statistics-0.15.0.0: A library of statistical types, data, and functions

Copyright(c) 2015 Mihai Maruseac
LicenseBSD3
Maintainermihai.maruseac@maruseac.com
Stabilityexperimental
Portabilityportable
Safe HaskellNone
LanguageHaskell98

Statistics.Distribution.Laplace

Contents

Description

The Laplace distribution. This is the continuous probability defined as the difference of two iid exponential random variables or a Brownian motion evaluated as exponentially distributed times. It is used in differential privacy (Laplace Method), speech recognition and least absolute deviations method (Laplace's first law of errors, giving a robust regression method)

Synopsis

Documentation

data LaplaceDistribution Source #

Instances
Eq LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Data LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LaplaceDistribution -> c LaplaceDistribution #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LaplaceDistribution #

toConstr :: LaplaceDistribution -> Constr #

dataTypeOf :: LaplaceDistribution -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LaplaceDistribution) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LaplaceDistribution) #

gmapT :: (forall b. Data b => b -> b) -> LaplaceDistribution -> LaplaceDistribution #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LaplaceDistribution -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LaplaceDistribution -> r #

gmapQ :: (forall d. Data d => d -> u) -> LaplaceDistribution -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LaplaceDistribution -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

Read LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Show LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Generic LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Associated Types

type Rep LaplaceDistribution :: * -> * #

ToJSON LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

FromJSON LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Binary LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

ContGen LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Entropy LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

MaybeEntropy LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Variance LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

MaybeVariance LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Mean LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

MaybeMean LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

ContDistr LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

Distribution LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

FromSample LaplaceDistribution Double Source #

Create Laplace distribution from sample. No tests are made to check whether it truly is Laplace. Location of distribution estimated as median of sample.

Instance details

Defined in Statistics.Distribution.Laplace

type Rep LaplaceDistribution Source # 
Instance details

Defined in Statistics.Distribution.Laplace

type Rep LaplaceDistribution = D1 (MetaData "LaplaceDistribution" "Statistics.Distribution.Laplace" "statistics-0.15.0.0-AkglZgHZAgx3cdskkvnxTn" False) (C1 (MetaCons "LD" PrefixI True) (S1 (MetaSel (Just "ldLocation") SourceUnpack SourceStrict DecidedStrict) (Rec0 Double) :*: S1 (MetaSel (Just "ldScale") SourceUnpack SourceStrict DecidedStrict) (Rec0 Double)))

Constructors

laplace Source #

Arguments

:: Double

Location

-> Double

Scale

-> LaplaceDistribution 

Create an Laplace distribution.

laplaceE Source #

Arguments

:: Double

Location

-> Double

Scale

-> Maybe LaplaceDistribution 

Create an Laplace distribution.

Accessors