statistics-0.15.0.0: A library of statistical types, data, and functions

Copyright(c) 2009 2011 Bryan O'Sullivan
LicenseBSD3
Maintainerbos@serpentine.com
Stabilityexperimental
Portabilityportable
Safe HaskellNone
LanguageHaskell98

Statistics.Distribution.Poisson

Contents

Description

The Poisson distribution. This is the discrete probability distribution of a number of events occurring in a fixed interval if these events occur with a known average rate, and occur independently from each other within that interval.

Synopsis

Documentation

data PoissonDistribution Source #

Instances
Eq PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Data PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PoissonDistribution -> c PoissonDistribution #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PoissonDistribution #

toConstr :: PoissonDistribution -> Constr #

dataTypeOf :: PoissonDistribution -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PoissonDistribution) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PoissonDistribution) #

gmapT :: (forall b. Data b => b -> b) -> PoissonDistribution -> PoissonDistribution #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PoissonDistribution -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PoissonDistribution -> r #

gmapQ :: (forall d. Data d => d -> u) -> PoissonDistribution -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PoissonDistribution -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PoissonDistribution -> m PoissonDistribution #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PoissonDistribution -> m PoissonDistribution #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PoissonDistribution -> m PoissonDistribution #

Read PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Show PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Generic PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Associated Types

type Rep PoissonDistribution :: * -> * #

ToJSON PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

FromJSON PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Binary PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Entropy PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

MaybeEntropy PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Variance PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

MaybeVariance PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Mean PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

MaybeMean PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

DiscreteDistr PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

Distribution PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

type Rep PoissonDistribution Source # 
Instance details

Defined in Statistics.Distribution.Poisson

type Rep PoissonDistribution = D1 (MetaData "PoissonDistribution" "Statistics.Distribution.Poisson" "statistics-0.15.0.0-AkglZgHZAgx3cdskkvnxTn" True) (C1 (MetaCons "PD" PrefixI True) (S1 (MetaSel (Just "poissonLambda") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Double)))

Constructors

poisson :: Double -> PoissonDistribution Source #

Create Poisson distribution.

poissonE :: Double -> Maybe PoissonDistribution Source #

Create Poisson distribution.

Accessors

References