{-# LANGUAGE
DataKinds
, DefaultSignatures
, FlexibleContexts
, FlexibleInstances
, FunctionalDependencies
, PolyKinds
, MultiParamTypeClasses
, QuantifiedConstraints
, RankNTypes
, TypeApplications
, TypeFamilies
, UndecidableInstances
#-}
module Squeal.PostgreSQL.Session.Indexed
( IndexedMonadTrans (..)
, Indexed (..)
, IndexedMonadTransPQ (..)
, indexedDefine
) where
import Control.Category (Category (..))
import Control.Monad
import Control.Monad.IO.Class
import Control.Monad.Trans
import Data.Function ((&))
import Prelude hiding (id, (.))
import Squeal.PostgreSQL.Definition
class
( forall i j m. Monad m => Functor (t i j m)
, forall i m. Monad m => Monad (t i i m)
, forall i. MonadTrans (t i i)
) => IndexedMonadTrans t where
{-# MINIMAL pqJoin | pqBind #-}
pqAp
:: Monad m
=> t i j m (x -> y)
-> t j k m x
-> t i k m y
pqAp t i j m (x -> y)
tf t j k m x
tx = ((x -> y) -> t j k m y) -> t i j m (x -> y) -> t i k m y
forall k (t :: k -> k -> (* -> *) -> * -> *) (m :: * -> *) x
(j :: k) (k :: k) y (i :: k).
(IndexedMonadTrans t, Monad m) =>
(x -> t j k m y) -> t i j m x -> t i k m y
pqBind ((x -> y) -> t j k m x -> t j k m y
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> t j k m x
tx) t i j m (x -> y)
tf
pqJoin
:: Monad m
=> t i j m (t j k m y)
-> t i k m y
pqJoin t i j m (t j k m y)
t = t i j m (t j k m y)
t t i j m (t j k m y)
-> (t i j m (t j k m y) -> t i k m y) -> t i k m y
forall a b. a -> (a -> b) -> b
& (t j k m y -> t j k m y) -> t i j m (t j k m y) -> t i k m y
forall k (t :: k -> k -> (* -> *) -> * -> *) (m :: * -> *) x
(j :: k) (k :: k) y (i :: k).
(IndexedMonadTrans t, Monad m) =>
(x -> t j k m y) -> t i j m x -> t i k m y
pqBind t j k m y -> t j k m y
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
pqBind
:: Monad m
=> (x -> t j k m y)
-> t i j m x
-> t i k m y
pqBind x -> t j k m y
f t i j m x
t = t i j m (t j k m y) -> t i k m y
forall k (t :: k -> k -> (* -> *) -> * -> *) (m :: * -> *) (i :: k)
(j :: k) (k :: k) y.
(IndexedMonadTrans t, Monad m) =>
t i j m (t j k m y) -> t i k m y
pqJoin (x -> t j k m y
f (x -> t j k m y) -> t i j m x -> t i j m (t j k m y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> t i j m x
t)
pqThen
:: Monad m
=> t j k m y
-> t i j m x
-> t i k m y
pqThen t j k m y
pq2 t i j m x
pq1 = t i j m x
pq1 t i j m x -> (t i j m x -> t i k m y) -> t i k m y
forall a b. a -> (a -> b) -> b
& (x -> t j k m y) -> t i j m x -> t i k m y
forall k (t :: k -> k -> (* -> *) -> * -> *) (m :: * -> *) x
(j :: k) (k :: k) y (i :: k).
(IndexedMonadTrans t, Monad m) =>
(x -> t j k m y) -> t i j m x -> t i k m y
pqBind (\ x
_ -> t j k m y
pq2)
pqAndThen
:: Monad m
=> (y -> t j k m z)
-> (x -> t i j m y)
-> x -> t i k m z
pqAndThen y -> t j k m z
g x -> t i j m y
f x
x = (y -> t j k m z) -> t i j m y -> t i k m z
forall k (t :: k -> k -> (* -> *) -> * -> *) (m :: * -> *) x
(j :: k) (k :: k) y (i :: k).
(IndexedMonadTrans t, Monad m) =>
(x -> t j k m y) -> t i j m x -> t i k m y
pqBind y -> t j k m z
g (x -> t i j m y
f x
x)
newtype Indexed t m r i j = Indexed {Indexed t m r i j -> t i j m r
runIndexed :: t i j m r}
instance
( IndexedMonadTrans t
, Monad m
, Monoid r
) => Category (Indexed t m r) where
id :: Indexed t m r a a
id = t a a m r -> Indexed t m r a a
forall k k k k (t :: k -> k -> k -> k -> *) (m :: k) (r :: k)
(i :: k) (j :: k).
t i j m r -> Indexed t m r i j
Indexed (r -> t a a m r
forall (f :: * -> *) a. Applicative f => a -> f a
pure r
forall a. Monoid a => a
mempty)
Indexed t b c m r
g . :: Indexed t m r b c -> Indexed t m r a b -> Indexed t m r a c
. Indexed t a b m r
f = t a c m r -> Indexed t m r a c
forall k k k k (t :: k -> k -> k -> k -> *) (m :: k) (r :: k)
(i :: k) (j :: k).
t i j m r -> Indexed t m r i j
Indexed (t a c m r -> Indexed t m r a c) -> t a c m r -> Indexed t m r a c
forall a b. (a -> b) -> a -> b
$ t a b m (r -> r) -> t b c m r -> t a c m r
forall k (t :: k -> k -> (* -> *) -> * -> *) (m :: * -> *) (i :: k)
(j :: k) x y (k :: k).
(IndexedMonadTrans t, Monad m) =>
t i j m (x -> y) -> t j k m x -> t i k m y
pqAp ((r -> r -> r) -> t a b m r -> t a b m (r -> r)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap r -> r -> r
forall a. Semigroup a => a -> a -> a
(<>) t a b m r
f) t b c m r
g
class IndexedMonadTrans pq => IndexedMonadTransPQ pq where
define :: MonadIO io => Definition db0 db1 -> pq db0 db1 io ()
indexedDefine
:: (IndexedMonadTransPQ pq, MonadIO io)
=> Definition db0 db1 -> Indexed pq io () db0 db1
indexedDefine :: Definition db0 db1 -> Indexed pq io () db0 db1
indexedDefine = pq db0 db1 io () -> Indexed pq io () db0 db1
forall k k k k (t :: k -> k -> k -> k -> *) (m :: k) (r :: k)
(i :: k) (j :: k).
t i j m r -> Indexed t m r i j
Indexed (pq db0 db1 io () -> Indexed pq io () db0 db1)
-> (Definition db0 db1 -> pq db0 db1 io ())
-> Definition db0 db1
-> Indexed pq io () db0 db1
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Definition db0 db1 -> pq db0 db1 io ()
forall (pq :: SchemasType -> SchemasType -> (* -> *) -> * -> *)
(io :: * -> *) (db0 :: SchemasType) (db1 :: SchemasType).
(IndexedMonadTransPQ pq, MonadIO io) =>
Definition db0 db1 -> pq db0 db1 io ()
define