{-# LANGUAGE TemplateHaskell, PolyKinds, DataKinds, TypeFamilies,
             TypeOperators, GADTs, ScopedTypeVariables, UndecidableInstances,
             DefaultSignatures, FlexibleContexts, InstanceSigs, NoStarIsType,
             TypeApplications, StandaloneKindSignatures
  #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Singletons.Prelude.Num
-- Copyright   :  (C) 2014 Richard Eisenberg
-- License     :  BSD-style (see LICENSE)
-- Maintainer  :  Ryan Scott
-- Stability   :  experimental
-- Portability :  non-portable
--
-- Defines and exports promoted and singleton versions of definitions from
-- GHC.Num.
--
-- Be warned that some of the associated type families in the 'PNum' class
-- (@(+)@, @(-)@, and @(*)@) clash with their counterparts for 'Nat' in the
-- "GHC.TypeLits" module.
----------------------------------------------------------------------------

module Data.Singletons.Prelude.Num (
  PNum(..), SNum(..), Subtract, sSubtract,

  -- ** Defunctionalization symbols
  type (+@#@$), type (+@#@$$), type (+@#@$$$),
  type (-@#@$), type (-@#@$$), type (-@#@$$$),
  type (*@#@$), type (*@#@$$), type (*@#@$$$),
  NegateSym0, NegateSym1,
  AbsSym0, AbsSym1,
  SignumSym0, SignumSym1,
  FromIntegerSym0, FromIntegerSym1,
  SubtractSym0, SubtractSym1, SubtractSym2
  ) where

import Data.Ord (Down(..))
import Data.Singletons.Single
import Data.Singletons.Internal
import Data.Singletons.Prelude.Ord
import Data.Singletons.TypeLits.Internal
import Data.Singletons.Decide
import qualified GHC.TypeNats as TN
import GHC.TypeNats (SomeNat(..), someNatVal)
import Unsafe.Coerce

$(singletonsOnly [d|
  -- Basic numeric class.
  --
  -- Minimal complete definition: all except 'negate' or @(-)@
  class  Num a  where
      (+), (-), (*)       :: a -> a -> a
      infixl 6 +
      infixl 6 -
      infixl 7 *
      -- Unary negation.
      negate              :: a -> a
      -- Absolute value.
      abs                 :: a -> a
      -- Sign of a number.
      -- The functions 'abs' and 'signum' should satisfy the law:
      --
      -- > abs x * signum x == x
      --
      -- For real numbers, the 'signum' is either @-1@ (negative), @0@ (zero)
      -- or @1@ (positive).
      signum              :: a -> a
      -- Conversion from a 'Nat'.
      fromInteger         :: Nat -> a

      x - y               = x + negate y

      negate x            = 0 - x

  subtract :: Num a => a -> a -> a
  subtract x y = y - x

  -- deriving newtype instance Num a => Num (Down a)
  instance Num a => Num (Down a) where
      Down a + Down b = Down (a + b)
      Down a - Down b = Down (a - b)
      Down a * Down b = Down (a * b)
      negate (Down a) = Down (negate a)
      abs    (Down a) = Down (abs a)
      signum (Down a) = Down (signum a)
      fromInteger n   = Down (fromInteger n)
  |])

-- PNum instance
type SignumNat :: Nat -> Nat
type family SignumNat a where
  SignumNat 0 = 0
  SignumNat x = 1

instance PNum Nat where
  type a + b = a TN.+ b
  type a - b = a TN.- b
  type a * b = a TN.* b
  type Negate (a :: Nat) = Error "Cannot negate a natural number"
  type Abs (a :: Nat) = a
  type Signum a = SignumNat a
  type FromInteger a = a

-- SNum instance
instance SNum Nat where
  Sing t
sa %+ :: Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t)
%+ Sing t
sb =
    let a :: Demote Nat
a = Sing t -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing t
sa
        b :: Demote Nat
b = Sing t -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing t
sb
        ex :: SomeNat
ex = Natural -> SomeNat
someNatVal (Natural
Demote Nat
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
+ Natural
Demote Nat
b)
    in
    case SomeNat
ex of
      SomeNat (Proxy n
_ :: Proxy ab) -> SNat n -> SNat (t + t)
forall a b. a -> b
unsafeCoerce (Sing n
forall (n :: Nat). KnownNat n => SNat n
SNat :: Sing ab)

  Sing t
sa %- :: Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t)
%- Sing t
sb =
    let a :: Demote Nat
a = Sing t -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing t
sa
        b :: Demote Nat
b = Sing t -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing t
sb
        ex :: SomeNat
ex = Natural -> SomeNat
someNatVal (Natural
Demote Nat
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
- Natural
Demote Nat
b)
    in
    case SomeNat
ex of
      SomeNat (Proxy n
_ :: Proxy ab) -> SNat n -> SNat (t - t)
forall a b. a -> b
unsafeCoerce (Sing n
forall (n :: Nat). KnownNat n => SNat n
SNat :: Sing ab)

  Sing t
sa %* :: Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t)
%* Sing t
sb =
    let a :: Demote Nat
a = Sing t -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing t
sa
        b :: Demote Nat
b = Sing t -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing t
sb
        ex :: SomeNat
ex = Natural -> SomeNat
someNatVal (Natural
Demote Nat
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
Demote Nat
b)
    in
    case SomeNat
ex of
      SomeNat (Proxy n
_ :: Proxy ab) -> SNat n -> SNat (t * t)
forall a b. a -> b
unsafeCoerce (Sing n
forall (n :: Nat). KnownNat n => SNat n
SNat :: Sing ab)

  sNegate :: Sing t -> Sing (Apply NegateSym0 t)
sNegate Sing t
_ = [Char] -> SNat (Error "Cannot negate a natural number")
forall a. HasCallStack => [Char] -> a
error [Char]
"Cannot call sNegate on a natural number singleton."

  sAbs :: Sing t -> Sing (Apply AbsSym0 t)
sAbs Sing t
x = Sing t
Sing (Apply AbsSym0 t)
x

  sSignum :: Sing t -> Sing (Apply SignumSym0 t)
sSignum Sing t
sx =
    case Sing t
sx Sing t -> Sing 0 -> Decision (t :~: 0)
forall k (a :: k) (b :: k).
SDecide k =>
Sing a -> Sing b -> Decision (a :~: b)
%~ (Sing 0
forall k (a :: k). SingI a => Sing a
sing :: Sing 0) of
      Proved t :~: 0
Refl -> Sing 0
forall k (a :: k). SingI a => Sing a
sing :: Sing 0
      Disproved Refuted (t :~: 0)
_ -> SNat 1 -> SNat (SignumNat t)
forall a b. a -> b
unsafeCoerce (Sing 1
forall k (a :: k). SingI a => Sing a
sing :: Sing 1)

  sFromInteger :: Sing t -> Sing (Apply FromIntegerSym0 t)
sFromInteger Sing t
x = Sing t
Sing (Apply FromIntegerSym0 t)
x