singletons-2.0.1: A framework for generating singleton types

Copyright(C) 2014 Jan Stolarek
LicenseBSD-style (see LICENSE)
Maintainerjan.stolarek@p.lodz.pl
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Promotion.Prelude.Either

Contents

Description

Defines promoted functions and datatypes relating to Either, including a promoted version of all the definitions in Data.Either.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Either. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

Promoted functions from Data.Either

either_ :: forall a c b. (a -> c) -> (b -> c) -> Either a b -> c Source

type family Either_ a a a :: c Source

Equations

Either_ f _z_1627652955 (Left x) = Apply f x 
Either_ _z_1627652959 g (Right y) = Apply g y 

The preceding two definitions are derived from the function either in Data.Either. The extra underscore is to avoid name clashes with the type Either.

type family Lefts a :: [a] Source

Equations

Lefts `[]` = `[]` 
Lefts ((:) (Left x) xs) = Apply (Apply (:$) x) (Apply LeftsSym0 xs) 
Lefts ((:) (Right _z_1627654406) xs) = Apply LeftsSym0 xs 

type family Rights a :: [b] Source

Equations

Rights `[]` = `[]` 
Rights ((:) (Left _z_1627654394) xs) = Apply RightsSym0 xs 
Rights ((:) (Right x) xs) = Apply (Apply (:$) x) (Apply RightsSym0 xs) 

type family PartitionEithers a :: ([a], [b]) Source

Equations

PartitionEithers a_1627654348 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Either_Sym0 (Let1627654355LeftSym1 a_1627654348)) (Let1627654355RightSym1 a_1627654348))) (Apply (Apply Tuple2Sym0 `[]`) `[]`)) a_1627654348 

type family IsLeft a :: Bool Source

Equations

IsLeft (Left _z_1627654342) = TrueSym0 
IsLeft (Right _z_1627654345) = FalseSym0 

type family IsRight a :: Bool Source

Equations

IsRight (Left _z_1627654332) = FalseSym0 
IsRight (Right _z_1627654335) = TrueSym0 

Defunctionalization symbols

data LeftSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (Either k k) -> *) (LeftSym0 k k) Source 
type Apply (Either k k1) k (LeftSym0 k k1) l0 = LeftSym1 k k1 l0 Source 

type LeftSym1 t = Left t Source

data RightSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (Either k k) -> *) (RightSym0 k k) Source 
type Apply (Either k1 k) k (RightSym0 k1 k) l0 = RightSym1 k k1 l0 Source 

data Either_Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k k -> *) (TyFun (TyFun k k -> *) (TyFun (Either k k) k -> *) -> *) -> *) (Either_Sym0 k k k) Source 
type Apply (TyFun (TyFun k2 k1 -> *) (TyFun (Either k k2) k1 -> *) -> *) (TyFun k k1 -> *) (Either_Sym0 k k1 k2) l0 = Either_Sym1 k k1 k2 l0 Source 

data Either_Sym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> TyFun (TyFun k k -> *) (TyFun (Either k k) k -> *) -> *) (Either_Sym1 k k k) Source 
type Apply (TyFun (Either k1 k) k2 -> *) (TyFun k k2 -> *) (Either_Sym1 k1 k2 k l1) l0 = Either_Sym2 k1 k2 k l1 l0 Source 

data Either_Sym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> (TyFun k k -> *) -> TyFun (Either k k) k -> *) (Either_Sym2 k k k) Source 
type Apply k1 (Either k k2) (Either_Sym2 k k1 k2 l1 l2) l0 = Either_Sym3 k k1 k2 l1 l2 l0 Source 

type Either_Sym3 t t t = Either_ t t t Source

data LeftsSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [Either k k] [k] -> *) (LeftsSym0 k k) Source 
type Apply [k] [Either k k1] (LeftsSym0 k k1) l0 = LeftsSym1 k k1 l0 Source 

data RightsSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [Either k k] [k] -> *) (RightsSym0 k k) Source 
type Apply [k] [Either k1 k] (RightsSym0 k1 k) l0 = RightsSym1 k1 k l0 Source 

data IsLeftSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (Either k k) Bool -> *) (IsLeftSym0 k k) Source 
type Apply Bool (Either k k1) (IsLeftSym0 k k1) l0 = IsLeftSym1 k k1 l0 Source 

data IsRightSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (Either k k) Bool -> *) (IsRightSym0 k k) Source 
type Apply Bool (Either k k1) (IsRightSym0 k k1) l0 = IsRightSym1 k k1 l0 Source