{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ViewPatterns #-} {- HLINT ignore "Use mconcat" -} {- | Copyright: (c) 2019-2020 Veronika Romashkina License: MPL-2.0 Maintainer: Veronika Romashkina <vrom911@gmail.com> This module introduces sized list data type — 'Slist'. The data type has the following shape: @ __data__ 'Slist' a = Slist { sList :: [a] , sSize :: 'Size' } @ As you can see along with the familiar list, it contains 'Size' field that represents the size of the structure. Slists can be finite or infinite, and this is expressed with 'Size'. @ __data__ 'Size' = Size 'Int' | Infinity @ This representation of the list gives some additional advantages. Getting the length of the list is the "free" operation (runs in \( O(1) \)). This property helps to improve the performance for a bunch of functions like 'take', 'drop', 'at', etc. But also it doesn't actually add any overhead on the existing functions. Also, this allows to write a number of safe functions like 'safeReverse', 'safeHead', 'safeLast', 'safeIsSuffixOf', etc. == Comparison Check out the comparison table between lists and slists performance. +-------------------+--------------------+--------------------+-----------------------+-----------------------+ | Function | list (finite) | list (infinite) | Slist (finite) | Slist (infinite) | +===================+====================+====================+=======================+=======================+ | 'length' | \( O(n) \) | \</hangs/\> | \( O(1) \) | \( O(1) \) | +-------------------+--------------------+--------------------+-----------------------+-----------------------+ | 'safeLast' | \( O(n) \) | \</hangs/\> | \( O(n) \) | \( O(1) \) | +-------------------+--------------------+--------------------+-----------------------+-----------------------+ | 'init' | \( O(n) \) | \</hangs/\> | \( O(n) \) | \( O(1) \) | +-------------------+--------------------+--------------------+-----------------------+-----------------------+ | 'take' | \( O(min\ i\ n) \) | \( O(i) \) | @0 < i < n@: \(O(i)\) | \(O(i)\) | | | | | otherwise: \(O(1)\) | | +-------------------+--------------------+--------------------+-----------------------+-----------------------+ | 'at' | \( O(min\ i\ n) \) | \( O(i) \) | @0 < i < n@: \(O(i)\) | \( O(i) \) | | | run-time exception | run-time exception | otherwise: \(O(1)\) | | +-------------------+--------------------+--------------------+-----------------------+-----------------------+ | 'safeStripPrefix' | \( O(m) \) | \( O(m) \) | \( O(m) \) | \( O(m) \) | | | | can hang | | | +-------------------+--------------------+--------------------+-----------------------+-----------------------+ == Potential usage cases * When you ask the length of the list too frequently. * When you need to convert to data structures that require to know the list size in advance for allocating an array of the elements. /Example:/ [Vector data structure](https://hackage.haskell.org/package/vector). * When you need to serialised lists. * When you need to control the behaviour depending on the finiteness of the list. * When you need a more efficient or safe implementation of some functions. -} module Slist ( -- * Types Slist , Size -- ** Smart constructors , slist , infiniteSlist , one , iterate #if ( __GLASGOW_HASKELL__ > 802 ) , iterate' #endif , repeat , replicate , cycle , fromRange -- * Basic functions , len , size , isEmpty , head , safeHead , last , safeLast , init , tail , uncons -- * Transformations , map , reverse , safeReverse , intersperse , intercalate , transpose , subsequences , permutations -- * Reducing slists (folds) , concat , concatMap -- * Building slists -- ** Scans , scanl , scanl' , scanl1 , scanr , scanr1 -- ** Unfolding , unfoldr -- * Subslists -- ** Extracting , take , drop , splitAt , takeWhile , dropWhile , span , break , stripPrefix , safeStripPrefix , group , groupBy , inits , tails -- ** Predicates , isPrefixOf , safeIsPrefixOf , isSuffixOf , safeIsSuffixOf , isInfixOf , safeIsInfixOf , isSubsequenceOf , safeIsSubsequenceOf -- * Searching -- ** Searching by equality , lookup -- ** Searching with a predicate , filter , partition -- * Indexing , at , unsafeAt , elemIndex , elemIndices , findIndex , findIndices -- * Zipping and unzipping , zip , zip3 , zipWith , zipWith3 , unzip , unzip3 -- * Sets -- $sets , nub , nubBy , delete , deleteBy , deleteFirstsBy , diff , union , unionBy , intersect , intersectBy -- * Ordered slists , sort , sortBy , sortOn , insert , insertBy -- * Generic functions , genericLength , genericTake , genericDrop , genericSplitAt , genericAt , genericUnsafeAt , genericReplicate ) where import Control.Applicative (Alternative (empty, (<|>)), liftA2) import Data.Bifunctor (bimap, first, second) #if ( __GLASGOW_HASKELL__ == 802 ) import Data.Semigroup (Semigroup (..)) #endif import Prelude hiding (break, concat, concatMap, cycle, drop, dropWhile, filter, head, init, iterate, last, lookup, map, repeat, replicate, reverse, scanl, scanl1, scanr, scanr1, span, splitAt, tail, take, takeWhile, unzip, unzip3, zip, zip3, zipWith, zipWith3) import Slist.Size (Size (..), sizes) import qualified Data.Foldable as F (Foldable (..)) import qualified Data.List as L import qualified GHC.Exts as L (IsList (..)) import qualified Prelude as P {- | Data type that represents sized list. Size can be both finite or infinite, it is established using 'Size' data type. -} data Slist a = Slist { sList :: [a] , sSize :: Size } deriving stock (Show, Read) {- | Equality of sized lists is checked more efficiently due to the fact that the check on the list sizes can be done first for the constant time. -} instance (Eq a) => Eq (Slist a) where (Slist l1 s1) == (Slist l2 s2) = s1 == s2 && l1 == l2 {-# INLINE (==) #-} -- | Lexicographical comparison of the lists. instance (Ord a) => Ord (Slist a) where compare (Slist l1 _) (Slist l2 _) = compare l1 l2 {-# INLINE compare #-} {- | List appending. Use '<>' for 'Slist' concatenation instead of 'L.++' operator that is common in ordinary list concatenations. -} instance Semigroup (Slist a) where (<>) :: Slist a -> Slist a -> Slist a (Slist l1 s1) <> (Slist l2 s2) = Slist (l1 <> l2) (s1 + s2) {-# INLINE (<>) #-} instance Monoid (Slist a) where mempty :: Slist a mempty = Slist [] 0 {-# INLINE mempty #-} mappend :: Slist a -> Slist a -> Slist a mappend = (<>) {-# INLINE mappend #-} mconcat :: [Slist a] -> Slist a mconcat ls = let (l, s) = foldr f ([], 0) ls in Slist l s where -- foldr :: (a -> ([a], Size) -> ([a], Size)) -> ([a], Size) -> [Slist a] -> ([a], Size) f :: Slist a -> ([a], Size) -> ([a], Size) f (Slist l s) (xL, !xS) = (l ++ xL, s + xS) {-# INLINE mconcat #-} instance Functor Slist where fmap :: (a -> b) -> Slist a -> Slist b fmap = map {-# INLINE fmap #-} instance Applicative Slist where pure :: a -> Slist a pure = one {-# INLINE pure #-} (<*>) :: Slist (a -> b) -> Slist a -> Slist b fsl <*> sl = Slist { sList = sList fsl <*> sList sl , sSize = sSize fsl * sSize sl } {-# INLINE (<*>) #-} liftA2 :: (a -> b -> c) -> Slist a -> Slist b -> Slist c liftA2 f sla slb = Slist { sList = liftA2 f (sList sla) (sList slb) , sSize = sSize sla * sSize slb } {-# INLINE liftA2 #-} instance Alternative Slist where empty :: Slist a empty = mempty {-# INLINE empty #-} (<|>) :: Slist a -> Slist a -> Slist a (<|>) = (<>) {-# INLINE (<|>) #-} instance Monad Slist where return :: a -> Slist a return = pure {-# INLINE return #-} (>>=) :: Slist a -> (a -> Slist b) -> Slist b sl >>= f = mconcat $ P.map f $ sList sl {-# INLINE (>>=) #-} {- | Efficient implementation of 'sum' and 'product' functions. 'length' returns 'Int's 'maxBound' on infinite lists. -} instance Foldable Slist where foldMap :: (Monoid m) => (a -> m) -> Slist a -> m foldMap f = foldMap f . sList {-# INLINE foldMap #-} foldr :: (a -> b -> b) -> b -> Slist a -> b foldr f b = foldr f b . sList {-# INLINE foldr #-} -- | Is the element in the structure? elem :: (Eq a) => a -> Slist a -> Bool elem a = elem a . sList {-# INLINE elem #-} maximum :: (Ord a) => Slist a -> a maximum = maximum . sList {-# INLINE maximum #-} minimum :: (Ord a) => Slist a -> a minimum = minimum . sList {-# INLINE minimum #-} sum :: (Num a) => Slist a -> a sum = F.foldl' (+) 0 . sList {-# INLINE sum #-} product :: (Num a) => Slist a -> a product = F.foldl' (*) 1 . sList {-# INLINE product #-} null :: Slist a -> Bool null = isEmpty {-# INLINE null #-} length :: Slist a -> Int length = len {-# INLINE length #-} toList :: Slist a -> [a] toList = sList {-# INLINE toList #-} instance Traversable Slist where traverse :: (Applicative f) => (a -> f b) -> Slist a -> f (Slist b) traverse f (Slist l s) = (`Slist` s) <$> traverse f l {-# INLINE traverse #-} instance L.IsList (Slist a) where type (Item (Slist a)) = a fromList :: [a] -> Slist a fromList = slist {-# INLINE fromList #-} toList :: Slist a -> [a] toList = sList {-# INLINE toList #-} fromListN :: Int -> [a] -> Slist a fromListN n l = Slist l $ Size n {-# INLINE fromListN #-} {- | @O(n)@. Constructs 'Slist' from the given list. >>> slist [1..5] Slist {sList = [1,2,3,4,5], sSize = Size 5} /Note:/ works with finite lists. Use 'infiniteSlist' to construct infinite lists. -} slist :: [a] -> Slist a slist l = Slist l (Size $ length l) {-# INLINE slist #-} {- | @O(1)@. Constructs 'Slist' from the given list. @ >> infiniteSlist [1..] Slist {sList = [1..], sSize = Infinity} @ /Note:/ works with infinite lists. Use 'slist' to construct finite lists. -} infiniteSlist :: [a] -> Slist a infiniteSlist l = Slist l Infinity {-# INLINE infiniteSlist #-} {- | @O(1)@. Creates 'Slist' with a single element. The size of such 'Slist' is always equals to @Size 1@. >>> one "and only" Slist {sList = ["and only"], sSize = Size 1} -} one :: a -> Slist a one a = Slist [a] 1 {-# INLINE one #-} {- | Returns an infinite slist of repeated applications of the given function to the start element: > iterate f x == [x, f x, f (f x), ...] @ >> __iterate (+1) 0__ Slist {sList = [0..], sSize = 'Infinity'} @ >>> take 5 $ iterate ('a':) "a" Slist {sList = ["a","aa","aaa","aaaa","aaaaa"], sSize = Size 5} /Note:/ 'L.iterate' is lazy, potentially leading to thunk build-up if the consumer doesn't force each iterate. See 'iterate'' for a strict variant of this function. -} iterate :: (a -> a) -> a -> Slist a iterate f = infiniteSlist . L.iterate f {-# INLINE iterate #-} #if ( __GLASGOW_HASKELL__ > 802 ) {- | Returns an infinite slist of repeated applications of the given function to the start element: > iterate' f x == [x, f x, f (f x), ...] @ >> __iterate' (+1) 0__ Slist {sList = [0..], sSize = 'Infinity'} @ >>> take 5 $ iterate' ('a':) "a" Slist {sList = ["a","aa","aaa","aaaa","aaaaa"], sSize = Size 5} 'iterate'' is the strict version of 'iterate'. It ensures that the result of each application of force to weak head normal form before proceeding. -} iterate' :: (a -> a) -> a -> Slist a iterate' f = infiniteSlist . L.iterate' f {-# INLINE iterate' #-} #endif {- | @O(1)@. Creates an infinite slist with the given element at each position. @ >> __repeat 42__ Slist {sList = [42, 42 ..], sSize = 'Infinity'} @ >>> take 6 $ repeat 'm' Slist {sList = "mmmmmm", sSize = Size 6} -} repeat :: a -> Slist a repeat = infiniteSlist . L.repeat {-# INLINE repeat #-} {- | @O(n)@. Creates a finite slist with the given value at each position. >>> replicate 3 'o' Slist {sList = "ooo", sSize = Size 3} >>> replicate (-11) "hmm" Slist {sList = [], sSize = Size 0} -} replicate :: Int -> a -> Slist a replicate n x | n <= 0 = mempty | otherwise = Slist (L.replicate n x) $ Size n {-# INLINE replicate #-} {- | Ties a finite list into a circular one, or equivalently, the infinite repetition of the original list. It is the identity on infinite lists. >>> take 23 $ cycle (slist "pam ") Slist {sList = "pam pam pam pam pam pam", sSize = Size 23} @ >> __cycle $ 'infiniteSlist' [1..]__ Slist {sList = [1..], sSize = 'Infinity'} @ -} cycle :: Slist a -> Slist a cycle sl@(Slist _ Infinity) = sl cycle Slist{..} = infiniteSlist $ L.cycle sList {-# INLINE cycle #-} {- | @O(1)@. An slist equivalent of 'P.enumFromTo' function or @[from..to]@ notation: creates an 'Slist' of sequentially ordered values starting at @from@ and ending at @to@ inclusively. >>> fromRange 0 5 Slist {sList = [0,1,2,3,4,5], sSize = Size 6} >>> fromRange 5 0 Slist {sList = [], sSize = Size 0} >>> fromRange 0 0 Slist {sList = [0], sSize = Size 1} >>> fromRange 'a' 'd' Slist {sList = "abcd", sSize = Size 4} -} fromRange :: Enum a => a -> a -> Slist a fromRange from to = Slist [from..to] s where s :: Size s = Size $ max 0 (fromEnum to - fromEnum from + 1) {-# INLINE fromRange #-} ---------------------------------------------------------------------------- -- Basic functions ---------------------------------------------------------------------------- {- | @O(1)@. Returns the length of a structure as an 'Int'. On infinite lists returns the 'Int's 'maxBound'. >>> len $ one 42 1 >>> len $ slist [1..3] 3 >>> len $ infiniteSlist [1..] 9223372036854775807 -} len :: Slist a -> Int len Slist{..} = case sSize of Infinity -> maxBound Size n -> n {-# INLINE len #-} {- | @O(1)@. Returns the 'Size' of the slist. >>> size $ slist "Hello World!" Size 12 >>> size $ infiniteSlist [1..] Infinity -} size :: Slist a -> Size size = sSize {-# INLINE size #-} {- | @O(1)@. Checks if 'Slist' is empty >>> isEmpty mempty True >>> isEmpty $ slist [] True >>> isEmpty $ slist "Not Empty" False -} isEmpty :: Slist a -> Bool isEmpty = (== 0) . size {-# INLINE isEmpty #-} {- | @O(1)@. Extracts the first element of a slist. Uses not total 'L.head' function, so use wisely. It is recommended to use 'safeHead' instead. >>> head $ slist "qwerty" 'q' >>> head $ infiniteSlist [1..] 1 >>> head mempty *** Exception: Prelude.head: empty list -} head :: Slist a -> a head = P.head . sList {-# INLINE head #-} {- | @O(1)@. Extracts the first element of a slist if possible. >>> safeHead $ slist "qwerty" Just 'q' >>> safeHead $ infiniteSlist [1..] Just 1 >>> safeHead mempty Nothing -} safeHead :: Slist a -> Maybe a safeHead Slist{..} = case sSize of Size 0 -> Nothing _ -> Just $ P.head sList {-# INLINE safeHead #-} {- | @O(n)@. Extracts the last element of a list. Uses not total 'L.last' function, so use wisely. It is recommended to use 'safeLast' instead >>> last $ slist "qwerty" 'y' >>> last mempty *** Exception: Prelude.last: empty list @ >> last $ infiniteSlist [1..] \</hangs/\> @ -} last :: Slist a -> a last = P.last . sList {-# INLINE last #-} {- | @O(n)@. Extracts the last element of a list if possible. >>> safeLast $ slist "qwerty" Just 'y' >>> safeLast mempty Nothing >>> safeLast $ infiniteSlist [1..] Nothing -} safeLast :: Slist a -> Maybe a safeLast Slist{..} = case sSize of Infinity -> Nothing Size 0 -> Nothing _ -> Just $ P.last sList {-# INLINE safeLast #-} {- | @O(1)@. Returns a slist with all the elements after the head of a given slist. >>> tail mempty Slist {sList = [], sSize = Size 0} >>> tail $ slist "Hello" Slist {sList = "ello", sSize = Size 4} @ >> __tail $ 'infiniteSlist' [0..]__ Slist {sList = [1..], sSize = 'Infinity'} @ -} tail :: Slist a -> Slist a tail Slist{..} = case sSize of Size 0 -> mempty _ -> Slist (P.drop 1 sList) (sSize - 1) {-# INLINE tail #-} {- | @O(n)@. Return all the elements of a list except the last one. >>> init mempty Slist {sList = [], sSize = Size 0} >>> init $ slist "Hello" Slist {sList = "Hell", sSize = Size 4} @ >> __init $ 'infiniteSlist' [0..]__ Slist {sList = [0..], sSize = 'Infinity'} @ -} init :: Slist a -> Slist a init sl@Slist{..} = case sSize of Infinity -> sl Size 0 -> mempty _ -> Slist (P.init sList) (sSize - 1) {-# INLINE init #-} {- | @O(1)@. Decomposes a slist into its head and tail. If the slist is empty, returns 'Nothing'. >>> uncons mempty Nothing >>> uncons $ one 'a' Just ('a',Slist {sList = "", sSize = Size 0}) @ >> __uncons $ 'infiniteSlist' [0..]__ Just (0, Slist {sList = [1..], sSize = 'Infinity'}) @ -} uncons :: Slist a -> Maybe (a, Slist a) uncons (Slist [] _) = Nothing uncons (Slist (x:xs) s) = Just (x, Slist xs $ s - 1) {-# INLINE uncons #-} ---------------------------------------------------------------------------- -- Transformations ---------------------------------------------------------------------------- {- | @O(n)@. Applies the given function to each element of the slist. > map f (slist [x1, x2, ..., xn]) == slist [f x1, f x2, ..., f xn] > map f (infiniteSlist [x1, x2, ...]) == infiniteSlist [f x1, f x2, ...] -} map :: (a -> b) -> Slist a -> Slist b map f Slist{..} = Slist (P.map f sList) sSize {-# INLINE map #-} {- | @O(n)@. Returns the elements of the slist in reverse order. >>> reverse $ slist "Hello" Slist {sList = "olleH", sSize = Size 5} >>> reverse $ slist "wow" Slist {sList = "wow", sSize = Size 3} /Note:/ 'reverse' slist can not be calculated on infinite slists. @ >> __reverse $ 'infiniteSlist' [1..]__ \</hangs/\> @ Use 'safeReverse' to not hang on infinite slists. -} reverse :: Slist a -> Slist a reverse Slist{..} = Slist (L.reverse sList) sSize {-# INLINE reverse #-} {- | @O(n)@. Returns the elements of the slist in reverse order. On infinite slists returns the initial slist. >>> safeReverse $ slist "Hello" Slist {sList = "olleH", sSize = Size 5} @ >> __reverse $ 'infiniteSlist' [1..]__ Slist {sList = [1..], sSize = 'Infinity'} @ -} safeReverse :: Slist a -> Slist a safeReverse sl@(Slist _ Infinity) = sl safeReverse sl = reverse sl {-# INLINE safeReverse #-} {- | @O(n)@. Takes an element and a list and intersperses that element between the elements of the list. >>> intersperse ',' $ slist "abcd" Slist {sList = "a,b,c,d", sSize = Size 7} >>> intersperse '!' mempty Slist {sList = "", sSize = Size 0} @ >> __intersperse 0 $ 'infiniteSlist' [1,1..]__ Slist {sList = [1,0,1,0..], sSize = 'Infinity'} @ -} intersperse :: a -> Slist a -> Slist a intersperse _ sl@(Slist _ (Size 0)) = sl intersperse a Slist{..} = Slist (L.intersperse a sList) (2 * sSize - 1) {-# INLINE intersperse #-} {- | @O(n)@. Inserts the given slist in between the slists and concatenates the result. > intercalate x xs = concat (intersperse x xs) >>> intercalate (slist ", ") $ slist [slist "Lorem", slist "ipsum", slist "dolor"] Slist {sList = "Lorem, ipsum, dolor", sSize = Size 19} -} intercalate :: Slist a -> Slist (Slist a) -> Slist a intercalate x = foldr (<>) mempty . intersperse x {-# INLINE intercalate #-} {- | @O(n * m)@. Transposes the rows and columns of the slist. >>> transpose $ slist [slist [1,2]] Slist {sList = [Slist {sList = [1], sSize = Size 1},Slist {sList = [2], sSize = Size 1}], sSize = Size 2} @ >> __transpose $ slist [slist [1,2,3], slist [4,5,6]]__ Slist { sList = [ Slist {sList = [1,4], sSize = Size 2} , Slist {sList = [2,5], sSize = Size 2} , Slist {sList = [3,6], sSize = Size 2} ] , sSize = Size 3 } @ If some of the rows are shorter than the following rows, their elements are skipped: >>> transpose $ slist [slist [10,11], slist [20], mempty] Slist {sList = [Slist {sList = [10,20], sSize = Size 2},Slist {sList = [11], sSize = Size 1}], sSize = Size 2} If some of the rows is an infinite slist, then the resulting slist is going to be infinite. -} transpose :: Slist (Slist a) -> Slist (Slist a) transpose (Slist l _) = Slist { sList = P.map slist $ L.transpose $ P.map sList l , sSize = maximum $ P.map sSize l } {-# INLINE transpose #-} {- | @O(2 ^ n)@. Returns the list of all subsequences of the argument. >>> subsequences mempty Slist {sList = [Slist {sList = [], sSize = Size 0}], sSize = Size 1} >>> subsequences $ slist "ab" Slist {sList = [Slist {sList = "", sSize = Size 0},Slist {sList = "a", sSize = Size 1},Slist {sList = "b", sSize = Size 1},Slist {sList = "ab", sSize = Size 2}], sSize = Size 4} >>> take 4 $ subsequences $ infiniteSlist [1..] Slist {sList = [Slist {sList = [], sSize = Size 0},Slist {sList = [1], sSize = Size 1},Slist {sList = [2], sSize = Size 1},Slist {sList = [1,2], sSize = Size 2}], sSize = Size 4} -} subsequences :: Slist a -> Slist (Slist a) subsequences Slist{..} = Slist { sList = P.map slist $ L.subsequences sList , sSize = newSize sSize } where newSize :: Size -> Size newSize Infinity = Infinity newSize (Size n) = Size $ 2 ^ toInteger n {-# INLINE subsequences #-} {- | @O(n!)@. Returns the list of all permutations of the argument. >>> permutations mempty Slist {sList = [Slist {sList = [], sSize = Size 0}], sSize = Size 1} >>> permutations $ slist "abc" Slist {sList = [Slist {sList = "abc", sSize = Size 3},Slist {sList = "bac", sSize = Size 3},Slist {sList = "cba", sSize = Size 3},Slist {sList = "bca", sSize = Size 3},Slist {sList = "cab", sSize = Size 3},Slist {sList = "acb", sSize = Size 3}], sSize = Size 6} -} permutations :: Slist a -> Slist (Slist a) permutations (Slist l s) = Slist { sList = P.map (`Slist` s) $ L.permutations l , sSize = fact s } where fact :: Size -> Size fact Infinity = Infinity fact (Size n) = Size $ go 1 n go :: Int -> Int -> Int go !acc 0 = acc go !acc n = go (acc * n) (n - 1) {-# INLINE permutations #-} ---------------------------------------------------------------------------- -- Reducing slists (folds) ---------------------------------------------------------------------------- {- | \( O(\sum n_i) \) The concatenation of all the elements of a container of slists. >>> concat [slist [1,2], slist [3..5], slist [6..10]] Slist {sList = [1,2,3,4,5,6,7,8,9,10], sSize = Size 10} @ >> __ concat $ slist [slist [1,2], 'infiniteSlist' [3..]]__ Slist {sList = [1..], sSize = 'Infinity'} @ -} concat :: Foldable t => t (Slist a) -> Slist a concat = foldr (<>) mempty {-# INLINE concat #-} {- | Maps a function over all the elements of a container and concatenates the resulting slists. >>> concatMap one "abc" Slist {sList = "abc", sSize = Size 3} -} concatMap :: Foldable t => (a -> Slist b) -> t a -> Slist b concatMap = foldMap {-# INLINE concatMap #-} ---------------------------------------------------------------------------- -- Building lists ---------------------------------------------------------------------------- {- | @O(n)@. Similar to 'foldl', but returns a slist of successive reduced values from the left: > scanl f z $ slist [x1, x2, ...] == slist [z, z `f` x1, (z `f` x1) `f` x2, ...] Note that > last (scanl f z xs) == foldl f z xs. This peculiar arrangement is necessary to prevent scanl being rewritten in its own right-hand side. >>> scanl (+) 0 $ slist [1..10] Slist {sList = [0,1,3,6,10,15,21,28,36,45,55], sSize = Size 11} -} scanl :: (b -> a -> b) -> b -> Slist a -> Slist b scanl f b Slist{..} = Slist (L.scanl f b sList) (sSize + 1) {-# INLINE scanl #-} -- | @O(n)@. A strictly accumulating version of 'scanl' scanl' :: (b -> a -> b) -> b -> Slist a -> Slist b scanl' f b Slist{..} = Slist (L.scanl' f b sList) (sSize + 1) {-# INLINE scanl' #-} {- | @O(n)@. 'scanl1' is a variant of 'scanl' that has no starting value argument: > scanl1 f $ slist [x1, x2, ...] == slist [x1, x1 `f` x2, ...] -} scanl1 :: (a -> a -> a) -> Slist a -> Slist a scanl1 f Slist{..} = Slist (L.scanl1 f sList) sSize {-# INLINE scanl1 #-} {- | @O(n)@. The right-to-left dual of 'scanl'. Note that > head (scanr f z xs) == foldr f z xs. >>> scanr (+) 0 $ slist [1..10] Slist {sList = [55,54,52,49,45,40,34,27,19,10,0], sSize = Size 11} -} scanr :: (a -> b -> b) -> b -> Slist a -> Slist b scanr f b Slist{..} = Slist (L.scanr f b sList) (sSize + 1) {-# INLINE scanr #-} -- | A variant of 'scanr' that has no starting value argument. scanr1 :: (a -> a -> a) -> Slist a -> Slist a scanr1 f Slist{..} = Slist (L.scanr1 f sList) sSize {-# INLINE scanr1 #-} {- | @O(n)@. A \`dual\' to 'foldr': while 'foldr' reduces a list to a summary value, 'unfoldr' builds a list from a seed value. The function takes the element and returns 'Nothing' if it is done producing the list or returns 'Just' @(a,b)@, in which case, @a@ is a prepended to the list and @b@ is used as the next element in a recursive call. In some cases, 'unfoldr' can undo a 'foldr' operation: > unfoldr f' (foldr f z xs) == xs if the following holds: > f' (f x y) = Just (x,y) > f' z = Nothing A simple use of unfoldr: >>> unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10 Slist {sList = [10,9,8,7,6,5,4,3,2,1], sSize = Size 10} -} unfoldr :: forall a b . (b -> Maybe (a, b)) -> b -> Slist a unfoldr f def = let (s, l) = go def in Slist l $ Size s where go :: b -> (Int, [a]) go b = case f b of Just (a, newB) -> bimap (+ 1) (a:) $ go newB Nothing -> (0, []) {-# INLINE unfoldr #-} ---------------------------------------------------------------------------- -- Sublists ---------------------------------------------------------------------------- {- | @O(i) | i < n@ and @O(1) | otherwise@. Returns the prefix of the slist of the given length. If the given @i@ is non-positive then the empty structure is returned. If @i@ is exceeds the length of the structure the initial slist is returned. >>> take 5 $ slist "Hello world!" Slist {sList = "Hello", sSize = Size 5} >>> take 20 $ slist "small" Slist {sList = "small", sSize = Size 5} >>> take 0 $ slist "none" Slist {sList = "", sSize = Size 0} >>> take (-11) $ slist "hmm" Slist {sList = "", sSize = Size 0} >>> take 4 $ infiniteSlist [1..] Slist {sList = [1,2,3,4], sSize = Size 4} -} take :: Int -> Slist a -> Slist a take i sl@Slist{..} | Size i >= sSize = sl | i <= 0 = mempty | otherwise = Slist { sList = P.take i sList , sSize = Size i } {-# INLINE take #-} {- | @O(i) | i < n@ and @O(1) | otherwise@. Returns the suffix of the slist after the first @i@ elements. If @i@ exceeds the length of the slist then the empty structure is returned. If @i@ is non-positive the initial structure is returned. >>> drop 6 $ slist "Hello World" Slist {sList = "World", sSize = Size 5} >>> drop 42 $ slist "oops!" Slist {sList = "", sSize = Size 0} >>> drop 0 $ slist "Hello World!" Slist {sList = "Hello World!", sSize = Size 12} >>> drop (-4) $ one 42 Slist {sList = [42], sSize = Size 1} @ >> __drop 5 $ 'infiniteSlist' [1..]__ Slist {sList = [6..], sSize = 'Infinity'} @ -} drop :: Int -> Slist a -> Slist a drop i sl@Slist{..} | i <= 0 = sl | Size i >= sSize = mempty | otherwise = Slist { sList = P.drop i sList , sSize = sSize - Size i } {-# INLINE drop #-} {- | @O(i) | i < n@ and @O(1) | otherwise@. Returns a tuple where the first element is the prefix of the given length and the second element is the remainder of the slist. >>> splitAt 5 $ slist "Hello World!" (Slist {sList = "Hello", sSize = Size 5},Slist {sList = " World!", sSize = Size 7}) >>> splitAt 0 $ slist "abc" (Slist {sList = "", sSize = Size 0},Slist {sList = "abc", sSize = Size 3}) >>> splitAt 4 $ slist "abc" (Slist {sList = "abc", sSize = Size 3},Slist {sList = "", sSize = Size 0}) >>>splitAt (-42) $ slist "??" (Slist {sList = "", sSize = Size 0},Slist {sList = "??", sSize = Size 2}) @ >> __splitAt 2 $ 'infiniteSlist' [1..]__ (Slist {sList = [1,2], sSize = 'Size' 2}, Slist {sList = [3..], sSize = 'Infinity'}) @ -} splitAt :: Int -> Slist a -> (Slist a, Slist a) splitAt i sl@Slist{..} | i <= 0 = (mempty, sl) | Size i >= sSize = (sl, mempty) | otherwise = let (l1, l2) = P.splitAt i sList s2 = sSize - Size i in (Slist l1 $ Size i, Slist l2 s2) {-# INLINE splitAt #-} {- | @O(n)@. Returns the longest prefix (possibly empty) of elements that satisfy the given predicate. >>> takeWhile (<3) $ slist [1..10] Slist {sList = [1,2], sSize = Size 2} >>> takeWhile (<3) $ infiniteSlist [1..] Slist {sList = [1,2], sSize = Size 2} >>> takeWhile (<=10) $ slist [1..10] Slist {sList = [1,2,3,4,5,6,7,8,9,10], sSize = Size 10} >>> takeWhile (<0) $ slist [1..10] Slist {sList = [], sSize = Size 0} -} takeWhile :: forall a . (a -> Bool) -> Slist a -> Slist a takeWhile p Slist{..} = let (s, l) = go 0 sList in Slist l $ Size s where go :: Int -> [a] -> (Int, [a]) go !n [] = (n, []) go !n (x:xs) = if p x then let (i, l) = go (n + 1) xs in (i, x:l) else (n, []) {-# INLINE takeWhile #-} {- | @O(n)@. Returns the suffix (possibly empty) of the remaining elements after dropping elements that satisfy the given predicate. >>> dropWhile (<3) $ slist [1..10] Slist {sList = [3,4,5,6,7,8,9,10], sSize = Size 8} >>> dropWhile (<=10) $ slist [1..10] Slist {sList = [], sSize = Size 0} >>> dropWhile (<0) $ slist [1..10] Slist {sList = [1,2,3,4,5,6,7,8,9,10], sSize = Size 10} >>> take 5 $ dropWhile (<3) $ infiniteSlist [1..] Slist {sList = [3,4,5,6,7], sSize = Size 5} @ >> __dropWhile (< 5) $ 'infiniteSlist' [1..]__ Slist {sList = [5,6..], sSize = 'Infinity'} @ -} dropWhile :: forall a . (a -> Bool) -> Slist a -> Slist a dropWhile p (Slist l Infinity) = Slist (P.dropWhile p l) Infinity dropWhile p Slist{..} = let (s, l) = go 0 sList in Slist l (sSize - Size s) where go :: Int -> [a] -> (Int, [a]) go !n [] = (n, []) go !n (x:xs) = if p x then go (n + 1) xs else (n, x:xs) {-# INLINE dropWhile #-} {- | @O(n)@. Returns a tuple where first element is longest prefix (possibly empty) of the slist of elements that satisfy the given predicate and second element is the remainder of the list. >>> span (<3) $ slist [1,2,3,4,1,2,3,4] (Slist {sList = [1,2], sSize = Size 2},Slist {sList = [3,4,1,2,3,4], sSize = Size 6}) >>> span (<=10) $ slist [1..3] (Slist {sList = [1,2,3], sSize = Size 3},Slist {sList = [], sSize = Size 0}) >>> span (<0) $ slist [1..3] (Slist {sList = [], sSize = Size 0},Slist {sList = [1,2,3], sSize = Size 3}) @ >> __span (<3) $ 'infiniteSlist' [1..]__ (Slist {sList = [1,2], sSize = Size 2}, Slist {sList = [3..], sSize = 'Infinity'}) @ -} span :: forall a . (a -> Bool) -> Slist a -> (Slist a, Slist a) span p Slist{..} = let (s, l, r) = go 0 sList in ( Slist l $ Size s , Slist r (sSize - Size s) ) where go :: Int -> [a] -> (Int, [a], [a]) go !n [] = (n, [], []) go !n (x:xs) = if p x then let (s, l, r) = go (n + 1) xs in (s, x:l, r) else (n, [], x:xs) {-# INLINE span #-} {- | @O(n)@. Returns a tuple where first element is longest prefix (possibly empty) of the slist of elements that /do not/ satisfy the given predicate and second element is the remainder of the list. @ > break p = 'span' ('not' . p) @ -} break :: (a -> Bool) -> Slist a -> (Slist a, Slist a) break p = span (not . p) {-# INLINE break #-} {- | @O(m)@. Drops the given prefix from a list. It returns 'Nothing' if the slist did not start with the given prefix, or 'Just' the slist after the prefix, if it does. >>> stripPrefix (slist "foo") (slist "foobar") Just (Slist {sList = "bar", sSize = Size 3}) >>> stripPrefix (slist "foo") (slist "foo") Just (Slist {sList = "", sSize = Size 0}) >>> stripPrefix (slist "foo") (slist "barfoo") Nothing >>> stripPrefix mempty (slist "foo") Just (Slist {sList = "foo", sSize = Size 3}) >>> stripPrefix (infiniteSlist [0..]) (infiniteSlist [1..]) Nothing /Note:/ this function could hang on the infinite slists. @ >> __stripPrefix (infiniteSlist [1..]) (infiniteSlist [1..])__ \</hangs/\> @ Use 'safeStripPrefix' instead. -} stripPrefix :: Eq a => Slist a -> Slist a -> Maybe (Slist a) stripPrefix (Slist l1 s1) f@(Slist l2 s2) | s1 == Size 0 = Just f | s1 > s2 = Nothing | otherwise = (\l -> Slist l $ s2 - s1) <$> L.stripPrefix l1 l2 {-# INLINE stripPrefix #-} {- | Similar to 'stripPrefix', but never hangs on infinite lists and returns 'Nothing' in that case. >>> safeStripPrefix (infiniteSlist [1..]) (infiniteSlist [1..]) Nothing >>> safeStripPrefix (infiniteSlist [0..]) (infiniteSlist [1..]) Nothing -} safeStripPrefix :: Eq a => Slist a -> Slist a -> Maybe (Slist a) safeStripPrefix (Slist _ Infinity) (Slist _ Infinity) = Nothing safeStripPrefix sl1 sl2 = stripPrefix sl1 sl2 {-# INLINE safeStripPrefix #-} {- | @O(n)@. Takes a slist and returns a slist of slists such that the concatenation of the result is equal to the argument. Moreover, each sublist in the result contains only equal elements. It is a special case of 'groupBy', which allows to supply their own equality test. >>> group $ slist "Mississippi" Slist {sList = [Slist {sList = "M", sSize = Size 1},Slist {sList = "i", sSize = Size 1},Slist {sList = "ss", sSize = Size 2},Slist {sList = "i", sSize = Size 1},Slist {sList = "ss", sSize = Size 2},Slist {sList = "i", sSize = Size 1},Slist {sList = "pp", sSize = Size 2},Slist {sList = "i", sSize = Size 1}], sSize = Size 8} >>> group mempty Slist {sList = [], sSize = Size 0} -} group :: Eq a => Slist a -> Slist (Slist a) group = groupBy (==) {-# INLINE group #-} {- | @O(n)@. Non-overloaded version of the 'group' function. >>> groupBy (>) $ slist "Mississippi" Slist {sList = [Slist {sList = "M", sSize = Size 1},Slist {sList = "i", sSize = Size 1},Slist {sList = "s", sSize = Size 1},Slist {sList = "si", sSize = Size 2},Slist {sList = "s", sSize = Size 1},Slist {sList = "sippi", sSize = Size 5}], sSize = Size 6} -} groupBy :: (a -> a -> Bool) -> Slist a -> Slist (Slist a) groupBy p (Slist l Infinity) = infiniteSlist $ P.map slist $ L.groupBy p l groupBy p Slist{..} = slist $ P.map slist $ L.groupBy p sList {-# INLINE groupBy #-} {- | @O(n)@. Returns all initial segments of the argument, shortest first. >>> inits $ slist "abc" Slist {sList = [Slist {sList = "", sSize = Size 0},Slist {sList = "a", sSize = Size 1},Slist {sList = "ab", sSize = Size 2},Slist {sList = "abc", sSize = Size 3}], sSize = Size 4} >>> inits mempty Slist {sList = [Slist {sList = [], sSize = Size 0}], sSize = Size 1} -} inits :: Slist a -> Slist (Slist a) inits (Slist l s) = Slist { sList = L.zipWith Slist (L.inits l) $ sizes s , sSize = s + 1 } {-# INLINE inits #-} {- | @O(n)@. Returns all final segments of the argument, shortest first. >>> tails $ slist "abc" Slist {sList = [Slist {sList = "abc", sSize = Size 3},Slist {sList = "bc", sSize = Size 2},Slist {sList = "c", sSize = Size 1},Slist {sList = "", sSize = Size 0}], sSize = Size 4} >>> tails mempty Slist {sList = [Slist {sList = [], sSize = Size 0}], sSize = Size 1} -} tails :: Slist a -> Slist (Slist a) tails (Slist l Infinity) = infiniteSlist $ P.map infiniteSlist (L.tails l) tails (Slist l s@(Size n)) = Slist { sList = L.zipWith (\li i -> Slist li $ Size i) (L.tails l) [n, n - 1 .. 0] , sSize = s + 1 } {-# INLINE tails #-} {- | @O(m)@. Takes two slists and returns 'True' iff the first slist is a prefix of the second. >>> isPrefixOf (slist "Hello") (slist "Hello World!") True >>> isPrefixOf (slist "Hello World!") (slist "Hello") False >>> isPrefixOf mempty (slist "hey") True /Note:/ this function could hang on the infinite slists. @ >> __isPrefixOf (infiniteSlist [1..]) (infiniteSlist [1..])__ \</hangs/\> @ Use 'safeIsPrefixOf' instead. -} isPrefixOf :: Eq a => Slist a -> Slist a -> Bool isPrefixOf (Slist l1 s1) (Slist l2 s2) | s1 > s2 = False | otherwise = l1 `L.isPrefixOf` l2 {-# INLINE isPrefixOf #-} {- | Similar to 'isPrefixOf', but never hangs on infinite lists and returns 'False' in that case. >>> safeIsPrefixOf (infiniteSlist [1..]) (infiniteSlist [1..]) False >>> safeIsPrefixOf (infiniteSlist [0..]) (infiniteSlist [1..]) False -} safeIsPrefixOf :: Eq a => Slist a -> Slist a -> Bool safeIsPrefixOf sl1@(Slist _ s1) sl2@(Slist _ s2) | s1 == Infinity && s2 == Infinity = False | otherwise = sl1 `isPrefixOf` sl2 {-# INLINE safeIsPrefixOf #-} {- | Takes two slists and returns 'True' iff the first slist is a suffix of the second. >>> isSuffixOf (slist "World!") (slist "Hello World!") True >>> isSuffixOf (slist "Hello World!") (slist "Hello") False >>> isSuffixOf mempty (slist "hey") True /Note:/ this function hangs if the second slist is infinite. @ >> __isSuffixOf /anything/ (infiniteSlist [1..])__ \</hangs/\> @ Use 'safeIsSuffixOf' instead. -} isSuffixOf :: Eq a => Slist a -> Slist a -> Bool isSuffixOf (Slist l1 s1) (Slist l2 s2) | s1 > s2 = False | otherwise = l1 `L.isSuffixOf` l2 {-# INLINE isSuffixOf #-} {- | Similar to 'isSuffixOf', but never hangs on infinite lists and returns 'False' in that case. >>> safeIsSuffixOf (slist [1,2]) (infiniteSlist [1..]) False >>> safeIsSuffixOf (infiniteSlist [1..]) (infiniteSlist [1..]) False -} safeIsSuffixOf :: Eq a => Slist a -> Slist a -> Bool safeIsSuffixOf sl1 sl2@(Slist _ s2) | s2 == Infinity = False | otherwise = sl1 `isSuffixOf` sl2 {-# INLINE safeIsSuffixOf #-} {- | Takes two slists and returns 'True' iff the first slist is contained, wholly and intact, anywhere within the second. >>> isInfixOf (slist "ll") (slist "Hello World!") True >>> isInfixOf (slist " Hello") (slist "Hello") False >>> isInfixOf (slist "Hello World!") (slist "Hello") False /Note:/ this function could hang on the infinite slists. @ >> __isPrefixOf (infiniteSlist [1..]) (infiniteSlist [1..])__ \</hangs/\> @ Use 'safeIsInfixOf' instead. -} isInfixOf :: Eq a => Slist a -> Slist a -> Bool isInfixOf (Slist l1 s1) (Slist l2 s2) | s1 > s2 = False | otherwise = l1 `L.isInfixOf` l2 {-# INLINE isInfixOf #-} {- | Similar to 'isInfixOf', but never hangs on infinite lists and returns 'False' in that case. >>> safeIsInfixOf (infiniteSlist [1..]) (infiniteSlist [1..]) False >>> safeIsInfixOf (infiniteSlist [0..]) (infiniteSlist [1..]) False -} safeIsInfixOf :: Eq a => Slist a -> Slist a -> Bool safeIsInfixOf sl1@(Slist _ s1) sl2@(Slist _ s2) | s1 == Infinity && s2 == Infinity = False | otherwise = sl1 `isInfixOf` sl2 {-# INLINE safeIsInfixOf #-} {- | Takes two slists and returns 'True' if all the elements of the first slist occur, in order, in the second. The elements do not have to occur consecutively. @isSubsequenceOf x y@ is equivalent to @'elem' x ('subsequences' y)@. >>> isSubsequenceOf (slist "Hll") (slist "Hello World!") True >>> isSubsequenceOf (slist "") (slist "Hello World!") True >>> isSubsequenceOf (slist "Hallo") (slist "Hello World!") False /Note:/ this function hangs if the second slist is infinite. @ >> __isSuffixOf /anything/ (infiniteSlist [1..])__ \</hangs/\> @ Use 'safeIsSuffixOf' instead. -} isSubsequenceOf :: Eq a => Slist a -> Slist a -> Bool isSubsequenceOf (Slist l1 s1) (Slist l2 s2) | s1 > s2 = False | otherwise = L.isSubsequenceOf l1 l2 {-# INLINE isSubsequenceOf #-} {- | Similar to 'isSubsequenceOf', but never hangs on infinite lists and returns 'False' in that case. >>> safeIsSubsequenceOf (infiniteSlist [1..]) (infiniteSlist [1..]) False >>> safeIsSubsequenceOf (infiniteSlist [0..]) (infiniteSlist [1..]) False -} safeIsSubsequenceOf :: Eq a => Slist a -> Slist a -> Bool safeIsSubsequenceOf sl1@(Slist _ s1) sl2@(Slist _ s2) | s1 == Infinity && s2 == Infinity = False | otherwise = isSubsequenceOf sl1 sl2 {-# INLINE safeIsSubsequenceOf #-} ---------------------------------------------------------------------------- -- Searching ---------------------------------------------------------------------------- {- | @O(n)@. Looks up by the given key in the slist of key-value pairs. >>> lookup 42 $ slist $ [(1, "one"), (2, "two")] Nothing >>> lookup 42 $ slist $ [(1, "one"), (2, "two"), (42, "life, the universe and everything")] Just "life, the universe and everything" >>> lookup 1 $ zip (infiniteSlist [1..]) (infiniteSlist [0..]) Just 0 -} lookup :: Eq a => a -> Slist (a, b) -> Maybe b lookup a = L.lookup a . sList {-# INLINE lookup #-} {- | @O(n)@. Returns the slist of the elements that satisfy the given predicate. >>> filter (<3) $ slist [1..5] Slist {sList = [1,2], sSize = Size 2} >>> take 5 $ filter odd $ infiniteSlist [1..] Slist {sList = [1,3,5,7,9], sSize = Size 5} -} filter :: forall a . (a -> Bool) -> Slist a -> Slist a filter p (Slist l Infinity) = infiniteSlist $ L.filter p l filter p Slist{..} = let (newS, newL) = go 0 sList in Slist newL (Size newS) where go :: Int -> [a] -> (Int, [a]) go !n [] = (n, []) go n (x:xs) = if p x then second (x:) $ go (n + 1) xs else go n xs {-# INLINE filter #-} {- | @O(n)@. Returns the pair of slists of elements which do and do not satisfy the given predicate. >>> partition (<3) $ slist [1..5] (Slist {sList = [1,2], sSize = Size 2},Slist {sList = [3,4,5], sSize = Size 3}) -} partition :: forall a . (a -> Bool) -> Slist a -> (Slist a, Slist a) partition p (Slist l Infinity) = bimap infiniteSlist infiniteSlist $ L.partition p l partition p Slist{..} = let (s1, l1, l2) = go 0 sList in (Slist l1 $ Size s1, Slist l2 $ sSize - Size s1) where go :: Int -> [a] -> (Int, [a], [a]) go !n [] = (n, [], []) go n (x:xs) = if p x then first (x:) $ go (n + 1) xs else second (x:) $ go n xs {-# INLINE partition #-} ---------------------------------------------------------------------------- -- Indexing ---------------------------------------------------------------------------- {- | @O(i) | i < n@ and @O(1) | otherwise@. Returns the element of the slist at the given position. If the @i@ exceeds the length of the slist the function returns 'Nothing'. >>> let sl = slist [1..10] >>> at 0 sl Just 1 >>> at (-1) sl Nothing >>> at 11 sl Nothing >>> at 9 sl Just 10 -} at :: Int -> Slist a -> Maybe a at n Slist{..} | n < 0 || Size n >= sSize = Nothing | otherwise = Just $ sList L.!! n {-# INLINE at #-} {- | @O(min i n)@. Unsafe version of the 'at' function. If the element on the given position does not exist it throws the exception at run-time. >>> let sl = slist [1..10] >>> unsafeAt 0 sl 1 >>> unsafeAt (-1) sl *** Exception: Prelude.!!: negative index >>> unsafeAt 11 sl *** Exception: Prelude.!!: index too large >>> unsafeAt 9 sl 10 -} unsafeAt :: Int -> Slist a -> a unsafeAt n Slist{..} = sList L.!! n {-# INLINE unsafeAt #-} {- | @O(n)@. Returns the index of the first element in the given slist which is equal (by '==') to the query element, or 'Nothing' if there is no such element. >>> elemIndex 5 $ slist [1..10] Just 4 >>> elemIndex 0 $ slist [1..10] Nothing -} elemIndex :: Eq a => a -> Slist a -> Maybe Int elemIndex a = L.elemIndex a . sList {-# INLINE elemIndex #-} {- | @O(n)@. Extends 'elemIndex', by returning the indices of all elements equal to the query element, in ascending order. >>> elemIndices 1 $ slist [1,1,1,2,2,4,5,1,9,1] Slist {sList = [0,1,2,7,9], sSize = Size 5} >>> take 5 $ elemIndices 1 $ repeat 1 Slist {sList = [0,1,2,3,4], sSize = Size 5} -} elemIndices :: Eq a => a -> Slist a -> Slist Int elemIndices a = findIndices (a ==) {-# INLINE elemIndices #-} {- | @O(n)@. Returns the index of the first element in the slist satisfying the given predicate, or 'Nothing' if there is no such element. >>> findIndex (>3) $ slist [1..5] Just 3 >>> findIndex (<0) $ slist [1..5] Nothing -} findIndex :: (a -> Bool) -> Slist a -> Maybe Int findIndex p = L.findIndex p . sList {-# INLINE findIndex #-} {- | @O(n)@. Extends 'findIndex', by returning the indices of all elements satisfying the given predicate, in ascending order. >>> findIndices (<3) $ slist [1..5] Slist {sList = [0,1], sSize = Size 2} >>> findIndices (<0) $ slist [1..5] Slist {sList = [], sSize = Size 0} >>> take 5 $ findIndices (<=10) $ infiniteSlist [1..] Slist {sList = [0,1,2,3,4], sSize = Size 5} -} findIndices :: forall a . (a -> Bool) -> Slist a -> Slist Int findIndices p (Slist l Infinity) = infiniteSlist $ L.findIndices p l findIndices p Slist{..} = let (newS, newL) = go 0 0 sList in Slist newL (Size newS) where go :: Int -> Int -> [a] -> (Int, [Int]) go !n _ [] = (n, []) go n !cur (x:xs) = if p x then second (cur:) $ go (n + 1) (cur + 1) xs else go n (cur + 1) xs {-# INLINE findIndices #-} ---------------------------------------------------------------------------- -- Zipping ---------------------------------------------------------------------------- {- | @O(min n m)@. Takes two slists and returns a slist of corresponding pairs. >>> zip (slist [1,2]) (slist ["one", "two"]) Slist {sList = [(1,"one"),(2,"two")], sSize = Size 2} >>> zip (slist [1,2,3]) (slist ["one", "two"]) Slist {sList = [(1,"one"),(2,"two")], sSize = Size 2} >>> zip (slist [1,2]) (slist ["one", "two", "three"]) Slist {sList = [(1,"one"),(2,"two")], sSize = Size 2} >>> zip mempty (slist [1..5]) Slist {sList = [], sSize = Size 0} >>> zip (infiniteSlist [1..]) (slist ["one", "two"]) Slist {sList = [(1,"one"),(2,"two")], sSize = Size 2} -} zip :: Slist a -> Slist b -> Slist (a, b) zip (Slist l1 s1) (Slist l2 s2) = Slist { sList = L.zip l1 l2 , sSize = min s1 s2 } {-# INLINE zip #-} {- | @O(minimum [n1, n2, n3])@. Takes three slists and returns a slist of triples, analogous to 'zip'. -} zip3 :: Slist a -> Slist b -> Slist c -> Slist (a, b, c) zip3 (Slist l1 s1) (Slist l2 s2) (Slist l3 s3) = Slist { sList = L.zip3 l1 l2 l3 , sSize = minimum [s1, s2, s3] } {-# INLINE zip3 #-} {- | @O(min n m)@. Generalises 'zip' by zipping with the given function, instead of a tupling function. For example, @zipWith (+)@ is applied to two lists to produce the list of corresponding sums. -} zipWith :: (a -> b -> c) -> Slist a -> Slist b -> Slist c zipWith f (Slist l1 s1) (Slist l2 s2) = Slist { sList = L.zipWith f l1 l2 , sSize = min s1 s2 } {-# INLINE zipWith #-} {- | @O(minimum [n1, n2, n3])@. Takes a function which combines three elements, as well as three slists and returns a slist of their point-wise combination, analogous to 'zipWith'. -} zipWith3 :: (a -> b -> c -> d) -> Slist a -> Slist b -> Slist c -> Slist d zipWith3 f (Slist l1 s1) (Slist l2 s2) (Slist l3 s3) = Slist { sList = L.zipWith3 f l1 l2 l3 , sSize = minimum [s1, s2, s3] } {-# INLINE zipWith3 #-} {- | @O(n)@. Transforms a slist of pairs into a slist of first components and a slist of second components. >>> unzip $ slist [(1,"one"),(2,"two")] (Slist {sList = [1,2], sSize = Size 2},Slist {sList = ["one","two"], sSize = Size 2}) -} unzip :: Slist (a, b) -> (Slist a, Slist b) unzip Slist{..} = let (as, bs) = L.unzip sList in (l as, l bs) where l :: [x] -> Slist x l x = Slist x sSize {-# INLINE unzip #-} {- | @O(n)@. Takes a slist of triples and returns three slists, analogous to 'unzip'. -} unzip3 :: Slist (a, b, c) -> (Slist a, Slist b, Slist c) unzip3 Slist{..} = let (as, bs, cs) = L.unzip3 sList in (l as, l bs, l cs) where l :: [x] -> Slist x l x = Slist x sSize {-# INLINE unzip3 #-} ---------------------------------------------------------------------------- -- Sets ---------------------------------------------------------------------------- {- $sets Set is a special case of slists so that it consist of the unique elements. Example of set: @ Slist {sList = "qwerty", sSize = Size 6} Slist {sList = [1..], sSize = Infinity} @ -} {- | @O(n^2)@. Removes duplicate elements from a slist. In particular, it keeps only the first occurrence of each element. It is a special case of 'nubBy', which allows to supply your own equality test. >>> nub $ replicate 5 'a' Slist {sList = "a", sSize = Size 1} >>> nub mempty Slist {sList = [], sSize = Size 0} >>> nub $ slist [1,2,3,4,3,2,1,2,4,3,5] Slist {sList = [1,2,3,4,5], sSize = Size 5} -} nub :: Eq a => Slist a -> Slist a nub = nubBy (==) {-# INLINE nub #-} {- | @O(n^2)@. Behaves just like 'nub', except it uses a user-supplied equality predicate instead of the overloaded '==' function. >>> nubBy (\x y -> mod x 3 == mod y 3) $ slist [1,2,4,5,6] Slist {sList = [1,2,6], sSize = Size 3} -} nubBy :: forall a . (a -> a -> Bool) -> Slist a -> Slist a nubBy f Slist{..} = let (s, l) = go 0 [] sList in case sSize of Infinity -> infiniteSlist l _ -> Slist l $ Size s where go :: Int -> [a] -> [a] -> (Int, [a]) go !n res [] = (n, res) go n res (x:xs) = if any (f x) res then go n res xs else go (n + 1) (res ++ [x]) xs {-# INLINE nubBy #-} {- | @O(n)@. Removes the first occurrence of the given element from its slist argument. >>> delete 'h' $ slist "hahaha" Slist {sList = "ahaha", sSize = Size 5} >>> delete 0 $ slist [1..3] Slist {sList = [1,2,3], sSize = Size 3} -} delete :: Eq a => a -> Slist a -> Slist a delete = deleteBy (==) {-# INLINE delete #-} {- | @O(n)@. Behaves like 'delete', but takes a user-supplied equality predicate. >>> deleteBy (>=) 4 $ slist [1..10] Slist {sList = [2,3,4,5,6,7,8,9,10], sSize = Size 9} -} deleteBy :: forall a . (a -> a -> Bool) -> a -> Slist a -> Slist a deleteBy f a (Slist l Infinity) = infiniteSlist $ L.deleteBy f a l deleteBy f a Slist{..} = let (del, res) = go sList in Slist res $ sSize - del where go :: [a] -> (Size, [a]) go [] = (Size 0, []) go (x:xs) = if f a x then (Size 1, xs) else second (x:) $ go xs {-# INLINE deleteBy #-} {- | @O(n*m)@. Takes a predicate and two slists and returns the first slist with the first occurrence of each element of the second slist removed. >>> deleteFirstsBy (==) (slist [1..5]) (slist [2,8,4,10,1]) Slist {sList = [3,5], sSize = Size 2} -} deleteFirstsBy :: (a -> a -> Bool) -> Slist a -> Slist a -> Slist a deleteFirstsBy f = foldr (deleteBy f) {-# INLINE deleteFirstsBy #-} {- | @O(n*m)@. Returns the difference between two slists. The operation is non-associative. In the result of @diff xs ys@, the first occurrence of each element of @ys@ in turn (if any) has been removed from @xs@. Thus > diff (xs <> ys) ys == xs >>> diff (slist [1..10]) (slist [1,3..10]) Slist {sList = [2,4,6,8,10], sSize = Size 5} >>> diff (slist [1,3..10]) (slist [2,4..10]) Slist {sList = [1,3,5,7,9], sSize = Size 5} -} diff :: Eq a => Slist a -> Slist a -> Slist a diff = foldr delete {-# INLINE diff #-} {- | @O(n*m)@. Returns the list union of the two slists. >>> union (slist "pen") (slist "apple") Slist {sList = "penal", sSize = Size 5} Duplicates, and elements of the first slist, are removed from the the second slist, but if the first slist contains duplicates, so will the result. >>> union (slist "apple") (slist "pen") Slist {sList = "applen", sSize = Size 6} It is a special case of 'unionBy'. -} union :: Eq a => Slist a -> Slist a -> Slist a union = unionBy (==) {-# INLINE union #-} {- | @O(n*m)@. Non-overloaded version of 'union'. -} unionBy :: (a -> a -> Bool) -> Slist a -> Slist a -> Slist a unionBy f xs ys = xs <> deleteFirstsBy f (nubBy f ys) xs {-# INLINE unionBy #-} {- | @O(n*m)@. Returns the slist intersection of two slists. >>> intersect (slist [1,2,3,4]) (slist [2,4,6,8]) Slist {sList = [2,4], sSize = Size 2} If the first list contains duplicates, so will the result. >>> intersect (slist [1,2,2,3,4]) (slist [6,4,4,2]) Slist {sList = [2,2,4], sSize = Size 3} If the first slist is infinite, so will be the result. If the element is found in both the first and the second slist, the element from the first slist will be used. It is a special case of 'intersectBy'. -} intersect :: Eq a => Slist a -> Slist a -> Slist a intersect = intersectBy (==) {-# INLINE intersect #-} {- | @O(n*m)@. Non-overloaded version of 'intersect'. -} intersectBy :: forall a . (a -> a -> Bool) -> Slist a -> Slist a -> Slist a intersectBy _ (Slist _ (Size 0)) _ = mempty intersectBy _ _ (Slist _ (Size 0)) = mempty intersectBy f (Slist l1 Infinity) (Slist l2 _) = infiniteSlist $ L.intersectBy f l1 l2 intersectBy f (Slist l1 _) (Slist l2 _) = let (s, l) = go 0 l1 in Slist l $ Size s where go :: Int -> [a] -> (Int, [a]) go n [] = (n, []) go n (x:xs) = if any (f x) l2 then second (x:) $ go (n + 1) xs else go n xs {-# INLINE intersectBy #-} ---------------------------------------------------------------------------- -- Ordered slists ---------------------------------------------------------------------------- {- | @O(n log n)@. implements a stable sorting algorithm. It is a special case of 'sortBy'. Elements are arranged from from lowest to highest, keeping duplicates in the order they appeared in the input. >>> sort $ slist [10, 9..1] Slist {sList = [1,2,3,4,5,6,7,8,9,10], sSize = Size 10} /Note:/ this function hangs on infinite slists. -} sort :: Ord a => Slist a -> Slist a sort = sortBy compare {-# INLINE sort #-} {- | @O(n log n)@. Non-overloaded version of 'sort'. >>> sortBy (\(a,_) (b,_) -> compare a b) $ slist [(2, "world"), (4, "!"), (1, "Hello")] Slist {sList = [(1,"Hello"),(2,"world"),(4,"!")], sSize = Size 3} /Note:/ this function hangs on infinite slists. -} sortBy :: (a -> a -> Ordering) -> Slist a -> Slist a sortBy f Slist{..} = Slist (L.sortBy f sList) sSize {-# INLINE sortBy #-} {- | @O(n log n)@. Sorts a list by comparing the results of a key function applied to each element. @sortOn f@ is equivalent to @'sortBy' (comparing f)@, but has the performance advantage of only evaluating @f@ once for each element in the input list. This is called the decorate-sort-undecorate paradigm, or Schwartzian transform. Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input. >>> sortOn fst $ slist [(2, "world"), (4, "!"), (1, "Hello")] Slist {sList = [(1,"Hello"),(2,"world"),(4,"!")], sSize = Size 3} /Note:/ this function hangs on infinite slists. -} sortOn :: Ord b => (a -> b) -> Slist a -> Slist a sortOn f Slist{..} = Slist (L.sortOn f sList) sSize {-# INLINE sortOn #-} {- | @O(n)@. Takes an element and a slist and inserts the element into the slist at the first position where it is less than or equal to the next element. In particular, if the list is sorted before the call, the result will also be sorted. It is a special case of 'insertBy'. >>> insert 4 $ slist [1,2,3,5,6] Slist {sList = [1,2,3,4,5,6], sSize = Size 6} -} insert :: Ord a => a -> Slist a -> Slist a insert = insertBy compare {-# INLINE insert #-} -- | @O(n)@. The non-overloaded version of 'insert'. insertBy :: (a -> a -> Ordering) -> a -> Slist a -> Slist a insertBy f a Slist{..} = Slist (L.insertBy f a sList) (sSize + 1) {-# INLINE insertBy #-} ---------------------------------------------------------------------------- -- Generic fuctions ---------------------------------------------------------------------------- {- | @O(1)@. The 'genericLength' function is an overloaded version of 'length'. In particular, instead of returning an 'Int', it returns any type which is an instance of 'Num'. >>> genericLength $ one 42 1 >>> genericLength $ slist [1..3] 3 >>> genericLength $ infiniteSlist [1..] 9223372036854775807 -} genericLength :: Num i => Slist a -> i genericLength = fromIntegral . length {-# INLINE genericLength #-} {- | @O(i) | i < n@ and @O(1) | otherwise@. The 'genericTake' function is an overloaded version of 'take', which accepts any 'Integral' value as the number of elements to take. >>> genericTake 5 $ slist "Hello world!" Slist {sList = "Hello", sSize = Size 5} >>> genericTake 20 $ slist "small" Slist {sList = "small", sSize = Size 5} >>> genericTake 0 $ slist "none" Slist {sList = "", sSize = Size 0} >>> genericTake (-11) $ slist "hmm" Slist {sList = "", sSize = Size 0} >>> genericTake 4 $ infiniteSlist [1..] Slist {sList = [1,2,3,4], sSize = Size 4} -} genericTake :: Integral i => i -> Slist a -> Slist a genericTake (fromIntegral -> i) sl@Slist{..} | Size i >= sSize = sl | i <= 0 = mempty | otherwise = Slist { sList = L.genericTake i sList , sSize = min sSize (Size i) } {-# INLINE genericTake #-} {- | @O(i) | i < n@ and @O(1) | otherwise@. The 'genericDrop' function is an overloaded version of 'drop', which accepts any 'Integral' value as the number of elements to drop. >>> genericDrop 6 $ slist "Hello World" Slist {sList = "World", sSize = Size 5} >>> genericDrop 42 $ slist "oops!" Slist {sList = "", sSize = Size 0} >>> genericDrop 0 $ slist "Hello World!" Slist {sList = "Hello World!", sSize = Size 12} >>> genericDrop (-4) $ one 42 Slist {sList = [42], sSize = Size 1} @ >> __drop 5 $ 'infiniteSlist' [1..]__ Slist {sList = [6..], sSize = 'Infinity'} @ -} genericDrop :: Integral i => i -> Slist a -> Slist a genericDrop (fromIntegral -> i) sl@Slist{..} | i <= 0 = sl | Size i >= sSize = mempty | otherwise = Slist { sList = L.genericDrop i sList , sSize = sSize - Size i } {-# INLINE genericDrop #-} {- | @O(i) | i < n@ and @O(1) | otherwise@. The 'genericSplitAt' function is an overloaded version of 'splitAt', which accepts any 'Integral' value as the position at which to split. >>> genericSplitAt 5 $ slist "Hello World!" (Slist {sList = "Hello", sSize = Size 5},Slist {sList = " World!", sSize = Size 7}) >>> genericSplitAt 0 $ slist "abc" (Slist {sList = "", sSize = Size 0},Slist {sList = "abc", sSize = Size 3}) >>> genericSplitAt 4 $ slist "abc" (Slist {sList = "abc", sSize = Size 3},Slist {sList = "", sSize = Size 0}) >>> genericSplitAt (-42) $ slist "??" (Slist {sList = "", sSize = Size 0},Slist {sList = "??", sSize = Size 2}) @ >> __genericSplitAt 2 $ 'infiniteSlist' [1..]__ (Slist {sList = [1,2], sSize = 'Size' 2}, Slist {sList = [3..], sSize = 'Infinity'}) @ -} genericSplitAt :: Integral i => i -> Slist a -> (Slist a, Slist a) genericSplitAt (fromIntegral -> i) sl@Slist{..} | i <= 0 = (mempty, sl) | Size i >= sSize = (sl, mempty) | otherwise = let (l1, l2) = L.genericSplitAt i sList s2 = sSize - Size i in (Slist l1 $ Size i, Slist l2 s2) {-# INLINE genericSplitAt #-} {- | @O(i) | i < n@ and @O(1) | otherwise@. The 'genericAt' function is an overloaded version of 'at', which accepts any 'Integral' value as the position. If the element on the given position does not exist it will return 'Nothing'. >>> let sl = slist [1..10] >>> genericAt 0 sl Just 1 >>> genericAt (-1) sl Nothing >>> genericAt 11 sl Nothing >>> genericAt 9 sl Just 10 -} genericAt :: Integral i => i -> Slist a -> Maybe a genericAt = at . fromIntegral {-# INLINE genericAt #-} {- | @O(min i n)@. The 'genericUnsafeAt' function is an overloaded version of 'unsafeAt', which accepts any 'Integral' value as the position. If the element on the given position does not exist it throws the exception at run-time. >>> let sl = slist [1..10] >>> genericUnsafeAt 0 sl 1 >>> genericUnsafeAt (-1) sl *** Exception: Slist.genericUnsafeAt: negative argument >>> genericUnsafeAt 11 sl *** Exception: Slist.genericUnsafeAt: index too large >>> genericUnsafeAt 9 sl 10 -} genericUnsafeAt :: Integral i => i -> Slist a -> a genericUnsafeAt i _ | i < 0 = errorWithoutStackTrace "Slist.genericUnsafeAt: negative argument" genericUnsafeAt i (Slist l Infinity) = L.genericIndex l i genericUnsafeAt i (Slist l (Size n)) | i >= fromIntegral n = errorWithoutStackTrace "Slist.genericUnsafeAt: index too large" | otherwise = L.genericIndex l i {-# INLINE genericUnsafeAt #-} {- | @O(n)@. The 'genericReplicate' function is an overloaded version of 'replicate', which accepts any 'Integral' value as the number of repetitions to make. >>> genericReplicate 3 'o' Slist {sList = "ooo", sSize = Size 3} >>> genericReplicate (-11) "hmm" Slist {sList = [], sSize = Size 0} -} genericReplicate :: Integral i => i -> a -> Slist a genericReplicate n x | n <= 0 = mempty | otherwise = Slist (L.genericReplicate n x) $ Size (fromIntegral n) {-# INLINE genericReplicate #-}