sbv-8.9: SMT Based Verification: Symbolic Haskell theorem prover using SMT solving.
Copyright(c) Levent Erkok
LicenseBSD3
Maintainererkokl@gmail.com
Stabilityexperimental
Safe HaskellNone
LanguageHaskell2010

Documentation.SBV.Examples.ProofTools.Fibonacci

Contents

Description

Example inductive proof to show partial correctness of the for-loop based fibonacci algorithm:

    i = 0
    k = 1
    m = 0
    while i < n:
       m, k = k, m + k
       i++

We do the proof against an axiomatized fibonacci implementation using an uninterpreted function.

Synopsis

System state

data S a Source #

System state. We simply have two components, parameterized over the type so we can put in both concrete and symbolic values.

Constructors

S 

Fields

  • i :: a
     
  • k :: a
     
  • m :: a
     
  • n :: a
     

Instances

Instances details
Functor S Source # 
Instance details

Defined in Documentation.SBV.Examples.ProofTools.Fibonacci

Methods

fmap :: (a -> b) -> S a -> S b #

(<$) :: a -> S b -> S a #

Foldable S Source # 
Instance details

Defined in Documentation.SBV.Examples.ProofTools.Fibonacci

Methods

fold :: Monoid m => S m -> m #

foldMap :: Monoid m => (a -> m) -> S a -> m #

foldMap' :: Monoid m => (a -> m) -> S a -> m #

foldr :: (a -> b -> b) -> b -> S a -> b #

foldr' :: (a -> b -> b) -> b -> S a -> b #

foldl :: (b -> a -> b) -> b -> S a -> b #

foldl' :: (b -> a -> b) -> b -> S a -> b #

foldr1 :: (a -> a -> a) -> S a -> a #

foldl1 :: (a -> a -> a) -> S a -> a #

toList :: S a -> [a] #

null :: S a -> Bool #

length :: S a -> Int #

elem :: Eq a => a -> S a -> Bool #

maximum :: Ord a => S a -> a #

minimum :: Ord a => S a -> a #

sum :: Num a => S a -> a #

product :: Num a => S a -> a #

Traversable S Source # 
Instance details

Defined in Documentation.SBV.Examples.ProofTools.Fibonacci

Methods

traverse :: Applicative f => (a -> f b) -> S a -> f (S b) #

sequenceA :: Applicative f => S (f a) -> f (S a) #

mapM :: Monad m => (a -> m b) -> S a -> m (S b) #

sequence :: Monad m => S (m a) -> m (S a) #

Fresh IO (S SInteger) Source #

Fresh instance for our state

Instance details

Defined in Documentation.SBV.Examples.ProofTools.Fibonacci

Show a => Show (S a) Source # 
Instance details

Defined in Documentation.SBV.Examples.ProofTools.Fibonacci

Methods

showsPrec :: Int -> S a -> ShowS #

show :: S a -> String #

showList :: [S a] -> ShowS #

Generic (S a) Source # 
Instance details

Defined in Documentation.SBV.Examples.ProofTools.Fibonacci

Associated Types

type Rep (S a) :: Type -> Type #

Methods

from :: S a -> Rep (S a) x #

to :: Rep (S a) x -> S a #

Mergeable a => Mergeable (S a) Source # 
Instance details

Defined in Documentation.SBV.Examples.ProofTools.Fibonacci

Methods

symbolicMerge :: Bool -> SBool -> S a -> S a -> S a Source #

select :: (Ord b, SymVal b, Num b) => [S a] -> S a -> SBV b -> S a Source #

type Rep (S a) Source # 
Instance details

Defined in Documentation.SBV.Examples.ProofTools.Fibonacci

type Rep (S a) = D1 ('MetaData "S" "Documentation.SBV.Examples.ProofTools.Fibonacci" "sbv-8.9-ATrzvBVsNws6CzdQ7iCv1r" 'False) (C1 ('MetaCons "S" 'PrefixI 'True) ((S1 ('MetaSel ('Just "i") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Just "k") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :*: (S1 ('MetaSel ('Just "m") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Just "n") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a))))

fibCorrect :: IO (InductionResult (S Integer)) Source #

Encoding partial correctness of the sum algorithm. We have:

>>> fibCorrect
Q.E.D.

NB. In my experiments, I found that this proof is quite fragile due to the use of quantifiers: If you make a mistake in your algorithm or the coding, z3 pretty much spins forever without finding a counter-example. However, with the correct coding, the proof is almost instantaneous!