-- vim:fdm=marker:foldtext=foldtext()

--------------------------------------------------------------------
-- |
-- Module    : Test.SmallCheck.Series
-- Copyright : (c) Colin Runciman et al.
-- License   : BSD3
-- Maintainer: Roman Cheplyaka <roma@ro-che.info>
--
-- You need this module if you want to generate test values of your own
-- types.
--
-- You'll typically need the following extensions:
--
-- >{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
--
-- SmallCheck itself defines data generators for all the data types used
-- by the "Prelude".
--
-- In order to generate values and functions of your own types, you need
-- to make them instances of 'Serial' (for values) and 'CoSerial' (for
-- functions). There are two main ways to do so: using Generics or writing
-- the instances by hand.
--------------------------------------------------------------------

{-# LANGUAGE CPP                   #-}
{-# LANGUAGE DefaultSignatures     #-}
{-# LANGUAGE DeriveFoldable        #-}
{-# LANGUAGE DeriveFunctor         #-}
{-# LANGUAGE DeriveTraversable     #-}
{-# LANGUAGE FlexibleContexts      #-}
{-# LANGUAGE FlexibleInstances     #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes            #-}
{-# LANGUAGE ScopedTypeVariables   #-}
{-# LANGUAGE TypeOperators         #-}

#if MIN_VERSION_base(4,8,0)
{-# LANGUAGE Safe                  #-}
#else
{-# LANGUAGE OverlappingInstances  #-}
{-# LANGUAGE Trustworthy           #-}
#endif

#define HASCBOOL MIN_VERSION_base(4,10,0)

module Test.SmallCheck.Series (
  -- {{{
  -- * Generic instances
  -- | The easiest way to create the necessary instances is to use GHC
  -- generics (available starting with GHC 7.2.1).
  --
  -- Here's a complete example:
  --
  -- >{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
  -- >{-# LANGUAGE DeriveGeneric #-}
  -- >
  -- >import Test.SmallCheck.Series
  -- >import GHC.Generics
  -- >
  -- >data Tree a = Null | Fork (Tree a) a (Tree a)
  -- >    deriving Generic
  -- >
  -- >instance Serial m a => Serial m (Tree a)
  --
  -- Here we enable the @DeriveGeneric@ extension which allows to derive 'Generic'
  -- instance for our data type. Then we declare that @Tree a@ is an instance of
  -- 'Serial', but do not provide any definitions. This causes GHC to use the
  -- default definitions that use the 'Generic' instance.
  --
  -- One minor limitation of generic instances is that there's currently no
  -- way to distinguish newtypes and datatypes. Thus, newtype constructors
  -- will also count as one level of depth.

  -- * Data Generators
  -- | Writing 'Serial' instances for application-specific types is
  -- straightforward. You need to define a 'series' generator, typically using
  -- @consN@ family of generic combinators where N is constructor arity.
  --
  -- For example:
  --
  -- >data Tree a = Null | Fork (Tree a) a (Tree a)
  -- >
  -- >instance Serial m a => Serial m (Tree a) where
  -- >  series = cons0 Null \/ cons3 Fork
  --
  -- For newtypes use 'newtypeCons' instead of 'cons1'.
  -- The difference is that 'cons1' is counts as one level of depth, while
  -- 'newtypeCons' doesn't affect the depth.
  --
  -- >newtype Light a = Light a
  -- >
  -- >instance Serial m a => Serial m (Light a) where
  -- >  series = newtypeCons Light
  --
  -- For data types with more than 6 fields define @consN@ as
  --
  -- >consN f = decDepth $
  -- >  f <$> series
  -- >    <~> series
  -- >    <~> series
  -- >    <~> ...    {- series repeated N times in total -}

  -- ** What does consN do, exactly?

  -- | @consN@ has type
  -- @(Serial t_1, ..., Serial t_N) => (t_1 -> ... -> t_N -> t) -> Series t@.
  --
  -- @consN f@ is a series which, for a given depth @d > 0@, produces values of the
  -- form
  --
  -- >f x_1 ... x_N
  --
  -- where @x_i@ ranges over all values of type @t_i@ of depth up to @d-1@
  -- (as defined by the 'series' functions for @t_i@).
  --
  -- @consN@ functions also ensure that x_i are enumerated in the
  -- breadth-first order. Thus, combinations of smaller depth come first
  -- (assuming the same is true for @t_i@).
  --
  -- If @d <= 0@, no values are produced.

  cons0, cons1, cons2, cons3, cons4, cons5, cons6, newtypeCons,
  -- * Function Generators

  -- | To generate functions of an application-specific argument type,
  -- make the type an instance of 'CoSerial'.
  --
  -- Again there is a standard pattern, this time using the altsN
  -- combinators where again N is constructor arity.  Here are @Tree@ and
  -- @Light@ instances:
  --
  --
  -- >instance CoSerial m a => CoSerial m (Tree a) where
  -- >  coseries rs =
  -- >    alts0 rs >>- \z ->
  -- >    alts3 rs >>- \f ->
  -- >    return $ \t ->
  -- >      case t of
  -- >        Null -> z
  -- >        Fork t1 x t2 -> f t1 x t2
  --
  -- >instance CoSerial m a => CoSerial m (Light a) where
  -- >  coseries rs =
  -- >    newtypeAlts rs >>- \f ->
  -- >    return $ \l ->
  -- >      case l of
  -- >        Light x -> f x
  --
  -- For data types with more than 6 fields define @altsN@ as
  --
  -- >altsN rs = do
  -- >  rs <- fixDepth rs
  -- >  decDepthChecked
  -- >    (constM $ constM $ ... $ constM rs)
  -- >    (coseries $ coseries $ ... $ coseries rs)
  -- >    {- constM and coseries are repeated N times each -}

  -- ** What does altsN do, exactly?

  -- | @altsN@ has type
  -- @(Serial t_1, ..., Serial t_N) => Series t -> Series (t_1 -> ... -> t_N -> t)@.
  --
  -- @altsN s@ is a series which, for a given depth @d@, produces functions of
  -- type
  --
  -- >t_1 -> ... -> t_N -> t
  --
  -- If @d <= 0@, these are constant functions, one for each value produced
  -- by @s@.
  --
  -- If @d > 0@, these functions inspect each of their arguments up to the depth
  -- @d-1@ (as defined by the 'coseries' functions for the corresponding
  -- types) and return values produced by @s@. The depth to which the
  -- values are enumerated does not depend on the depth of inspection.

  alts0, alts1, alts2, alts3, alts4, alts5, alts6, newtypeAlts,

  -- * Basic definitions
  Depth, Series, Serial(..), CoSerial(..),

  -- * Generic implementations
  genericSeries,
  genericCoseries,

  -- * Convenient wrappers
  Positive(..), NonNegative(..), NonZero(..), NonEmpty(..),

  -- * Other useful definitions
  (\/), (><), (<~>), (>>-),
  localDepth,
  decDepth,
  getDepth,
  generate,
  limit,
  listSeries,
  list,
  listM,
  fixDepth,
  decDepthChecked,
  constM
  -- }}}
  ) where

import Control.Monad (liftM, guard, mzero, mplus, msum)
import Control.Monad.Logic (MonadLogic, (>>-), interleave, msplit, observeAllT)
import Control.Monad.Reader (ask, local)
import Control.Applicative (empty, pure, (<$>))
import Data.Complex (Complex(..))
import Data.Foldable (Foldable)
import Data.Functor.Compose (Compose(..))
import Data.Void (Void, absurd)
import Control.Monad.Identity (Identity(..))
import Data.Int (Int, Int8, Int16, Int32, Int64)
import Data.List (intercalate)
import qualified Data.List.NonEmpty as NE
import Data.Ratio (Ratio, numerator, denominator, (%))
import Data.Traversable (Traversable)
import Data.Word (Word, Word8, Word16, Word32, Word64)
import Foreign.C.Types (CFloat(..), CDouble(..), CChar(..), CSChar(..), CUChar(..), CShort(..), CUShort(..), CInt(..), CUInt(..), CLong(..), CULong(..), CPtrdiff(..), CSize(..), CWchar(..), CSigAtomic(..), CLLong(..), CULLong(..), CIntPtr(..), CUIntPtr(..), CIntMax(..), CUIntMax(..), CClock(..), CTime(..), CUSeconds(..), CSUSeconds(..))
#if HASCBOOL
import Foreign.C.Types (CBool(..))
#endif
import Numeric.Natural (Natural)
import Test.SmallCheck.SeriesMonad
import GHC.Generics (Generic, (:+:)(..), (:*:)(..), C1, K1(..), M1(..), U1(..), V1(..), Rep, to, from)

------------------------------
-- Main types and classes
------------------------------
--{{{

class Monad m => Serial m a where
  series   :: Series m a

  default series :: (Generic a, GSerial m (Rep a)) => Series m a
  series = genericSeries

genericSeries
  :: (Monad m, Generic a, GSerial m (Rep a))
  => Series m a
genericSeries = to <$> gSeries

class Monad m => CoSerial m a where
  -- | A proper 'coseries' implementation should pass the depth unchanged to
  -- its first argument. Doing otherwise will make enumeration of curried
  -- functions non-uniform in their arguments.
  coseries :: Series m b -> Series m (a->b)

  default coseries :: (Generic a, GCoSerial m (Rep a)) => Series m b -> Series m (a->b)
  coseries = genericCoseries

genericCoseries
  :: (Monad m, Generic a, GCoSerial m (Rep a))
  => Series m b -> Series m (a->b)
genericCoseries rs = (. from) <$> gCoseries rs
-- }}}

------------------------------
-- Helper functions
------------------------------
-- {{{

-- | A simple series specified by a function from depth to the list of
-- values up to that depth.
generate :: (Depth -> [a]) -> Series m a
generate f = do
  d <- getDepth
  msum $ map return $ f d

-- | Limit a 'Series' to its first @n@ elements
limit :: forall m a . Monad m => Int -> Series m a -> Series m a
limit n0 (Series s) = Series $ go n0 s
  where
    go :: MonadLogic ml => Int -> ml b -> ml b
    go 0 _ = mzero
    go n mb1 = do
      cons :: Maybe (b, ml b) <- msplit mb1
      case cons of
        Nothing -> mzero
        Just (b, mb2) -> return b `mplus` go (n-1) mb2

suchThat :: Series m a -> (a -> Bool) -> Series m a
suchThat s p = s >>= \x -> if p x then pure x else empty

-- | Given a depth, return the list of values generated by a Serial instance.
--
-- Example, list all integers up to depth 1:
--
-- * @listSeries 1 :: [Int]   -- returns [0,1,-1]@
listSeries :: Serial Identity a => Depth -> [a]
listSeries d = list d series

-- | Return the list of values generated by a 'Series'. Useful for
-- debugging 'Serial' instances.
--
-- Examples:
--
-- * @list 3 'series' :: [Int]                  -- returns [0,1,-1,2,-2,3,-3]@
--
-- * @list 3 ('series' :: 'Series' 'Identity' Int)  -- returns [0,1,-1,2,-2,3,-3]@
--
-- * @list 2 'series' :: [[Bool]]               -- returns [[],[True],[False]]@
--
-- The first two are equivalent. The second has a more explicit type binding.
list :: Depth -> Series Identity a -> [a]
list d s = runIdentity $ observeAllT $ runSeries d s

-- | Monadic version of 'list'
listM :: Monad m => Depth -> Series m a -> m [a]
listM d s = observeAllT $ runSeries d s

-- | Sum (union) of series
infixr 7 \/
(\/) :: Monad m => Series m a -> Series m a -> Series m a
(\/) = interleave

-- | Product of series
infixr 8 ><
(><) :: Monad m => Series m a -> Series m b -> Series m (a,b)
a >< b = (,) <$> a <~> b

-- | Fair version of 'ap' and '<*>'
infixl 4 <~>
(<~>) :: Monad m => Series m (a -> b) -> Series m a -> Series m b
a <~> b = a >>- (<$> b)

uncurry3 :: (a->b->c->d) -> ((a,b,c)->d)
uncurry3 f (x,y,z) = f x y z

uncurry4 :: (a->b->c->d->e) -> ((a,b,c,d)->e)
uncurry4 f (w,x,y,z) = f w x y z

uncurry5 :: (a->b->c->d->e->f) -> ((a,b,c,d,e)->f)
uncurry5 f (v,w,x,y,z) = f v w x y z

uncurry6 :: (a->b->c->d->e->f->g) -> ((a,b,c,d,e,f)->g)
uncurry6 f (u,v,w,x,y,z) = f u v w x y z

-- | Query the current depth
getDepth :: Series m Depth
getDepth = Series ask

-- | Run a series with a modified depth
localDepth :: (Depth -> Depth) -> Series m a -> Series m a
localDepth f (Series a) = Series $ local f a

-- | Run a 'Series' with the depth decreased by 1.
--
-- If the current depth is less or equal to 0, the result is 'mzero'.
decDepth :: Series m a -> Series m a
decDepth a = do
  checkDepth
  localDepth (subtract 1) a

checkDepth :: Series m ()
checkDepth = do
  d <- getDepth
  guard $ d > 0

-- | @'constM' = 'liftM' 'const'@
constM :: Monad m => m b -> m (a -> b)
constM = liftM const

-- | Fix the depth of a series at the current level. The resulting series
-- will no longer depend on the \"ambient\" depth.
fixDepth :: Series m a -> Series m (Series m a)
fixDepth s = getDepth >>= \d -> return $ localDepth (const d) s

-- | If the current depth is 0, evaluate the first argument. Otherwise,
-- evaluate the second argument with decremented depth.
decDepthChecked :: Series m a -> Series m a -> Series m a
decDepthChecked b r = do
  d <- getDepth
  if d <= 0
    then b
    else decDepth r

unwind :: MonadLogic m => m a -> m [a]
unwind a =
  msplit a >>=
  maybe (return []) (\(x,a') -> (x:) `liftM` unwind a')

-- }}}

------------------------------
-- cons* and alts* functions
------------------------------
-- {{{

cons0 :: a -> Series m a
cons0 x = decDepth $ pure x

cons1 :: Serial m a => (a->b) -> Series m b
cons1 f = decDepth $ f <$> series

-- | Same as 'cons1', but preserves the depth.
newtypeCons :: Serial m a => (a->b) -> Series m b
newtypeCons f = f <$> series

cons2 :: (Serial m a, Serial m b) => (a->b->c) -> Series m c
cons2 f = decDepth $ f <$> series <~> series

cons3 :: (Serial m a, Serial m b, Serial m c) =>
         (a->b->c->d) -> Series m d
cons3 f = decDepth $
  f <$> series
    <~> series
    <~> series

cons4 :: (Serial m a, Serial m b, Serial m c, Serial m d) =>
         (a->b->c->d->e) -> Series m e
cons4 f = decDepth $
  f <$> series
    <~> series
    <~> series
    <~> series

cons5 :: (Serial m a, Serial m b, Serial m c, Serial m d, Serial m e) =>
         (a->b->c->d->e->f) -> Series m f
cons5 f = decDepth $
  f <$> series
    <~> series
    <~> series
    <~> series
    <~> series

cons6 :: (Serial m a, Serial m b, Serial m c, Serial m d, Serial m e, Serial m f) =>
         (a->b->c->d->e->f->g) -> Series m g
cons6 f = decDepth $
  f <$> series
    <~> series
    <~> series
    <~> series
    <~> series
    <~> series

alts0 :: Series m a -> Series m a
alts0 s = s

alts1 :: CoSerial m a => Series m b -> Series m (a->b)
alts1 rs = do
  rs <- fixDepth rs
  decDepthChecked (constM rs) (coseries rs)

alts2
  :: (CoSerial m a, CoSerial m b)
  => Series m c -> Series m (a->b->c)
alts2 rs = do
  rs <- fixDepth rs
  decDepthChecked
    (constM $ constM rs)
    (coseries $ coseries rs)

alts3 ::  (CoSerial m a, CoSerial m b, CoSerial m c) =>
            Series m d -> Series m (a->b->c->d)
alts3 rs = do
  rs <- fixDepth rs
  decDepthChecked
    (constM $ constM $ constM rs)
    (coseries $ coseries $ coseries rs)

alts4 ::  (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d) =>
            Series m e -> Series m (a->b->c->d->e)
alts4 rs = do
  rs <- fixDepth rs
  decDepthChecked
    (constM $ constM $ constM $ constM rs)
    (coseries $ coseries $ coseries $ coseries rs)

alts5 ::  (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d, CoSerial m e) =>
            Series m f -> Series m (a->b->c->d->e->f)
alts5 rs = do
  rs <- fixDepth rs
  decDepthChecked
    (constM $ constM $ constM $ constM $ constM rs)
    (coseries $ coseries $ coseries $ coseries $ coseries rs)

alts6 ::  (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d, CoSerial m e, CoSerial m f) =>
            Series m g -> Series m (a->b->c->d->e->f->g)
alts6 rs = do
  rs <- fixDepth rs
  decDepthChecked
    (constM $ constM $ constM $ constM $ constM $ constM rs)
    (coseries $ coseries $ coseries $ coseries $ coseries $ coseries rs)

-- | Same as 'alts1', but preserves the depth.
newtypeAlts :: CoSerial m a => Series m b -> Series m (a->b)
newtypeAlts = coseries

-- }}}

------------------------------
-- Generic instances
------------------------------
-- {{{

class GSerial m f where
  gSeries :: Series m (f a)
class GCoSerial m f where
  gCoseries :: Series m b -> Series m (f a -> b)

instance {-# OVERLAPPABLE #-} GSerial m f => GSerial m (M1 i c f) where
  gSeries = M1 <$> gSeries
  {-# INLINE gSeries #-}
instance GCoSerial m f => GCoSerial m (M1 i c f) where
  gCoseries rs = (. unM1) <$> gCoseries rs
  {-# INLINE gCoseries #-}

instance Serial m c => GSerial m (K1 i c) where
  gSeries = K1 <$> series
  {-# INLINE gSeries #-}
instance CoSerial m c => GCoSerial m (K1 i c) where
  gCoseries rs = (. unK1) <$> coseries rs
  {-# INLINE gCoseries #-}

instance GSerial m U1 where
  gSeries = pure U1
  {-# INLINE gSeries #-}
instance GCoSerial m U1 where
  gCoseries rs = constM rs
  {-# INLINE gCoseries #-}

instance GSerial m V1 where
  gSeries = mzero
  {-# INLINE gSeries #-}
instance GCoSerial m V1 where
  gCoseries = const $ return (\a -> a `seq` let x = x in x)
  {-# INLINE gCoseries #-}

instance (Monad m, GSerial m a, GSerial m b) => GSerial m (a :*: b) where
  gSeries = (:*:) <$> gSeries <~> gSeries
  {-# INLINE gSeries #-}
instance (Monad m, GCoSerial m a, GCoSerial m b) => GCoSerial m (a :*: b) where
  gCoseries rs = uncur <$> gCoseries (gCoseries rs)
      where
        uncur f (x :*: y) = f x y
  {-# INLINE gCoseries #-}

instance (Monad m, GSerial m a, GSerial m b) => GSerial m (a :+: b) where
  gSeries = (L1 <$> gSeries) `interleave` (R1 <$> gSeries)
  {-# INLINE gSeries #-}
instance (Monad m, GCoSerial m a, GCoSerial m b) => GCoSerial m (a :+: b) where
  gCoseries rs =
    gCoseries rs >>- \f ->
    gCoseries rs >>- \g ->
    return $
    \e -> case e of
      L1 x -> f x
      R1 y -> g y
  {-# INLINE gCoseries #-}

instance {-# OVERLAPPING #-} GSerial m f => GSerial m (C1 c f) where
  gSeries = M1 <$> decDepth gSeries
  {-# INLINE gSeries #-}
-- }}}

------------------------------
-- Instances for basic types
------------------------------
-- {{{
instance Monad m => Serial m () where
  series = return ()
instance Monad m => CoSerial m () where
  coseries rs = constM rs

instance Monad m => Serial m Integer where series = unM <$> series
instance Monad m => CoSerial m Integer where coseries = fmap (. M) . coseries
instance Monad m => Serial m Natural where series = unN <$> series
instance Monad m => CoSerial m Natural where coseries = fmap (. N) . coseries
instance Monad m => Serial m Int where series = unM <$> series
instance Monad m => CoSerial m Int where coseries = fmap (. M) . coseries
instance Monad m => Serial m Word where series = unN <$> series
instance Monad m => CoSerial m Word where coseries = fmap (. N) . coseries
instance Monad m => Serial m Int8 where series = unM <$> series
instance Monad m => CoSerial m Int8 where coseries = fmap (. M) . coseries
instance Monad m => Serial m Word8 where series = unN <$> series
instance Monad m => CoSerial m Word8 where coseries = fmap (. N) . coseries
instance Monad m => Serial m Int16 where series = unM <$> series
instance Monad m => CoSerial m Int16 where coseries = fmap (. M) . coseries
instance Monad m => Serial m Word16 where series = unN <$> series
instance Monad m => CoSerial m Word16 where coseries = fmap (. N) . coseries
instance Monad m => Serial m Int32 where series = unM <$> series
instance Monad m => CoSerial m Int32 where coseries = fmap (. M) . coseries
instance Monad m => Serial m Word32 where series = unN <$> series
instance Monad m => CoSerial m Word32 where coseries = fmap (. N) . coseries
instance Monad m => Serial m Int64 where series = unM <$> series
instance Monad m => CoSerial m Int64 where coseries = fmap (. M) . coseries
instance Monad m => Serial m Word64 where series = unN <$> series
instance Monad m => CoSerial m Word64 where coseries = fmap (. N) . coseries

-- | 'N' is a wrapper for 'Integral' types that causes only non-negative values
-- to be generated. Generated functions of type @N a -> b@ do not distinguish
-- different negative values of @a@.
newtype N a = N { unN :: a } deriving (Eq, Ord)

instance Real a => Real (N a) where
  toRational (N x) = toRational x

instance Enum a => Enum (N a) where
  toEnum x = N (toEnum x)
  fromEnum (N x) = fromEnum x

instance Num a => Num (N a) where
  N x + N y = N (x + y)
  N x * N y = N (x * y)
  negate (N x) = N (negate x)
  abs (N x) = N (abs x)
  signum (N x) = N (signum x)
  fromInteger x = N (fromInteger x)

instance Integral a => Integral (N a) where
  quotRem (N x) (N y) = (N q, N r)
    where
      (q, r) = x `quotRem` y
  toInteger (N x) = toInteger x

instance (Num a, Enum a, Serial m a) => Serial m (N a) where
  series = generate $ \d -> take (d+1) [0..]

instance (Integral a, Monad m) => CoSerial m (N a) where
  coseries rs =
    -- This is a recursive function, because @alts1 rs@ typically calls
    -- back to 'coseries' (but with lower depth).
    --
    -- The recursion stops when depth == 0. Then alts1 produces a constant
    -- function, and doesn't call back to 'coseries'.
    alts0 rs >>- \z ->
    alts1 rs >>- \f ->
    return $ \(N i) ->
      if i > 0
        then f (N $ i-1)
        else z

-- | 'M' is a helper type to generate values of a signed type of increasing magnitude.
newtype M a = M { unM :: a } deriving (Eq, Ord)

instance Real a => Real (M a) where
  toRational (M x) = toRational x

instance Enum a => Enum (M a) where
  toEnum x = M (toEnum x)
  fromEnum (M x) = fromEnum x

instance Num a => Num (M a) where
  M x + M y = M (x + y)
  M x * M y = M (x * y)
  negate (M x) = M (negate x)
  abs (M x) = M (abs x)
  signum (M x) = M (signum x)
  fromInteger x = M (fromInteger x)

instance Integral a => Integral (M a) where
  quotRem (M x) (M y) = (M q, M r)
    where
      (q, r) = x `quotRem` y
  toInteger (M x) = toInteger x

instance (Num a, Enum a, Monad m) => Serial m (M a) where
  series = others `interleave` positives
    where positives = generate $ \d -> take d [1..]
          others = generate $ \d -> take (d+1) [0,-1..]

instance (Ord a, Num a, Monad m) => CoSerial m (M a) where
  coseries rs =
    alts0 rs >>- \z ->
    alts1 rs >>- \f ->
    alts1 rs >>- \g ->
    pure $ \ i -> case compare i 0 of
        GT -> f (M (i - 1))
        LT -> g (M (abs i - 1))
        EQ -> z

instance Monad m => Serial m Float where
  series =
    series >>- \(sig, exp) ->
    guard (odd sig || sig==0 && exp==0) >>
    return (encodeFloat sig exp)
instance Monad m => CoSerial m Float where
  coseries rs =
    coseries rs >>- \f ->
      return $ f . decodeFloat

instance Monad m => Serial m Double where
  series = (realToFrac :: Float -> Double) <$> series
instance Monad m => CoSerial m Double where
  coseries rs =
    (. (realToFrac :: Double -> Float)) <$> coseries rs

instance (Integral i, Serial m i) => Serial m (Ratio i) where
  series = pairToRatio <$> series
    where
      pairToRatio (n, Positive d) = n % d
instance (Integral i, CoSerial m i) => CoSerial m (Ratio i) where
  coseries rs = (. ratioToPair) <$> coseries rs
    where
      ratioToPair r = (numerator r, denominator r)

instance Monad m => Serial m Char where
  series = generate $ \d -> take (d+1) ['a'..'z']
instance Monad m => CoSerial m Char where
  coseries rs =
    coseries rs >>- \f ->
    return $ \c -> f (N (fromEnum c - fromEnum 'a'))

instance (Serial m a, Serial m b) => Serial m (a,b) where
  series = cons2 (,)
instance (CoSerial m a, CoSerial m b) => CoSerial m (a,b) where
  coseries rs = uncurry <$> alts2 rs

instance (Serial m a, Serial m b, Serial m c) => Serial m (a,b,c) where
  series = cons3 (,,)
instance (CoSerial m a, CoSerial m b, CoSerial m c) => CoSerial m (a,b,c) where
  coseries rs = uncurry3 <$> alts3 rs

instance (Serial m a, Serial m b, Serial m c, Serial m d) => Serial m (a,b,c,d) where
  series = cons4 (,,,)
instance (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d) => CoSerial m (a,b,c,d) where
  coseries rs = uncurry4 <$> alts4 rs

instance (Serial m a, Serial m b, Serial m c, Serial m d, Serial m e) => Serial m (a,b,c,d,e) where
  series = cons5 (,,,,)
instance (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d, CoSerial m e) => CoSerial m (a,b,c,d,e) where
  coseries rs = uncurry5 <$> alts5 rs

instance (Serial m a, Serial m b, Serial m c, Serial m d, Serial m e, Serial m f) => Serial m (a,b,c,d,e,f) where
  series = cons6 (,,,,,)
instance (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d, CoSerial m e, CoSerial m f) => CoSerial m (a,b,c,d,e,f) where
  coseries rs = uncurry6 <$> alts6 rs

instance Monad m => Serial m Bool where
  series = cons0 True \/ cons0 False
instance Monad m => CoSerial m Bool where
  coseries rs =
    rs >>- \r1 ->
    rs >>- \r2 ->
    return $ \x -> if x then r1 else r2

instance (Serial m a) => Serial m (Maybe a) where
  series = cons0 Nothing \/ cons1 Just
instance (CoSerial m a) => CoSerial m (Maybe a) where
  coseries rs =
    maybe <$> alts0 rs <~> alts1 rs

instance (Serial m a, Serial m b) => Serial m (Either a b) where
  series = cons1 Left \/ cons1 Right
instance (CoSerial m a, CoSerial m b) => CoSerial m (Either a b) where
  coseries rs =
    either <$> alts1 rs <~> alts1 rs

instance Serial m a => Serial m [a] where
  series = cons0 [] \/ cons2 (:)
instance CoSerial m a => CoSerial m [a] where
  coseries rs =
    alts0 rs >>- \y ->
    alts2 rs >>- \f ->
    return $ \xs -> case xs of [] -> y; x:xs' -> f x xs'

instance Serial m a => Serial m (NE.NonEmpty a) where
  series = cons2 (NE.:|)

instance CoSerial m a => CoSerial m (NE.NonEmpty a) where
  coseries rs =
    alts2 rs >>- \f ->
    return $ \(x NE.:| xs') -> f x xs'

instance Serial m a => Serial m (Complex a) where
  series = cons2 (:+)

instance CoSerial m a => CoSerial m (Complex a) where
  coseries rs =
    alts2 rs >>- \f ->
    return $ \(x :+ xs') -> f x xs'

instance Monad m => Serial m Void where
  series = mzero

instance Monad m => CoSerial m Void where
  coseries = const $ return absurd

instance (CoSerial m a, Serial m b) => Serial m (a->b) where
  series = coseries series
-- Thanks to Ralf Hinze for the definition of coseries
-- using the nest auxiliary.
instance (Serial m a, CoSerial m a, Serial m b, CoSerial m b) => CoSerial m (a->b) where
  coseries r = do
    args <- unwind series

    g <- nest r args
    return $ \f -> g $ map f args

    where

    nest :: forall a b m c . (Serial m b, CoSerial m b) => Series m c -> [a] -> Series m ([b] -> c)
    nest rs args = do
      case args of
        [] -> const `liftM` rs
        _:rest -> do
          let sf = coseries $ nest rs rest
          f <- sf
          return $ \(b:bs) -> f b bs

-- show the extension of a function (in part, bounded both by
-- the number and depth of arguments)
instance (Serial Identity a, Show a, Show b) => Show (a -> b) where
  show f =
    if maxarheight == 1
    && sumarwidth + length ars * length "->;" < widthLimit then
      "{"++
      intercalate ";" [a++"->"++r | (a,r) <- ars]
      ++"}"
    else
      concat $ [a++"->\n"++indent r | (a,r) <- ars]
    where
    ars = take lengthLimit [ (show x, show (f x))
                           | x <- list depthLimit series ]
    maxarheight = maximum  [ max (height a) (height r)
                           | (a,r) <- ars ]
    sumarwidth = sum       [ length a + length r
                           | (a,r) <- ars]
    indent = unlines . map ("  "++) . lines
    height = length . lines
    (widthLimit,lengthLimit,depthLimit) = (80,20,3)::(Int,Int,Depth)

instance (Monad m, Serial m (f (g a))) => Serial m (Compose f g a) where
  series = Compose <$> series
instance (Monad m, CoSerial m (f (g a))) => CoSerial m (Compose f g a) where
  coseries = fmap (. getCompose) . coseries

-- }}}

------------------------------
-- Convenient wrappers
------------------------------
-- {{{

--------------------------------------------------------------------------
-- | @Positive x@: guarantees that @x \> 0@.
newtype Positive a = Positive { getPositive :: a }
 deriving (Eq, Ord, Functor, Foldable, Traversable)

instance Real a => Real (Positive a) where
  toRational (Positive x) = toRational x

instance (Num a, Bounded a) => Bounded (Positive a) where
  minBound = Positive 1
  maxBound = Positive (maxBound :: a)

instance Enum a => Enum (Positive a) where
  toEnum x = Positive (toEnum x)
  fromEnum (Positive x) = fromEnum x

instance Num a => Num (Positive a) where
  Positive x + Positive y = Positive (x + y)
  Positive x * Positive y = Positive (x * y)
  negate (Positive x) = Positive (negate x)
  abs (Positive x) = Positive (abs x)
  signum (Positive x) = Positive (signum x)
  fromInteger x = Positive (fromInteger x)

instance Integral a => Integral (Positive a) where
  quotRem (Positive x) (Positive y) = (Positive q, Positive r)
    where
      (q, r) = x `quotRem` y
  toInteger (Positive x) = toInteger x

instance (Num a, Ord a, Serial m a) => Serial m (Positive a) where
  series = Positive <$> series `suchThat` (> 0)

instance Show a => Show (Positive a) where
  showsPrec n (Positive x) = showsPrec n x

-- | @NonNegative x@: guarantees that @x \>= 0@.
newtype NonNegative a = NonNegative { getNonNegative :: a }
 deriving (Eq, Ord, Functor, Foldable, Traversable)

instance Real a => Real (NonNegative a) where
  toRational (NonNegative x) = toRational x

instance (Num a, Bounded a) => Bounded (NonNegative a) where
  minBound = NonNegative 0
  maxBound = NonNegative (maxBound :: a)

instance Enum a => Enum (NonNegative a) where
  toEnum x = NonNegative (toEnum x)
  fromEnum (NonNegative x) = fromEnum x

instance Num a => Num (NonNegative a) where
  NonNegative x + NonNegative y = NonNegative (x + y)
  NonNegative x * NonNegative y = NonNegative (x * y)
  negate (NonNegative x) = NonNegative (negate x)
  abs (NonNegative x) = NonNegative (abs x)
  signum (NonNegative x) = NonNegative (signum x)
  fromInteger x = NonNegative (fromInteger x)

instance Integral a => Integral (NonNegative a) where
  quotRem (NonNegative x) (NonNegative y) = (NonNegative q, NonNegative r)
    where
      (q, r) = x `quotRem` y
  toInteger (NonNegative x) = toInteger x

instance (Num a, Ord a, Serial m a) => Serial m (NonNegative a) where
  series = NonNegative <$> series `suchThat` (>= 0)

instance Show a => Show (NonNegative a) where
  showsPrec n (NonNegative x) = showsPrec n x

-- | @NonZero x@: guarantees that @x /= 0@.
newtype NonZero a = NonZero { getNonZero :: a }
 deriving (Eq, Ord, Functor, Foldable, Traversable)

instance Real a => Real (NonZero a) where
  toRational (NonZero x) = toRational x

instance (Eq a, Num a, Bounded a) => Bounded (NonZero a) where
  minBound = let x = minBound in NonZero (if x == 0 then  1 else x)
  maxBound = let x = maxBound in NonZero (if x == 0 then -1 else x)

instance Enum a => Enum (NonZero a) where
  toEnum x = NonZero (toEnum x)
  fromEnum (NonZero x) = fromEnum x

instance Num a => Num (NonZero a) where
  NonZero x + NonZero y = NonZero (x + y)
  NonZero x * NonZero y = NonZero (x * y)
  negate (NonZero x) = NonZero (negate x)
  abs (NonZero x) = NonZero (abs x)
  signum (NonZero x) = NonZero (signum x)
  fromInteger x = NonZero (fromInteger x)

instance Integral a => Integral (NonZero a) where
  quotRem (NonZero x) (NonZero y) = (NonZero q, NonZero r)
    where
      (q, r) = x `quotRem` y
  toInteger (NonZero x) = toInteger x

instance (Num a, Ord a, Serial m a) => Serial m (NonZero a) where
  series = NonZero <$> series `suchThat` (/= 0)

instance Show a => Show (NonZero a) where
  showsPrec n (NonZero x) = showsPrec n x

-- | @NonEmpty xs@: guarantees that @xs@ is not null
newtype NonEmpty a = NonEmpty { getNonEmpty :: [a] }

instance (Serial m a) => Serial m (NonEmpty a) where
  series = NonEmpty <$> cons2 (:)

instance Show a => Show (NonEmpty a) where
  showsPrec n (NonEmpty x) = showsPrec n x

-- }}}

------------------------------
-- Foreign.C.Types
------------------------------
-- {{{

instance Monad m => Serial m CFloat where
  series = newtypeCons CFloat
instance Monad m => CoSerial m CFloat where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CFloat x -> f x

instance Monad m => Serial m CDouble where
  series = newtypeCons CDouble
instance Monad m => CoSerial m CDouble where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CDouble x -> f x

#if HASCBOOL
instance Monad m => Serial m CBool where
  series = newtypeCons CBool
instance Monad m => CoSerial m CBool where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CBool x -> f x
#endif

instance Monad m => Serial m CChar where
  series = newtypeCons CChar
instance Monad m => CoSerial m CChar where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CChar x -> f x

instance Monad m => Serial m CSChar where
  series = newtypeCons CSChar
instance Monad m => CoSerial m CSChar where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CSChar x -> f x

instance Monad m => Serial m CUChar where
  series = newtypeCons CUChar
instance Monad m => CoSerial m CUChar where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUChar x -> f x

instance Monad m => Serial m CShort where
  series = newtypeCons CShort
instance Monad m => CoSerial m CShort where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CShort x -> f x

instance Monad m => Serial m CUShort where
  series = newtypeCons CUShort
instance Monad m => CoSerial m CUShort where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUShort x -> f x

instance Monad m => Serial m CInt where
  series = newtypeCons CInt
instance Monad m => CoSerial m CInt where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CInt x -> f x

instance Monad m => Serial m CUInt where
  series = newtypeCons CUInt
instance Monad m => CoSerial m CUInt where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUInt x -> f x

instance Monad m => Serial m CLong where
  series = newtypeCons CLong
instance Monad m => CoSerial m CLong where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CLong x -> f x

instance Monad m => Serial m CULong where
  series = newtypeCons CULong
instance Monad m => CoSerial m CULong where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CULong x -> f x

instance Monad m => Serial m CPtrdiff where
  series = newtypeCons CPtrdiff
instance Monad m => CoSerial m CPtrdiff where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CPtrdiff x -> f x

instance Monad m => Serial m CSize where
  series = newtypeCons CSize
instance Monad m => CoSerial m CSize where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CSize x -> f x

instance Monad m => Serial m CWchar where
  series = newtypeCons CWchar
instance Monad m => CoSerial m CWchar where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CWchar x -> f x

instance Monad m => Serial m CSigAtomic where
  series = newtypeCons CSigAtomic
instance Monad m => CoSerial m CSigAtomic where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CSigAtomic x -> f x

instance Monad m => Serial m CLLong where
  series = newtypeCons CLLong
instance Monad m => CoSerial m CLLong where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CLLong x -> f x

instance Monad m => Serial m CULLong where
  series = newtypeCons CULLong
instance Monad m => CoSerial m CULLong where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CULLong x -> f x

instance Monad m => Serial m CIntPtr where
  series = newtypeCons CIntPtr
instance Monad m => CoSerial m CIntPtr where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CIntPtr x -> f x

instance Monad m => Serial m CUIntPtr where
  series = newtypeCons CUIntPtr
instance Monad m => CoSerial m CUIntPtr where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUIntPtr x -> f x

instance Monad m => Serial m CIntMax where
  series = newtypeCons CIntMax
instance Monad m => CoSerial m CIntMax where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CIntMax x -> f x

instance Monad m => Serial m CUIntMax where
  series = newtypeCons CUIntMax
instance Monad m => CoSerial m CUIntMax where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUIntMax x -> f x

instance Monad m => Serial m CClock where
  series = newtypeCons CClock
instance Monad m => CoSerial m CClock where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CClock x -> f x

instance Monad m => Serial m CTime where
  series = newtypeCons CTime
instance Monad m => CoSerial m CTime where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CTime x -> f x

instance Monad m => Serial m CUSeconds where
  series = newtypeCons CUSeconds
instance Monad m => CoSerial m CUSeconds where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUSeconds x -> f x

instance Monad m => Serial m CSUSeconds where
  series = newtypeCons CSUSeconds
instance Monad m => CoSerial m CSUSeconds where
  coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CSUSeconds x -> f x

-- }}}