singletons-2.3.1: A framework for generating singleton types

Copyright(C) 2014 Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerJan Stolarek (jan.stolarek@p.lodz.pl)
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Promotion.Prelude.Bool

Contents

Description

Defines promoted functions and datatypes relating to Bool, including a promoted version of all the definitions in Data.Bool.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Bool. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

Documentation

type family If k (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #

Type-level If. If True a b ==> a; If False a b ==> b

Equations

If k True tru fls = tru 
If k False tru fls = fls 

Promoted functions from Data.Bool

type family Bool_ (a :: a) (a :: a) (a :: Bool) :: a where ... Source #

Equations

Bool_ fls _tru False = fls 
Bool_ _fls tru True = tru 

bool_ :: a -> a -> Bool -> a Source #

The preceding two definitions are derived from the function bool in Data.Bool. The extra underscore is to avoid name clashes with the type Bool.

type family Not (a :: Bool) :: Bool where ... Source #

type family (a :: Bool) :&& (a :: Bool) :: Bool where ... infixr 3 Source #

Equations

False :&& _z_6989586621679277808 = FalseSym0 
True :&& x = x 

type family (a :: Bool) :|| (a :: Bool) :: Bool where ... infixr 2 Source #

Equations

False :|| x = x 
True :|| _z_6989586621679277796 = TrueSym0 

type family Otherwise :: Bool where ... Source #

Equations

Otherwise = TrueSym0 

Defunctionalization symbols

type NotSym1 (t :: Bool) = Not t Source #

data (l :: Bool) :&&$$ (l :: TyFun Bool Bool) Source #

type (:&&$$$) (t :: Bool) (t :: Bool) = (:&&) t t Source #

data (l :: Bool) :||$$ (l :: TyFun Bool Bool) Source #

type (:||$$$) (t :: Bool) (t :: Bool) = (:||) t t Source #

data Bool_Sym0 (l :: TyFun a6989586621679277161 (TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> Type)) Source #

Instances

SuppressUnusedWarnings (TyFun a6989586621679277161 (TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> Type) -> *) (Bool_Sym0 a6989586621679277161) Source # 

Methods

suppressUnusedWarnings :: Proxy (Bool_Sym0 a6989586621679277161) t -> () Source #

type Apply a6989586621679277161 (TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> Type) (Bool_Sym0 a6989586621679277161) l Source # 
type Apply a6989586621679277161 (TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> Type) (Bool_Sym0 a6989586621679277161) l = Bool_Sym1 a6989586621679277161 l

data Bool_Sym1 (l :: a6989586621679277161) (l :: TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type)) Source #

Instances

SuppressUnusedWarnings (a6989586621679277161 -> TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> *) (Bool_Sym1 a6989586621679277161) Source # 

Methods

suppressUnusedWarnings :: Proxy (Bool_Sym1 a6989586621679277161) t -> () Source #

type Apply a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) (Bool_Sym1 a6989586621679277161 l1) l2 Source # 
type Apply a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) (Bool_Sym1 a6989586621679277161 l1) l2 = Bool_Sym2 a6989586621679277161 l1 l2

data Bool_Sym2 (l :: a6989586621679277161) (l :: a6989586621679277161) (l :: TyFun Bool a6989586621679277161) Source #

Instances

SuppressUnusedWarnings (a6989586621679277161 -> a6989586621679277161 -> TyFun Bool a6989586621679277161 -> *) (Bool_Sym2 a6989586621679277161) Source # 

Methods

suppressUnusedWarnings :: Proxy (Bool_Sym2 a6989586621679277161) t -> () Source #

type Apply Bool a (Bool_Sym2 a l1 l2) l3 Source # 
type Apply Bool a (Bool_Sym2 a l1 l2) l3 = Bool_ a l1 l2 l3

type Bool_Sym3 (t :: a6989586621679277161) (t :: a6989586621679277161) (t :: Bool) = Bool_ t t t Source #