Contents
Index
squares-0: The double category of Hask functors and profunctors
Index
++
Data.Type.List
:**:
1 (Type/Class)
Data.Square
2 (Data Constructor)
Data.Square
===
Data.Square
bind
Control.Monad.Square
closed
Data.Profunctor.Square
curryF
Data.Square
emptySquare
Data.Square
F
Data.Functor.Compose.List
FAppend
Data.Functor.Compose.List
fappend
Data.Functor.Compose.List
FComp
Data.Functor.Compose.List
FList
Data.Functor.Compose.List
fromHom
Data.Profunctor.Square
fromLeft
Data.Square
fromProcompose
Data.Profunctor.Square
fromRight
Data.Square
funappend
Data.Functor.Compose.List
funId
Data.Square
funNat
Data.Square
Hom
Data.Profunctor.Composition.List
Id
Data.Functor.Compose.List
join
Control.Monad.Square
kleisli
Control.Monad.Square
map
Data.Profunctor.Square
mkSquare
Data.Square
P
Data.Profunctor.Composition.List
PAppend
Data.Profunctor.Composition.List
pappend
Data.Profunctor.Composition.List
PComp
Data.Profunctor.Composition.List
PList
Data.Profunctor.Composition.List
proId
Data.Square
proNat
Data.Square
punappend
Data.Profunctor.Composition.List
return
Control.Monad.Square
right
Data.Profunctor.Square
second
Data.Profunctor.Square
sequence
Data.Traversable.Square
spiderLemma
Data.Square
spiderLemma'
Data.Square
Square
1 (Type/Class)
Data.Square
2 (Data Constructor)
Data.Square
Square01
Data.Square
Square21
Data.Square
SquareNT
Data.Square
toHom
Data.Profunctor.Square
toLeft
Data.Square
toProcompose
Data.Profunctor.Square
toRight
Data.Square
traverse
Data.Traversable.Square
uLeft
Data.Square
UncurryF
1 (Type/Class)
Data.Square
2 (Data Constructor)
Data.Square
unF
Data.Functor.Compose.List
unFComp
Data.Functor.Compose.List
unHom
Data.Profunctor.Composition.List
unId
Data.Functor.Compose.List
Unit
1 (Type/Class)
Data.Square
2 (Data Constructor)
Data.Square
unP
Data.Profunctor.Composition.List
unSquare
Data.Square
uRight
Data.Square
ValueF
1 (Type/Class)
Data.Square
2 (Data Constructor)
Data.Square
|||
Data.Square
~>
Data.Functor.Compose.List