Copyright | (c) 2012-2021 Amy de Buitléir |
---|---|
License | BSD-style |
Maintainer | amy@nualeargais.ie |
Stability | experimental |
Portability | portable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Tools for identifying patterns in data.
Synopsis
- class Classifier (c :: * -> * -> * -> *) v k p where
- toList :: c v k p -> [(k, p)]
- numModels :: c v k p -> Int
- models :: c v k p -> [p]
- differences :: c v k p -> p -> [(k, v)]
- classify :: Ord v => c v k p -> p -> k
- train :: c v k p -> p -> c v k p
- trainBatch :: c v k p -> [p] -> c v k p
- classifyAndTrain :: c v k p -> p -> (k, c v k p)
- diffAndTrain :: c v k p -> p -> ([(k, v)], c v k p)
- reportAndTrain :: c v k p -> p -> (k, [(k, v)], c v k p)
Documentation
class Classifier (c :: * -> * -> * -> *) v k p where Source #
A machine which learns to classify input patterns.
Minimal complete definition: trainBatch
, reportAndTrain
.
toList :: c v k p -> [(k, p)] Source #
Returns a list of index/model pairs.
numModels :: c v k p -> Int Source #
Returns the number of models this classifier can learn.
models :: c v k p -> [p] Source #
Returns the current models of the classifier.
differences :: c v k p -> p -> [(k, v)] Source #
returns the indices of all nodes in
differences
c targetc
, paired with the difference between target
and the
node's model.
classify :: Ord v => c v k p -> p -> k Source #
classify c target
returns the index of the node in c
whose model best matches the target
.
train :: c v k p -> p -> c v k p Source #
returns a modified copy
of the classifier train
c targetc
that has partially learned the target
.
trainBatch :: c v k p -> [p] -> c v k p Source #
returns a modified copy
of the classifier trainBatch
c targetsc
that has partially learned the targets
.
classifyAndTrain :: c v k p -> p -> (k, c v k p) Source #
returns a tuple containing the
index of the node in classifyAndTrain
c targetc
whose model best matches the input
target
, and a modified copy of the classifier c
that has
partially learned the target
. Invoking classifyAndTrain c p
may be faster than invoking (p
, but
they
should give identical results.classify
c, train c p)
diffAndTrain :: c v k p -> p -> ([(k, v)], c v k p) Source #
returns a tuple containing:
1. The indices of all nodes in diffAndTrain
c targetc
, paired with the difference
between target
and the node's model
2. A modified copy of the classifier c
that has partially
learned the target
.
Invoking diffAndTrain c p
may be faster than invoking
(p
, but they should give identical
results.diff
c, train c p)
reportAndTrain :: c v k p -> p -> (k, [(k, v)], c v k p) Source #
returns a tuple containing:
1. The index of the node in reportAndTrain
c f targetc
whose model best matches the
input target
2. The indices of all nodes in c
, paired with the difference
between target
and the node's model
3. A modified copy of the classifier c
that has partially
learned the target
Invoking diffAndTrain c p
may be faster than invoking
(p
, but they should give identical
results.diff
c, train c p)
Instances
(GridMap gm p, k ~ Index (BaseGrid gm p), FiniteGrid (gm p), GridMap gm x, k ~ Index (gm p), k ~ Index (gm x), k ~ Index (BaseGrid gm x), Ord k, Ord x, Num x, Fractional x) => Classifier (DSOM gm) x k p Source # | |
Defined in Data.Datamining.Clustering.DSOMInternal toList :: DSOM gm x k p -> [(k, p)] Source # numModels :: DSOM gm x k p -> Int Source # models :: DSOM gm x k p -> [p] Source # differences :: DSOM gm x k p -> p -> [(k, x)] Source # classify :: DSOM gm x k p -> p -> k Source # train :: DSOM gm x k p -> p -> DSOM gm x k p Source # trainBatch :: DSOM gm x k p -> [p] -> DSOM gm x k p Source # classifyAndTrain :: DSOM gm x k p -> p -> (k, DSOM gm x k p) Source # diffAndTrain :: DSOM gm x k p -> p -> ([(k, x)], DSOM gm x k p) Source # reportAndTrain :: DSOM gm x k p -> p -> (k, [(k, x)], DSOM gm x k p) Source # | |
(GridMap gm p, k ~ Index (BaseGrid gm p), Grid (gm p), GridMap gm x, k ~ Index (gm p), k ~ Index (BaseGrid gm x), Num t, Ord x, Num x, Num d) => Classifier (SOM t d gm) x k p Source # | |
Defined in Data.Datamining.Clustering.SOMInternal toList :: SOM t d gm x k p -> [(k, p)] Source # numModels :: SOM t d gm x k p -> Int Source # models :: SOM t d gm x k p -> [p] Source # differences :: SOM t d gm x k p -> p -> [(k, x)] Source # classify :: SOM t d gm x k p -> p -> k Source # train :: SOM t d gm x k p -> p -> SOM t d gm x k p Source # trainBatch :: SOM t d gm x k p -> [p] -> SOM t d gm x k p Source # classifyAndTrain :: SOM t d gm x k p -> p -> (k, SOM t d gm x k p) Source # diffAndTrain :: SOM t d gm x k p -> p -> ([(k, x)], SOM t d gm x k p) Source # reportAndTrain :: SOM t d gm x k p -> p -> (k, [(k, x)], SOM t d gm x k p) Source # |