Copyright | (C) 2011-2015 Edward Kmett |
---|---|
License | BSD-style (see the file LICENSE) |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Stability | provisional |
Portability | portable |
Safe Haskell | Safe-Inferred |
Language | Haskell98 |
- class Bifunctor p where
- class Bifunctor p => Biapply p where
- (<<$>>) :: (a -> b) -> a -> b
- (<<..>>) :: Biapply p => p a c -> p (a -> b) (c -> d) -> p b d
- bilift2 :: Biapply w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f
- bilift3 :: Biapply w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h
Biappliable bifunctors
class Bifunctor p where
Minimal definition either bimap
or first
and second
Formally, the class Bifunctor
represents a bifunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor
by either defining bimap
or by defining both
first
and second
.
If you supply bimap
, you should ensure that:
bimap
id
id
≡id
If you supply first
and second
, ensure:
first
id
≡id
second
id
≡id
If you supply both, you should also ensure:
bimap
f g ≡first
f.
second
g
These ensure by parametricity:
bimap
(f.
g) (h.
i) ≡bimap
f h.
bimap
g ifirst
(f.
g) ≡first
f.
first
gsecond
(f.
g) ≡second
f.
second
g
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
first :: (a -> b) -> p a c -> p b c
second :: (b -> c) -> p a b -> p a c
Bifunctor Either | |
Bifunctor (,) | |
Bifunctor Const | |
Bifunctor Arg | |
Bifunctor ((,,) x) | |
Bifunctor p => Bifunctor (WrappedBifunctor p) | |
Functor g => Bifunctor (Joker g) | |
Bifunctor p => Bifunctor (Flip p) | |
Functor f => Bifunctor (Clown f) | |
Bifunctor (Tagged *) | |
Bifunctor ((,,,) x y) | |
(Functor f, Bifunctor p) => Bifunctor (Tannen f p) | |
(Bifunctor f, Bifunctor g) => Bifunctor (Product f g) | |
Bifunctor ((,,,,) x y z) | |
(Bifunctor p, Functor f, Functor g) => Bifunctor (Biff p f g) | |
Bifunctor ((,,,,,) x y z w) | |
Bifunctor ((,,,,,,) x y z w v) |
class Bifunctor p => Biapply p where Source
(<<.>>) :: p (a -> b) (c -> d) -> p a c -> p b d infixl 4 Source
Biapply (,) | |
Biapply Const | |
Biapply Arg | |
Semigroup x => Biapply ((,,) x) | |
Biapply p => Biapply (WrappedBifunctor p) | |
Apply g => Biapply (Joker g) | |
Biapply p => Biapply (Flip p) | |
Apply f => Biapply (Clown f) | |
Biapply (Tagged *) | |
(Semigroup x, Semigroup y) => Biapply ((,,,) x y) | |
(Apply f, Biapply p) => Biapply (Tannen f p) | |
(Biapply p, Biapply q) => Biapply (Product p q) | |
(Semigroup x, Semigroup y, Semigroup z) => Biapply ((,,,,) x y z) | |
(Biapply p, Apply f, Apply g) => Biapply (Biff p f g) |
(<<$>>) :: (a -> b) -> a -> b infixl 4