-- | A 'Field' is a 'Data.Semiring.Ring' in which all nonzero elements
--   have a multiplicative inverse.
module Data.Field
  ( -- * Field typeclass
    Field
  , divide
  , fromRational
  , recip
  , (/)
  ) where

import Prelude hiding (fromInteger, fromRational, negate, quot, recip, (/))
import Data.Euclidean (Field, quot)
import Data.Ratio (denominator, numerator)
import Data.Semiring (fromInteger, one)

---------------------------------------------------------------------
-- Functions
---------------------------------------------------------------------

-- | Divide two elements of a 'Field'.
-- For any 'Prelude.Fractional' type, this is the same as '(Prelude./)'.
--
--     @x `divide` y = x `Data.Semiring.times` 'recip' y@
divide :: Field a => a -> a -> a
divide :: a -> a -> a
divide = a -> a -> a
forall a. Euclidean a => a -> a -> a
quot
{-# INLINE divide #-}

infixl 7 `divide`

-- | Invert an element of a 'Field'.
-- For any 'Prelude.Fractional' type, this is the same as 'Prelude.recip'.
--
--     @'recip' x `Data.Semiring.times` x = 'one'@
recip :: Field a => a -> a
recip :: a -> a
recip = a -> a -> a
forall a. Euclidean a => a -> a -> a
quot a
forall a. Semiring a => a
one
{-# INLINE recip #-}

-- | Infix shorthand for 'divide'.
(/) :: Field a => a -> a -> a
/ :: a -> a -> a
(/) = a -> a -> a
forall a. Euclidean a => a -> a -> a
quot
{-# INLINE (/) #-}

infixl 7 /

-- | Convert from rational to field.
--
-- When @{-#@ @LANGUAGE RebindableSyntax #-}@ is enabled,
-- this function is used for desugaring rational literals (like, @2.37@).
-- This may be used to facilitate transition from 'Fractional' to 'Field',
-- because less casts are now required.
fromRational :: Field a => Rational -> a
fromRational :: Rational -> a
fromRational Rational
x = a -> a -> a
forall a. Euclidean a => a -> a -> a
quot (Integer -> a
forall a. Ring a => Integer -> a
fromInteger (Rational -> Integer
forall a. Ratio a -> a
numerator Rational
x)) (Integer -> a
forall a. Ring a => Integer -> a
fromInteger (Rational -> Integer
forall a. Ratio a -> a
denominator Rational
x))
{-# INLINE fromRational #-}