{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
module Math.Tensor.Examples.Gravity (
delta3, delta9, delta20,
delta3A,
eta, invEta, etaA, invEtaA, etaAbs,
epsilon, epsilonInv, epsilonA, epsilonInvA,
lorentzJ1, lorentzJ2, lorentzJ3, lorentzK1, lorentzK2, lorentzK3,
flatArea,
interI2, interJ2,
interIArea, interJArea,
interArea, interMetric,
flatInterMetric, flatInter,
interEqn2, interEqn3, interEqn4, interEqn5,
interEqn2Metric, interEqn3Metric, interEqn4Metric, interEqn5Metric,
randArea, randFlatArea, randAreaDerivative1, randAreaDerivative2, randMetric, randAxon,
generic4Ansatz, generic5Ansatz, generic6Ansatz,
generic8Ansatz, generic9Ansatz, generic10_1Ansatz, generic10_2Ansatz, generic11Ansatz, generic12_1Ansatz,
) where
import System.Random.TF.Instances (randomRs)
import System.Random.TF.Init (newTFGen)
import qualified Data.Map.Strict as M
import qualified Data.IntMap.Strict as I
import Data.List (permutations, nub, sort)
import Math.Tensor
liftSTtoATens :: STTens n1 n2 v -> ATens 0 0 0 0 n1 n2 v
liftSTtoATens = Scalar . Scalar . Scalar . Scalar
delta3 :: STTens 1 1 (SField Rational)
delta3 = fromListT2 $ zip [(singletonInd (Ind3 i),singletonInd (Ind3 i)) | i <- [0..3]] (repeat $ SField 1)
delta3A :: ATens 0 0 0 0 1 1 (SField Rational)
delta3A = liftSTtoATens delta3
delta9 :: ATens 0 0 1 1 0 0 (SField Rational)
delta9 = fromListT6 $ zip [(Empty, Empty, singletonInd (Ind9 i),singletonInd (Ind9 i), Empty, Empty) | i <- [0..9]] (repeat $ SField 1)
delta20 :: ATens 1 1 0 0 0 0 (SField Rational)
delta20 = fromListT6 $ zip [(singletonInd (Ind20 i),singletonInd (Ind20 i), Empty, Empty, Empty, Empty) | i <- [0..20]] (repeat $ SField 1)
eta :: STTens 0 2 (SField Rational)
eta = fromListT2 l
where
l = map (\(x,y,z) -> ((Empty,Append (Ind3 x) $ Append (Ind3 y) Empty),SField z))
[(0,0,-1),(1,1,1),(2,2,1),(3,3,1)]
etaA :: ATens 0 0 0 0 0 2 (SField Rational)
etaA = liftSTtoATens eta
invEta :: STTens 2 0 (SField Rational)
invEta = fromListT2 l
where
l = map (\(x,y,z) -> ((Append (Ind3 x) $ Append (Ind3 y) Empty,Empty),SField z))
[(0,0,-1),(1,1,1),(2,2,1),(3,3,1)]
invEtaA :: ATens 0 0 0 0 2 0 (SField Rational)
invEtaA = liftSTtoATens invEta
etaAbs :: ATens 0 0 0 1 0 0 (SField Rational)
etaAbs = fromListT6 l
where
l = map (\(x,y) -> ((Empty, Empty, Empty, singletonInd $ Ind9 x, Empty, Empty),SField y))
[(0,-1),(4,1),(7,1),(9,1)]
epsilon :: STTens 0 4 (SField Rational)
epsilon = fromListT2 l
where
l = map (\([i,j,k,l],v) -> ((Empty, Append (Ind3 i) $ Append (Ind3 j) $ Append (Ind3 k) $ singletonInd (Ind3 l)),SField v)) epsL
epsSign [i,j,k,l] = (-1) ^ length (filter (==True) [j>i,k>i,l>i,k>j,l>j,l>k])
epsL = map (\x -> (x, epsSign x)) $ permutations [0,1,2,3]
epsilonA :: ATens 0 0 0 0 0 4 (SField Rational)
epsilonA = liftSTtoATens epsilon
epsilonInv :: STTens 4 0 (SField Rational)
epsilonInv = fromListT2 l
where
l = map (\([i,j,k,l],v) -> ((Append (Ind3 i) $ Append (Ind3 j) $ Append (Ind3 k) $ singletonInd (Ind3 l), Empty),SField v)) epsL
epsSign [i,j,k,l] = (-1) ^ length (filter (==True) [j>i,k>i,l>i,k>j,l>j,l>k])
epsL = map (\x -> (x, epsSign x)) $ permutations [0,1,2,3]
epsilonInvA :: ATens 0 0 0 0 4 0 (SField Rational)
epsilonInvA = liftSTtoATens epsilonInv
lorentzJ1 :: ATens 0 0 0 0 1 1 (SField Rational)
lorentzJ1 = fromListT6 l
where
l = map (\(x,y,z) -> ((Empty,Empty,Empty,Empty,singletonInd $ Ind3 x,singletonInd $ Ind3 y), SField z)) [(3,2,1),(2,3,-1)]
lorentzJ2 :: ATens 0 0 0 0 1 1 (SField Rational)
lorentzJ2 = fromListT6 l
where
l = map (\(x,y,z) -> ((Empty,Empty,Empty,Empty,singletonInd $ Ind3 x,singletonInd $ Ind3 y), SField z)) [(3,1,-1),(1,3,1)]
lorentzJ3 :: ATens 0 0 0 0 1 1 (SField Rational)
lorentzJ3 = fromListT6 l
where
l = map (\(x,y,z) -> ((Empty,Empty,Empty,Empty,singletonInd $ Ind3 x,singletonInd $ Ind3 y), SField z)) [(2,1,1),(1,2,-1)]
lorentzK1 :: ATens 0 0 0 0 1 1 (SField Rational)
lorentzK1 = fromListT6 l
where
l = map (\(x,y,z) -> ((Empty,Empty,Empty,Empty,singletonInd $ Ind3 x,singletonInd $ Ind3 y), SField z)) [(0,1,1),(1,0,1)]
lorentzK2 :: ATens 0 0 0 0 1 1 (SField Rational)
lorentzK2 = fromListT6 l
where
l = map (\(x,y,z) -> ((Empty,Empty,Empty,Empty,singletonInd $ Ind3 x,singletonInd $ Ind3 y), SField z)) [(0,2,1),(2,0,1)]
lorentzK3 :: ATens 0 0 0 0 1 1 (SField Rational)
lorentzK3 = fromListT6 l
where
l = map (\(x,y,z) -> ((Empty,Empty,Empty,Empty,singletonInd $ Ind3 x,singletonInd $ Ind3 y), SField z)) [(0,3,1),(3,0,1)]
flatArea :: ATens 0 1 0 0 0 0 (SField Rational)
flatArea = fromListT6 $ map (\(i,v) -> ( (Empty, singletonInd $ Ind20 i, Empty, Empty, Empty, Empty), SField v))
[(0,-1),(5,-1),(6,-1),(9,1),(11,-1),(12,-1),(15,1),(18,1),(20,1)]
trianMap2 :: M.Map (IndList 2 Ind3) (IndList 1 Ind9)
trianMap2 = M.fromList $ zip [ Append (Ind3 a) $ singletonInd $ Ind3 b | a <- [0..3], b <- [a..3] ] $ map (singletonInd . Ind9) [0..]
trianMapArea :: M.Map (IndList 4 Ind3) (IndList 1 Ind20)
trianMapArea = M.fromList $ zip [ Append (Ind3 a) $ Append (Ind3 b) $ Append (Ind3 c) $ singletonInd $ Ind3 d | a <- [0..2], b <- [a+1..3], c <- [a..2], d <- [c+1..3], not $ a == c && b > d ] $ map (singletonInd . Ind20) [0..]
jMult2 :: (Eq a) => IndList 2 a -> Rational
jMult2 (Append a (Append b Empty))
| a == b = 1
| otherwise = 1/2
jMult3 :: (Eq a) => IndList 3 a -> Rational
jMult3 (Append a (Append b (Append c Empty)))
| i == 1 = 1
| i == 2 = 1/3
| otherwise = 1/6
where
i = length $ nub [a,b,c]
jMultArea :: (Eq a) => IndList 4 a -> Rational
jMultArea (Append a (Append b (Append c (Append d Empty))))
| a == c && b == d = 1/4
| otherwise = 1/8
isZeroArea :: (Eq a) => IndList 4 a -> Bool
isZeroArea (Append a (Append b (Append c (Append d Empty)))) = a == b || c == d
areaSign :: (Eq a, Ord a) => IndList 4 a -> Rational
areaSign (Append a (Append b (Append c (Append d Empty)))) = s1 * s2
where
s1 = pairSign a b
s2 = pairSign c d
pairSign x y = if x < y then 1 else -1
canonicalizeArea :: (Eq a, Ord a) => IndList 4 a -> (IndList 4 a, Rational)
canonicalizeArea (Append a (Append b (Append c (Append d Empty)))) = (Append a' (Append b' (Append c' (Append d' Empty))),s)
where
s = areaSign (Append a (Append b (Append c (Append d Empty))))
[[a',b'],[c',d']] = sort $ map sort [[a,b],[c,d]]
interI2 :: ATens 0 0 1 0 0 2 (SField Rational)
interI2 = fromListT6 $ fmap (fmap SField) $ filter (\(i,k) -> k /= 0) $ map (\x -> (x,f x)) inds
where
trian2 = trianMap2
inds = [ (Empty, Empty, singletonInd $ Ind9 a, Empty, Empty, Append (Ind3 b) $ singletonInd $ Ind3 c) | a <- [0..9], b <- [0..3], c <- [0..3]]
f (_, _, ind1, _, _, ind2)
| ind1 == (M.!) trian2 (sortInd ind2) = 1
| otherwise = 0
interJ2 :: ATens 0 0 0 1 2 0 (SField Rational)
interJ2 = fromListT6 $ fmap (fmap SField) $ filter (\(i,k) -> k /= 0) $ map (\x -> (x,f x)) inds
where
trian2 = trianMap2
inds = [ (Empty, Empty, Empty, singletonInd $ Ind9 a, Append (Ind3 b) $ singletonInd $ Ind3 c, Empty) | a <- [0..9], b <- [0..3], c <- [0..3]]
f (_, _, _, ind1, ind2, _)
| ind1 == (M.!) trian2 (sortInd ind2) = jMult2 ind2
| otherwise = 0
interIArea :: ATens 1 0 0 0 0 4 (SField Rational)
interIArea = fromListT6 $ fmap (fmap SField) $ filter (\(i,k) -> k /= 0) $ map (\x -> (x,f x)) inds
where
trianArea = trianMapArea
inds = [ (singletonInd (Ind20 a), Empty, Empty, Empty, Empty, Append (Ind3 b) $ Append (Ind3 c) $ Append (Ind3 d) $ singletonInd $ Ind3 e) | a <- [0..20], b <- [0..3], c <- [0..3], d <- [0..3], e <- [0..3], not (b == c || d == e)]
f (ind1, _, _, _, _, ind2)
| ind1 == (M.!) trianArea indArea = s
| otherwise = 0
where
(indArea, s) = canonicalizeArea ind2
interJArea :: ATens 0 1 0 0 4 0 (SField Rational)
interJArea = fromListT6 $ fmap (fmap SField) $ filter (\(i,k) -> k /= 0) $ map (\x -> (x,f x)) inds
where
trianArea = trianMapArea
inds = [ (Empty, singletonInd $ Ind20 a, Empty, Empty, Append (Ind3 b) $ Append (Ind3 c) $ Append (Ind3 d) $ singletonInd $ Ind3 e, Empty) | a <- [0..20], b <- [0..3], c <- [0..3], d <- [0..3], e <- [0..3], not (b == c || d == e)]
f (_, ind1, _, _, ind2, _)
| ind1 == (M.!) trianArea indArea = s * jMultArea indArea
| otherwise = 0
where
(indArea, s) = canonicalizeArea ind2
interArea :: ATens 1 1 0 0 1 1 (SField Rational)
interArea = SField (-4 :: Rational) &. contrATens3 (1,1) (contrATens3 (2,2) $ contrATens3 (3,3) $ interIArea &* interJArea)
interMetric :: ATens 0 0 1 1 1 1 (SField Rational)
interMetric = SField (-2 :: Rational) &. contrATens3 (0,0) (interI2 &* interJ2)
flatInter :: ATens 0 1 0 0 1 1 (SField Rational)
flatInter = contrATens1 (0,1) $ interArea &* flatArea
flatInterMetric :: ATens 0 0 0 1 1 1 (SField Rational)
flatInterMetric = contrATens2 (0,1) $ interMetric &* etaAbs
interEqn2 :: ATens 1 1 0 0 2 2 (SField Rational)
interEqn2 = int1 &- int2
where
int1 = interArea &* delta3A
int2 = tensorTrans6 (0,1) (delta3A &* delta3A) &* delta20
interEqn2Metric :: ATens 0 0 1 1 2 2 (SField Rational)
interEqn2Metric = int1 &- int2
where
int1 = interMetric &* delta3A
int2 = tensorTrans6 (0,1) (delta3A &* delta3A) &* delta9
interEqn3 :: ATens 1 1 1 1 1 1 (SField Rational)
interEqn3 = int1 &+ int2
where
int1 = interArea &* delta9
int2 = interMetric &* delta20
interEqn3Metric :: ATens 0 0 2 2 1 1 (SField Rational)
interEqn3Metric = int1 &+ int2
where
int1 = interMetric &* delta9
int2 = delta9 &* interMetric
interEqn4 :: ATens 1 1 0 1 3 1 (SField Rational)
interEqn4 = block1 &- block2
where
block1' = interJ2 &* interArea
block1 = block1' &+ tensorTrans5 (1,2) block1'
block2 = delta20 &* delta3A &* interJ2
interEqn4Metric :: ATens 0 0 1 2 3 1 (SField Rational)
interEqn4Metric = block1 &- block2
where
block1' = interJ2 &* interMetric
block1 = block1' &+ tensorTrans5 (1,2) block1'
block2 = delta3A &* interJ2 &* delta9
interEqn5 :: ATens 1 1 0 1 3 1 (SField Rational)
interEqn5 = cyclicSymATens5 [0,1,2] intA1
where
intA1 = interJ2 &* interArea
interEqn5Metric :: ATens 0 0 1 2 3 1 (SField Rational)
interEqn5Metric = cyclicSymATens5 [0,1,2] intA1
where
intA1 = interJ2 &* interMetric
generic4Ansatz :: ATens 1 0 0 0 0 0 (AnsVar (SField Rational))
generic4Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a) $ SField 1
in ((singletonInd (Ind20 $ a-1), Empty, Empty, Empty, Empty, Empty), varMap)
| a <- [1..21] ]
dof a = a
generic5Ansatz :: ATens 1 0 0 0 1 0 (AnsVar (SField Rational))
generic5Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a p) $ SField 1
in ((singletonInd (Ind20 $ a-1), Empty, Empty, Empty, singletonInd (Ind3 $ p-1 ), Empty), varMap)
| a <- [1..21], p <- [1..4] ]
dof a p = 1 + 21 + 4*(a-1) + (p-1)
generic6Ansatz :: ATens 1 0 1 0 0 0 (AnsVar (SField Rational))
generic6Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a i) $ SField 1
in ((singletonInd (Ind20 $ a-1), Empty, singletonInd (Ind9 $ i-1), Empty, Empty, Empty), varMap)
| a <- [1..21], i <- [1..10] ]
dof a i = 1 + 21 + 84 + 10*(a-1) + (i-1)
generic8Ansatz :: ATens 2 0 0 0 0 0 (AnsVar (SField Rational))
generic8Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a b) $ SField 1
in ((Append (Ind20 $ a-1) $ singletonInd (Ind20 $ b-1), Empty, Empty, Empty, Empty, Empty), varMap)
| a <- [1..21], b <- [1..21] ]
dof a b = let a' = min a b
b' = max a b
in trian M.! [a',b'] + 315
trian = M.fromList $ zip j k
where
j = [ [a,b] | a <- [1..315], b <- [a..315] ]
k = [1..]
generic9Ansatz :: ATens 2 0 0 0 1 0 (AnsVar (SField Rational))
generic9Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a b p) $ SField 1
in ((Append (Ind20 $ a-1) $ singletonInd (Ind20 $ b-1), Empty, Empty, Empty, singletonInd (Ind3 $ p-1), Empty), varMap)
| a <- [1..21], b <- [1..21], p <- [1..4]]
dof a b p = trian M.! [a,1 + 21 + 4*(b-1) + (p-1)] + 315
trian = M.fromList $ zip j k
where
j = [ [a,b] | a <- [1..315], b <- [a..315] ]
k = [1..]
generic10_1Ansatz :: ATens 2 0 0 0 2 0 (AnsVar (SField Rational))
generic10_1Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a b p q) $ SField 1
in ((Append (Ind20 $ a-1) $ singletonInd (Ind20 $ b-1), Empty, Empty, Empty, Append (Ind3 $ p-1) $ singletonInd (Ind3 $ q-1), Empty), varMap)
| a <- [1..21], b <- [1..21], p <- [1..4], q <- [1..4]]
dof a b p q = let
a' = min (1 + 21 + 4*(a-1) + (p-1)) (1 + 21 + 4*(b-1) + (q-1))
b' = max (1 + 21 + 4*(a-1) + (p-1)) (1 + 21 + 4*(b-1) + (q-1))
in trian M.! [a',b'] + 315
trian = M.fromList $ zip j k
where
j = [ [a,b] | a <- [1..315], b <- [a..315] ]
k = [1..]
generic10_2Ansatz :: ATens 2 0 1 0 0 0 (AnsVar (SField Rational))
generic10_2Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a b i) $ SField 1
in ((Append (Ind20 $ a-1) $ singletonInd (Ind20 $ b-1), Empty, singletonInd (Ind9 $ i -1), Empty, Empty, Empty), varMap)
| a <- [1..21], b <- [1..21], i <- [1..10]]
dof a b i = trian M.! [a,1 + 105 + 10*(b-1) + (i-1)] + 315
trian = M.fromList $ zip j k
where
j = [ [a,b] | a <- [1..315], b <- [a..315] ]
k = [1..]
generic11Ansatz :: ATens 2 0 1 0 1 0 (AnsVar (SField Rational))
generic11Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a b i p) $ SField 1
in ((Append (Ind20 $ a-1) $ singletonInd (Ind20 $ b-1), Empty, singletonInd (Ind9 $ i -1), Empty, singletonInd (Ind3 $ p-1), Empty), varMap)
| a <- [1..21], b <- [1..21], i <- [1..10], p <- [1..4]]
dof a b i p = trian M.! [1 + 21 + 4*(a-1) + (p-1),1 + 105 + 10*(b-1) + (i-1)] + 315
trian = M.fromList $ zip j k
where
j = [ [a,b] | a <- [1..315], b <- [a..315] ]
k = [1..]
generic12_1Ansatz :: ATens 2 0 2 0 0 0 (AnsVar (SField Rational))
generic12_1Ansatz = fromListT6 list
where
list = [ let varMap = AnsVar $ I.singleton (dof a b i j) $ SField 1
in ((Append (Ind20 $ a-1) $ singletonInd (Ind20 $ b-1), Empty, Append (Ind9 $ i-1) $ singletonInd (Ind9 $ j -1), Empty, Empty, Empty), varMap)
| a <- [1..21], b <- [1..21], i <- [1..10], j <- [1..10]]
dof a b i j = let
a' = min (1 + 105 + 10*(a-1) + (i-1)) (1 + 105 + 10*(b-1) + (j-1))
b' = max (1 + 105 + 10*(a-1) + (i-1)) (1 + 105 + 10*(b-1) + (j-1))
in trian M.! [a',b'] + 315
trian = M.fromList $ zip j k
where
j = [ [a,b] | a <- [1..315], b <- [a..315] ]
k = [1..]
randRats :: IO [Rational]
randRats = do
gen <- newTFGen
let randList' = randomRs (-10000,10000) gen :: [Int]
let randList = map fromIntegral randList'
return randList
randArea :: IO (ATens 0 1 0 0 0 0 (SField Rational))
randArea = do gen <- newTFGen
randList <- randRats
let inds = map (\i -> (Empty, singletonInd $ Ind20 i, Empty, Empty, Empty, Empty)) [0..20]
return $ fromListT6 $ zip inds $ fmap SField randList
randAxon :: IO (ATens 0 1 0 0 0 0 (SField Rational))
randAxon = do gen <- newTFGen
randList <- randRats
let inds = map (\i -> (Empty, singletonInd $ Ind20 i, Empty, Empty, Empty, Empty)) [5,9,12]
let randInd = SField $ head randList
let assocs = zip inds [-randInd, randInd, -randInd]
let tens = fromListT6 assocs
return tens
randFlatArea :: IO (ATens 0 1 0 0 0 0 (SField Rational))
randFlatArea = do gen <- newTFGen
randList <- randRats
let assocs = map (\(i,v) -> ( (Empty, singletonInd $ Ind20 i, Empty, Empty, Empty, Empty), SField v))
[(0, -1 * head randList),(5, randList !! 3),(6, -1 * randList !! 1),(9, -1 * randList !! 4),(11, -1 * randList !! 2),(12, randList !! 5),(15, head randList),(18, randList !! 1),(20, randList !! 2)]
let tens = fromListT6 assocs
return tens
randAreaDerivative1 :: IO (ATens 0 1 0 0 0 1 (SField Rational))
randAreaDerivative1 = do gen <- newTFGen
randList <- randRats
let inds = [ f a p | a <- [0..20], p <- [0..3]]
return $ fromListT6 $ zip inds $ fmap SField randList
where f a p = (Empty, singletonInd $ Ind20 a, Empty, Empty, Empty, singletonInd $ Ind3 p)
randAreaDerivative2 :: IO (ATens 0 1 0 1 0 0 (SField Rational))
randAreaDerivative2 = do gen <- newTFGen
randList <- randRats
let inds = [ f a i | a <- [0..20], i <- [0..9]]
return $ fromListT6 $ zip inds $ fmap SField randList
where f a i = (Empty, singletonInd $ Ind20 a, Empty, singletonInd $ Ind9 i, Empty, Empty)
randMetric :: IO (ATens 0 0 0 1 0 0 (SField Rational))
randMetric = do gen <- newTFGen
randList <- randRats
let inds = map (\i -> (Empty, Empty, Empty, singletonInd $ Ind9 i, Empty, Empty)) [0..20]
return $ fromListT6 $ zip inds $ fmap SField randList