{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.List (
length, null
, head, tail, uncons, init, singleton, listToListAt, elemAt, (!!), implode, concat, (.:), snoc, nil, (++)
, elem, notElem, isInfixOf, isSuffixOf, isPrefixOf
, take, drop, subList, replace, indexOf, offsetIndexOf
, reverse
) where
import Prelude hiding (head, tail, init, length, take, drop, concat, null, elem, notElem, reverse, (++), (!!))
import qualified Prelude as P
import Data.SBV.Core.Data hiding (StrOp(..))
import Data.SBV.Core.Model
import Data.List (genericLength, genericIndex, genericDrop, genericTake)
import qualified Data.List as L (tails, isSuffixOf, isPrefixOf, isInfixOf)
import Data.Proxy
length :: SymVal a => SList a -> SInteger
length :: SList a -> SInteger
length = SeqOp -> Maybe ([a] -> Integer) -> SList a -> SInteger
forall a b.
(SymVal a, SymVal b) =>
SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 SeqOp
SeqLen (([a] -> Integer) -> Maybe ([a] -> Integer)
forall a. a -> Maybe a
Just (Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> Integer) -> ([a] -> Int) -> [a] -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
P.length))
null :: SymVal a => SList a -> SBool
null :: SList a -> SBool
null SList a
l
| Just [a]
cs <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
= Bool -> SBool
forall a. SymVal a => a -> SBV a
literal ([a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
P.null [a]
cs)
| Bool
True
= SList a -> SInteger
forall a. SymVal a => SList a -> SInteger
length SList a
l SInteger -> SInteger -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SInteger
0
head :: SymVal a => SList a -> SBV a
head :: SList a -> SBV a
head = (SList a -> SInteger -> SBV a
forall a. SymVal a => SList a -> SInteger -> SBV a
`elemAt` SInteger
0)
tail :: SymVal a => SList a -> SList a
tail :: SList a -> SList a
tail SList a
l
| Just (a
_:[a]
cs) <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
= [a] -> SList a
forall a. SymVal a => a -> SBV a
literal [a]
cs
| Bool
True
= SList a -> SInteger -> SInteger -> SList a
forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
l SInteger
1 (SList a -> SInteger
forall a. SymVal a => SList a -> SInteger
length SList a
l SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
- SInteger
1)
uncons :: SymVal a => SList a -> (SBV a, SList a)
uncons :: SList a -> (SBV a, SList a)
uncons SList a
l = (SList a -> SBV a
forall a. SymVal a => SList a -> SBV a
head SList a
l, SList a -> SList a
forall a. SymVal a => SList a -> SList a
tail SList a
l)
init :: SymVal a => SList a -> SList a
init :: SList a -> SList a
init SList a
l
| Just cs :: [a]
cs@(a
_:[a]
_) <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
= [a] -> SList a
forall a. SymVal a => a -> SBV a
literal ([a] -> SList a) -> [a] -> SList a
forall a b. (a -> b) -> a -> b
$ [a] -> [a]
forall a. [a] -> [a]
P.init [a]
cs
| Bool
True
= SList a -> SInteger -> SInteger -> SList a
forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
l SInteger
0 (SList a -> SInteger
forall a. SymVal a => SList a -> SInteger
length SList a
l SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
- SInteger
1)
singleton :: SymVal a => SBV a -> SList a
singleton :: SBV a -> SList a
singleton = SeqOp -> Maybe (a -> [a]) -> SBV a -> SList a
forall a b.
(SymVal a, SymVal b) =>
SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 SeqOp
SeqUnit ((a -> [a]) -> Maybe (a -> [a])
forall a. a -> Maybe a
Just (a -> [a] -> [a]
forall a. a -> [a] -> [a]
: []))
listToListAt :: SymVal a => SList a -> SInteger -> SList a
listToListAt :: SList a -> SInteger -> SList a
listToListAt SList a
s SInteger
offset = SList a -> SInteger -> SInteger -> SList a
forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
s SInteger
offset SInteger
1
elemAt :: forall a. SymVal a => SList a -> SInteger -> SBV a
elemAt :: SList a -> SInteger -> SBV a
elemAt SList a
l SInteger
i
| Just [a]
xs <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l, Just Integer
ci <- SInteger -> Maybe Integer
forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
i, Integer
ci Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
0, Integer
ci Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< [a] -> Integer
forall i a. Num i => [a] -> i
genericLength [a]
xs, let x :: a
x = [a]
xs [a] -> Integer -> a
forall i a. Integral i => [a] -> i -> a
`genericIndex` Integer
ci
= a -> SBV a
forall a. SymVal a => a -> SBV a
literal a
x
| Bool
True
= SeqOp
-> Maybe ([a] -> Integer -> a) -> SList a -> SInteger -> SBV a
forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqNth Maybe ([a] -> Integer -> a)
forall a. Maybe a
Nothing SList a
l SInteger
i
(!!) :: SymVal a => SList a -> SInteger -> SBV a
!! :: SList a -> SInteger -> SBV a
(!!) = SList a -> SInteger -> SBV a
forall a. SymVal a => SList a -> SInteger -> SBV a
elemAt
implode :: SymVal a => [SBV a] -> SList a
implode :: [SBV a] -> SList a
implode = (SBV a -> SList a -> SList a) -> SList a -> [SBV a] -> SList a
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (SList a -> SList a -> SList a
forall a. SymVal a => SList a -> SList a -> SList a
(++) (SList a -> SList a -> SList a)
-> (SBV a -> SList a) -> SBV a -> SList a -> SList a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBV a -> SList a
forall a. SymVal a => SBV a -> SList a
singleton) ([a] -> SList a
forall a. SymVal a => a -> SBV a
literal [])
concat :: SymVal a => SList a -> SList a -> SList a
concat :: SList a -> SList a -> SList a
concat SList a
x SList a
y | SList a -> Bool
forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
x = SList a
y
| SList a -> Bool
forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
y = SList a
x
| Bool
True = SeqOp -> Maybe ([a] -> [a] -> [a]) -> SList a -> SList a -> SList a
forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqConcat (([a] -> [a] -> [a]) -> Maybe ([a] -> [a] -> [a])
forall a. a -> Maybe a
Just [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
(P.++)) SList a
x SList a
y
infixr 5 .:
(.:) :: SymVal a => SBV a -> SList a -> SList a
SBV a
a .: :: SBV a -> SList a -> SList a
.: SList a
as = SBV a -> SList a
forall a. SymVal a => SBV a -> SList a
singleton SBV a
a SList a -> SList a -> SList a
forall a. SymVal a => SList a -> SList a -> SList a
++ SList a
as
snoc :: SymVal a => SList a -> SBV a -> SList a
SList a
as snoc :: SList a -> SBV a -> SList a
`snoc` SBV a
a = SList a
as SList a -> SList a -> SList a
forall a. SymVal a => SList a -> SList a -> SList a
++ SBV a -> SList a
forall a. SymVal a => SBV a -> SList a
singleton SBV a
a
nil :: SymVal a => SList a
nil :: SList a
nil = []
infixr 5 ++
(++) :: SymVal a => SList a -> SList a -> SList a
++ :: SList a -> SList a -> SList a
(++) = SList a -> SList a -> SList a
forall a. SymVal a => SList a -> SList a -> SList a
concat
elem :: (Eq a, SymVal a) => SBV a -> SList a -> SBool
SBV a
e elem :: SBV a -> SList a -> SBool
`elem` SList a
l = SBV a -> SList a
forall a. SymVal a => SBV a -> SList a
singleton SBV a
e SList a -> SList a -> SBool
forall a. (Eq a, SymVal a) => SList a -> SList a -> SBool
`isInfixOf` SList a
l
notElem :: (Eq a, SymVal a) => SBV a -> SList a -> SBool
SBV a
e notElem :: SBV a -> SList a -> SBool
`notElem` SList a
l = SBool -> SBool
sNot (SBV a
e SBV a -> SList a -> SBool
forall a. (Eq a, SymVal a) => SBV a -> SList a -> SBool
`elem` SList a
l)
isInfixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
SList a
sub isInfixOf :: SList a -> SList a -> SBool
`isInfixOf` SList a
l
| SList a -> Bool
forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
sub
= Bool -> SBool
forall a. SymVal a => a -> SBV a
literal Bool
True
| Bool
True
= SeqOp -> Maybe ([a] -> [a] -> Bool) -> SList a -> SList a -> SBool
forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqContains (([a] -> [a] -> Bool) -> Maybe ([a] -> [a] -> Bool)
forall a. a -> Maybe a
Just (([a] -> [a] -> Bool) -> [a] -> [a] -> Bool
forall a b c. (a -> b -> c) -> b -> a -> c
flip [a] -> [a] -> Bool
forall a. Eq a => [a] -> [a] -> Bool
L.isInfixOf)) SList a
l SList a
sub
isPrefixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
SList a
pre isPrefixOf :: SList a -> SList a -> SBool
`isPrefixOf` SList a
l
| SList a -> Bool
forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
pre
= Bool -> SBool
forall a. SymVal a => a -> SBV a
literal Bool
True
| Bool
True
= SeqOp -> Maybe ([a] -> [a] -> Bool) -> SList a -> SList a -> SBool
forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqPrefixOf (([a] -> [a] -> Bool) -> Maybe ([a] -> [a] -> Bool)
forall a. a -> Maybe a
Just [a] -> [a] -> Bool
forall a. Eq a => [a] -> [a] -> Bool
L.isPrefixOf) SList a
pre SList a
l
isSuffixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
SList a
suf isSuffixOf :: SList a -> SList a -> SBool
`isSuffixOf` SList a
l
| SList a -> Bool
forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
suf
= Bool -> SBool
forall a. SymVal a => a -> SBV a
literal Bool
True
| Bool
True
= SeqOp -> Maybe ([a] -> [a] -> Bool) -> SList a -> SList a -> SBool
forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqSuffixOf (([a] -> [a] -> Bool) -> Maybe ([a] -> [a] -> Bool)
forall a. a -> Maybe a
Just [a] -> [a] -> Bool
forall a. Eq a => [a] -> [a] -> Bool
L.isSuffixOf) SList a
suf SList a
l
take :: SymVal a => SInteger -> SList a -> SList a
take :: SInteger -> SList a -> SList a
take SInteger
i SList a
l = SBool -> SList a -> SList a -> SList a
forall a. Mergeable a => SBool -> a -> a -> a
ite (SInteger
i SInteger -> SInteger -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.<= SInteger
0) ([a] -> SList a
forall a. SymVal a => a -> SBV a
literal [])
(SList a -> SList a) -> SList a -> SList a
forall a b. (a -> b) -> a -> b
$ SBool -> SList a -> SList a -> SList a
forall a. Mergeable a => SBool -> a -> a -> a
ite (SInteger
i SInteger -> SInteger -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.>= SList a -> SInteger
forall a. SymVal a => SList a -> SInteger
length SList a
l) SList a
l
(SList a -> SList a) -> SList a -> SList a
forall a b. (a -> b) -> a -> b
$ SList a -> SInteger -> SInteger -> SList a
forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
l SInteger
0 SInteger
i
drop :: SymVal a => SInteger -> SList a -> SList a
drop :: SInteger -> SList a -> SList a
drop SInteger
i SList a
s = SBool -> SList a -> SList a -> SList a
forall a. Mergeable a => SBool -> a -> a -> a
ite (SInteger
i SInteger -> SInteger -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.>= SInteger
ls) ([a] -> SList a
forall a. SymVal a => a -> SBV a
literal [])
(SList a -> SList a) -> SList a -> SList a
forall a b. (a -> b) -> a -> b
$ SBool -> SList a -> SList a -> SList a
forall a. Mergeable a => SBool -> a -> a -> a
ite (SInteger
i SInteger -> SInteger -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.<= SInteger
0) SList a
s
(SList a -> SList a) -> SList a -> SList a
forall a b. (a -> b) -> a -> b
$ SList a -> SInteger -> SInteger -> SList a
forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
s SInteger
i (SInteger
ls SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
- SInteger
i)
where ls :: SInteger
ls = SList a -> SInteger
forall a. SymVal a => SList a -> SInteger
length SList a
s
subList :: SymVal a => SList a -> SInteger -> SInteger -> SList a
subList :: SList a -> SInteger -> SInteger -> SList a
subList SList a
l SInteger
offset SInteger
len
| Just [a]
c <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
, Just Integer
o <- SInteger -> Maybe Integer
forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
offset
, Just Integer
sz <- SInteger -> Maybe Integer
forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
len
, let lc :: Integer
lc = [a] -> Integer
forall i a. Num i => [a] -> i
genericLength [a]
c
, let valid :: Integer -> Bool
valid Integer
x = Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
0 Bool -> Bool -> Bool
&& Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
lc
, Integer -> Bool
valid Integer
o
, Integer
sz Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
0
, Integer -> Bool
valid (Integer -> Bool) -> Integer -> Bool
forall a b. (a -> b) -> a -> b
$ Integer
o Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
sz
= [a] -> SList a
forall a. SymVal a => a -> SBV a
literal ([a] -> SList a) -> [a] -> SList a
forall a b. (a -> b) -> a -> b
$ Integer -> [a] -> [a]
forall i a. Integral i => i -> [a] -> [a]
genericTake Integer
sz ([a] -> [a]) -> [a] -> [a]
forall a b. (a -> b) -> a -> b
$ Integer -> [a] -> [a]
forall i a. Integral i => i -> [a] -> [a]
genericDrop Integer
o [a]
c
| Bool
True
= SeqOp
-> Maybe ([a] -> Integer -> Integer -> [a])
-> SList a
-> SInteger
-> SInteger
-> SList a
forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
SeqOp
-> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 SeqOp
SeqSubseq Maybe ([a] -> Integer -> Integer -> [a])
forall a. Maybe a
Nothing SList a
l SInteger
offset SInteger
len
replace :: (Eq a, SymVal a) => SList a -> SList a -> SList a -> SList a
replace :: SList a -> SList a -> SList a -> SList a
replace SList a
l SList a
src SList a
dst
| Just [a]
b <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
src, [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
P.null [a]
b
= SList a
dst SList a -> SList a -> SList a
forall a. SymVal a => SList a -> SList a -> SList a
++ SList a
l
| Just [a]
a <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
, Just [a]
b <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
src
, Just [a]
c <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
dst
= [a] -> SList a
forall a. SymVal a => a -> SBV a
literal ([a] -> SList a) -> [a] -> SList a
forall a b. (a -> b) -> a -> b
$ [a] -> [a] -> [a] -> [a]
forall a. Eq a => [a] -> [a] -> [a] -> [a]
walk [a]
a [a]
b [a]
c
| Bool
True
= SeqOp
-> Maybe ([a] -> [a] -> [a] -> [a])
-> SList a
-> SList a
-> SList a
-> SList a
forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
SeqOp
-> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 SeqOp
SeqReplace Maybe ([a] -> [a] -> [a] -> [a])
forall a. Maybe a
Nothing SList a
l SList a
src SList a
dst
where walk :: [a] -> [a] -> [a] -> [a]
walk [a]
haystack [a]
needle [a]
newNeedle = [a] -> [a]
go [a]
haystack
where go :: [a] -> [a]
go [] = []
go i :: [a]
i@(a
c:[a]
cs)
| [a]
needle [a] -> [a] -> Bool
forall a. Eq a => [a] -> [a] -> Bool
`L.isPrefixOf` [a]
i = [a]
newNeedle [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
P.++ Integer -> [a] -> [a]
forall i a. Integral i => i -> [a] -> [a]
genericDrop ([a] -> Integer
forall i a. Num i => [a] -> i
genericLength [a]
needle :: Integer) [a]
i
| Bool
True = a
c a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a] -> [a]
go [a]
cs
indexOf :: (Eq a, SymVal a) => SList a -> SList a -> SInteger
indexOf :: SList a -> SList a -> SInteger
indexOf SList a
s SList a
sub = SList a -> SList a -> SInteger -> SInteger
forall a.
(Eq a, SymVal a) =>
SList a -> SList a -> SInteger -> SInteger
offsetIndexOf SList a
s SList a
sub SInteger
0
offsetIndexOf :: (Eq a, SymVal a) => SList a -> SList a -> SInteger -> SInteger
offsetIndexOf :: SList a -> SList a -> SInteger -> SInteger
offsetIndexOf SList a
s SList a
sub SInteger
offset
| Just [a]
c <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
s
, Just [a]
n <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
sub
, Just Integer
o <- SInteger -> Maybe Integer
forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
offset
, Integer
o Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
0, Integer
o Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Integer
forall i a. Num i => [a] -> i
genericLength [a]
c
= case [Integer
i | (Integer
i, [a]
t) <- [Integer] -> [[a]] -> [(Integer, [a])]
forall a b. [a] -> [b] -> [(a, b)]
zip [Integer
Item [Integer]
o ..] ([a] -> [[a]]
forall a. [a] -> [[a]]
L.tails (Integer -> [a] -> [a]
forall i a. Integral i => i -> [a] -> [a]
genericDrop Integer
o [a]
c)), [a]
n [a] -> [a] -> Bool
forall a. Eq a => [a] -> [a] -> Bool
`L.isPrefixOf` [a]
t] of
(Integer
i:[Integer]
_) -> Integer -> SInteger
forall a. SymVal a => a -> SBV a
literal Integer
i
[Integer]
_ -> -SInteger
1
| Bool
True
= SeqOp
-> Maybe ([a] -> [a] -> Integer -> Integer)
-> SList a
-> SList a
-> SInteger
-> SInteger
forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
SeqOp
-> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 SeqOp
SeqIndexOf Maybe ([a] -> [a] -> Integer -> Integer)
forall a. Maybe a
Nothing SList a
s SList a
sub SInteger
offset
reverse :: SymVal a => SList a -> SList a
reverse :: SList a -> SList a
reverse SList a
l
| Just [a]
l' <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
= [a] -> SList a
forall a. SymVal a => a -> SBV a
literal ([a] -> [a]
forall a. [a] -> [a]
P.reverse [a]
l')
| Bool
True
= SVal -> SList a
forall a. SVal -> SBV a
SBV (SVal -> SList a) -> SVal -> SList a
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k (Either CV (Cached SV) -> SVal) -> Either CV (Cached SV) -> SVal
forall a b. (a -> b) -> a -> b
$ Cached SV -> Either CV (Cached SV)
forall a b. b -> Either a b
Right (Cached SV -> Either CV (Cached SV))
-> Cached SV -> Either CV (Cached SV)
forall a b. (a -> b) -> a -> b
$ (State -> IO SV) -> Cached SV
forall a. (State -> IO a) -> Cached a
cache State -> IO SV
r
where k :: Kind
k = SList a -> Kind
forall a. HasKind a => a -> Kind
kindOf SList a
l
r :: State -> IO SV
r State
st = do SV
sva <- State -> SList a -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SList a
l
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
k (Op -> [SV] -> SBVExpr
SBVApp (SeqOp -> Op
SeqOp (Kind -> SeqOp
SBVReverse Kind
k)) [Item [SV]
SV
sva])
lift1 :: forall a b. (SymVal a, SymVal b) => SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 :: SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 SeqOp
w Maybe (a -> b)
mbOp SBV a
a
| Just SBV b
cv <- Maybe (a -> b) -> SBV a -> Maybe (SBV b)
forall a b.
(SymVal a, SymVal b) =>
Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 Maybe (a -> b)
mbOp SBV a
a
= SBV b
cv
| Bool
True
= SVal -> SBV b
forall a. SVal -> SBV a
SBV (SVal -> SBV b) -> SVal -> SBV b
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k (Either CV (Cached SV) -> SVal) -> Either CV (Cached SV) -> SVal
forall a b. (a -> b) -> a -> b
$ Cached SV -> Either CV (Cached SV)
forall a b. b -> Either a b
Right (Cached SV -> Either CV (Cached SV))
-> Cached SV -> Either CV (Cached SV)
forall a b. (a -> b) -> a -> b
$ (State -> IO SV) -> Cached SV
forall a. (State -> IO a) -> Cached a
cache State -> IO SV
r
where k :: Kind
k = Proxy b -> Kind
forall a. HasKind a => a -> Kind
kindOf (Proxy b
forall k (t :: k). Proxy t
Proxy @b)
r :: State -> IO SV
r State
st = do SV
sva <- State -> SBV a -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV a
a
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
k (Op -> [SV] -> SBVExpr
SBVApp (SeqOp -> Op
SeqOp SeqOp
w) [Item [SV]
SV
sva])
lift2 :: forall a b c. (SymVal a, SymVal b, SymVal c) => SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 :: SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
w Maybe (a -> b -> c)
mbOp SBV a
a SBV b
b
| Just SBV c
cv <- Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c)
forall a b c.
(SymVal a, SymVal b, SymVal c) =>
Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c)
concEval2 Maybe (a -> b -> c)
mbOp SBV a
a SBV b
b
= SBV c
cv
| Bool
True
= SVal -> SBV c
forall a. SVal -> SBV a
SBV (SVal -> SBV c) -> SVal -> SBV c
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k (Either CV (Cached SV) -> SVal) -> Either CV (Cached SV) -> SVal
forall a b. (a -> b) -> a -> b
$ Cached SV -> Either CV (Cached SV)
forall a b. b -> Either a b
Right (Cached SV -> Either CV (Cached SV))
-> Cached SV -> Either CV (Cached SV)
forall a b. (a -> b) -> a -> b
$ (State -> IO SV) -> Cached SV
forall a. (State -> IO a) -> Cached a
cache State -> IO SV
r
where k :: Kind
k = Proxy c -> Kind
forall a. HasKind a => a -> Kind
kindOf (Proxy c
forall k (t :: k). Proxy t
Proxy @c)
r :: State -> IO SV
r State
st = do SV
sva <- State -> SBV a -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV a
a
SV
svb <- State -> SBV b -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV b
b
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
k (Op -> [SV] -> SBVExpr
SBVApp (SeqOp -> Op
SeqOp SeqOp
w) [Item [SV]
SV
sva, Item [SV]
SV
svb])
lift3 :: forall a b c d. (SymVal a, SymVal b, SymVal c, SymVal d) => SeqOp -> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 :: SeqOp
-> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 SeqOp
w Maybe (a -> b -> c -> d)
mbOp SBV a
a SBV b
b SBV c
c
| Just SBV d
cv <- Maybe (a -> b -> c -> d)
-> SBV a -> SBV b -> SBV c -> Maybe (SBV d)
forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
Maybe (a -> b -> c -> d)
-> SBV a -> SBV b -> SBV c -> Maybe (SBV d)
concEval3 Maybe (a -> b -> c -> d)
mbOp SBV a
a SBV b
b SBV c
c
= SBV d
cv
| Bool
True
= SVal -> SBV d
forall a. SVal -> SBV a
SBV (SVal -> SBV d) -> SVal -> SBV d
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k (Either CV (Cached SV) -> SVal) -> Either CV (Cached SV) -> SVal
forall a b. (a -> b) -> a -> b
$ Cached SV -> Either CV (Cached SV)
forall a b. b -> Either a b
Right (Cached SV -> Either CV (Cached SV))
-> Cached SV -> Either CV (Cached SV)
forall a b. (a -> b) -> a -> b
$ (State -> IO SV) -> Cached SV
forall a. (State -> IO a) -> Cached a
cache State -> IO SV
r
where k :: Kind
k = Proxy d -> Kind
forall a. HasKind a => a -> Kind
kindOf (Proxy d
forall k (t :: k). Proxy t
Proxy @d)
r :: State -> IO SV
r State
st = do SV
sva <- State -> SBV a -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV a
a
SV
svb <- State -> SBV b -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV b
b
SV
svc <- State -> SBV c -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV c
c
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
k (Op -> [SV] -> SBVExpr
SBVApp (SeqOp -> Op
SeqOp SeqOp
w) [Item [SV]
SV
sva, Item [SV]
SV
svb, Item [SV]
SV
svc])
concEval1 :: (SymVal a, SymVal b) => Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 :: Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 Maybe (a -> b)
mbOp SBV a
a = b -> SBV b
forall a. SymVal a => a -> SBV a
literal (b -> SBV b) -> Maybe b -> Maybe (SBV b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Maybe (a -> b)
mbOp Maybe (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> SBV a -> Maybe a
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
a)
concEval2 :: (SymVal a, SymVal b, SymVal c) => Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c)
concEval2 :: Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c)
concEval2 Maybe (a -> b -> c)
mbOp SBV a
a SBV b
b = c -> SBV c
forall a. SymVal a => a -> SBV a
literal (c -> SBV c) -> Maybe c -> Maybe (SBV c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Maybe (a -> b -> c)
mbOp Maybe (a -> b -> c) -> Maybe a -> Maybe (b -> c)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> SBV a -> Maybe a
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
a Maybe (b -> c) -> Maybe b -> Maybe c
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> SBV b -> Maybe b
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV b
b)
concEval3 :: (SymVal a, SymVal b, SymVal c, SymVal d) => Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> Maybe (SBV d)
concEval3 :: Maybe (a -> b -> c -> d)
-> SBV a -> SBV b -> SBV c -> Maybe (SBV d)
concEval3 Maybe (a -> b -> c -> d)
mbOp SBV a
a SBV b
b SBV c
c = d -> SBV d
forall a. SymVal a => a -> SBV a
literal (d -> SBV d) -> Maybe d -> Maybe (SBV d)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Maybe (a -> b -> c -> d)
mbOp Maybe (a -> b -> c -> d) -> Maybe a -> Maybe (b -> c -> d)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> SBV a -> Maybe a
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
a Maybe (b -> c -> d) -> Maybe b -> Maybe (c -> d)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> SBV b -> Maybe b
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV b
b Maybe (c -> d) -> Maybe c -> Maybe d
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> SBV c -> Maybe c
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV c
c)
isConcretelyEmpty :: SymVal a => SList a -> Bool
isConcretelyEmpty :: SList a -> Bool
isConcretelyEmpty SList a
sl | Just [a]
l <- SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
sl = [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
P.null [a]
l
| Bool
True = Bool
False