statistics-0.14.0.2: A library of statistical types, data, and functions

Copyright(c) 2015 Mihai Maruseac
LicenseBSD3
Maintainermihai.maruseac@maruseac.com
Stabilityexperimental
Portabilityportable
Safe HaskellNone
LanguageHaskell98

Statistics.Distribution.Laplace

Contents

Description

The Laplace distribution. This is the continuous probability defined as the difference of two iid exponential random variables or a Brownian motion evaluated as exponentially distributed times. It is used in differential privacy (Laplace Method), speech recognition and least absolute deviations method (Laplace's first law of errors, giving a robust regression method)

Synopsis

Documentation

data LaplaceDistribution Source #

Instances

Eq LaplaceDistribution Source # 
Data LaplaceDistribution Source # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LaplaceDistribution -> c LaplaceDistribution #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LaplaceDistribution #

toConstr :: LaplaceDistribution -> Constr #

dataTypeOf :: LaplaceDistribution -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c LaplaceDistribution) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LaplaceDistribution) #

gmapT :: (forall b. Data b => b -> b) -> LaplaceDistribution -> LaplaceDistribution #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LaplaceDistribution -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LaplaceDistribution -> r #

gmapQ :: (forall d. Data d => d -> u) -> LaplaceDistribution -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LaplaceDistribution -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

Read LaplaceDistribution Source # 
Show LaplaceDistribution Source # 
Generic LaplaceDistribution Source # 
ToJSON LaplaceDistribution Source # 
FromJSON LaplaceDistribution Source # 
Binary LaplaceDistribution Source # 
ContGen LaplaceDistribution Source # 
Entropy LaplaceDistribution Source # 
MaybeEntropy LaplaceDistribution Source # 
Variance LaplaceDistribution Source # 
MaybeVariance LaplaceDistribution Source # 
Mean LaplaceDistribution Source # 
MaybeMean LaplaceDistribution Source # 
ContDistr LaplaceDistribution Source # 
Distribution LaplaceDistribution Source # 
FromSample LaplaceDistribution Double Source #

Create Laplace distribution from sample. No tests are made to check whether it truly is Laplace. Location of distribution estimated as median of sample.

type Rep LaplaceDistribution Source # 
type Rep LaplaceDistribution = D1 (MetaData "LaplaceDistribution" "Statistics.Distribution.Laplace" "statistics-0.14.0.2-9wDz1lVU92ZDJSrAe5uHzb" False) (C1 (MetaCons "LD" PrefixI True) ((:*:) (S1 (MetaSel (Just Symbol "ldLocation") SourceUnpack SourceStrict DecidedUnpack) (Rec0 Double)) (S1 (MetaSel (Just Symbol "ldScale") SourceUnpack SourceStrict DecidedUnpack) (Rec0 Double))))

Constructors

laplace Source #

Arguments

:: Double

Location

-> Double

Scale

-> LaplaceDistribution 

Create an Laplace distribution.

laplaceE Source #

Arguments

:: Double

Location

-> Double

Scale

-> Maybe LaplaceDistribution 

Create an Laplace distribution.

Accessors