spake2-0.4.3: Implementation of the SPAKE2 Password-Authenticated Key Exchange algorithm
Safe HaskellNone
LanguageHaskell2010

Crypto.Spake2.Groups

Description

Each of these implements the Group typeclass.

Synopsis

Documentation

data Ed25519 Source #

Constructors

Ed25519 

Instances

Instances details
Eq Ed25519 Source # 
Instance details

Defined in Crypto.Spake2.Groups.Ed25519

Methods

(==) :: Ed25519 -> Ed25519 -> Bool #

(/=) :: Ed25519 -> Ed25519 -> Bool #

Show Ed25519 Source # 
Instance details

Defined in Crypto.Spake2.Groups.Ed25519

AbelianGroup Ed25519 Source # 
Instance details

Defined in Crypto.Spake2.Groups.Ed25519

Associated Types

type Scalar Ed25519 Source #

Group Ed25519 Source # 
Instance details

Defined in Crypto.Spake2.Groups.Ed25519

Associated Types

type Element Ed25519 Source #

type Scalar Ed25519 Source # 
Instance details

Defined in Crypto.Spake2.Groups.Ed25519

type Element Ed25519 Source # 
Instance details

Defined in Crypto.Spake2.Groups.Ed25519

data IntegerGroup Source #

A finite group of integers with respect to multiplication modulo the group order.

Construct with makeIntegerGroup.

Constructors

IntegerGroup 

Instances

Instances details
Eq IntegerGroup Source # 
Instance details

Defined in Crypto.Spake2.Groups.IntegerGroup

Show IntegerGroup Source # 
Instance details

Defined in Crypto.Spake2.Groups.IntegerGroup

AbelianGroup IntegerGroup Source # 
Instance details

Defined in Crypto.Spake2.Groups.IntegerGroup

Associated Types

type Scalar IntegerGroup Source #

Group IntegerGroup Source # 
Instance details

Defined in Crypto.Spake2.Groups.IntegerGroup

Associated Types

type Element IntegerGroup Source #

type Scalar IntegerGroup Source # 
Instance details

Defined in Crypto.Spake2.Groups.IntegerGroup

type Element IntegerGroup Source # 
Instance details

Defined in Crypto.Spake2.Groups.IntegerGroup

makeIntegerGroup :: Integer -> Integer -> Integer -> Maybe IntegerGroup Source #

Construct an IntegerGroup.

Will fail if generator is '1', since having the identity for a generator means the subgroup is the entire group.

TODO: Find other things to check for validity.