLoopDecodeFirst st startf p end x
step' table _ (InnerLoopDecodeFirst st startf p end x) = do
let (Tuple' sv cp) = decode0 table x
return $
case sv of
12 ->
Skip $
transliterateOrError
"Streamly.Streams.StreamD.decodeUtf8ArraysWith: Invalid UTF8 codepoint encountered"
(InnerLoopDecodeInit st startf (p `plusPtr` 1) end)
0 -> error "unreachable state"
_ -> Skip (InnerLoopDecoding st startf (p `plusPtr` 1) end sv cp)
step' _ _ (InnerLoopDecoding st startf p end sv cp)
| p == end = do
liftIO $ touchForeignPtr startf
return $ Skip $ OuterLoop st (Just (sv, cp))
step' table _ (InnerLoopDecoding st startf p end statePtr codepointPtr) = do
x <- liftIO $ peek p
let (Tuple' sv cp) = decode1 table statePtr codepointPtr x
return $
case sv of
0 ->
Skip $
YAndC
(unsafeChr cp)
(InnerLoopDecodeInit st startf (p `plusPtr` 1) end)
12 ->
Skip $
transliterateOrError
"Streamly.Streams.StreamD.decodeUtf8ArraysWith: Invalid UTF8 codepoint encountered"
(InnerLoopDecodeInit st startf (p `plusPtr` 1) end)
_ -> Skip (InnerLoopDecoding st startf (p `plusPtr` 1) end sv cp)
step' _ _ (YAndC c s) = return $ Yield c s
step' _ _ D = return Stop
{-# INLINE decodeUtf8Arrays #-}
decodeUtf8Arrays ::
MonadIO m
=> Stream m (A.Array Word8)
-> Stream m Char
decodeUtf8Arrays = decodeUtf8ArraysWith ErrorOnCodingFailure
{-# INLINE decodeUtf8ArraysLenient #-}
decodeUtf8ArraysLenient ::
MonadIO m
=> Stream m (A.Array Word8)
-> Stream m Char
decodeUtf8ArraysLenient = decodeUtf8ArraysWith TransliterateCodingFailure
data WList = WCons !Word8 !WList | WNil
data EncodeState s = EncodeState s !WList
{-# INLINE_NORMAL encodeUtf8 #-}
encodeUtf8 :: Monad m => Stream m Char -> Stream m Word8
encodeUtf8 (Stream step state) = Stream step' (EncodeState state WNil)
where
{-# INLINE_LATE step' #-}
step' gst (EncodeState st WNil) = do
r <- step (adaptState gst) st
return $
case r of
Yield c s ->
case ord c of
x
| x <= 0x7F ->
Yield (fromIntegral x) (EncodeState s WNil)
| x <= 0x7FF -> Skip (EncodeState s (ord2 c))
| x <= 0xFFFF ->
if isSurrogate c
then error
"Streamly.Streams.StreamD.encodeUtf8: Encountered a surrogate"
else Skip (EncodeState s (ord3 c))
| otherwise -> Skip (EncodeState s (ord4 c))
Skip s -> Skip (EncodeState s WNil)
Stop -> Stop
step' _ (EncodeState s (WCons x xs)) = return $ Yield x (EncodeState s xs)