-----------------------------------------------------------------------------
-- |
-- Module    : Documentation.SBV.Examples.WeakestPreconditions.Append
-- Copyright : Levent Erkok
-- License   : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Proof of correctness of an imperative list-append algorithm, using weakest
-- preconditions. Illustrates the use of SBV's symbolic lists together with
-- the WP algorithm.
-----------------------------------------------------------------------------

{-# LANGUAGE DeriveAnyClass        #-}
{-# LANGUAGE DeriveGeneric         #-}
{-# LANGUAGE FlexibleInstances     #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE NamedFieldPuns        #-}
{-# LANGUAGE OverloadedLists       #-}

{-# OPTIONS_GHC -Wall -Werror #-}

module Documentation.SBV.Examples.WeakestPreconditions.Append where

import Data.SBV
import Data.SBV.Control

import           Data.SBV.List ((.++))
import qualified Data.SBV.List as L

import Data.SBV.Tools.WeakestPreconditions

import GHC.Generics (Generic)

-- * Program state

-- | The state of the length program, paramaterized over the element type @a@
data AppS a = AppS { xs :: SList a  -- ^ The first input list
                   , ys :: SList a  -- ^ The second input list
                   , ts :: SList a  -- ^ Temporary variable
                   , zs :: SList a  -- ^ Output
                   }
                   deriving (Generic, Mergeable)

-- | The concrete counterpart of 'AppS'. Again, we can't simply use the duality between
-- @SBV a@ and @a@ due to the difference between @SList a@ and @[a]@.
data AppC a = AppC [a] [a] [a] [a]

-- | Show instance for 'AppS'. The above deriving clause would work just as well,
-- but we want it to be a little prettier here, and hence the @OVERLAPS@ directive.
instance {-# OVERLAPS #-} (SymVal a, Show a) => Show (AppS a) where
  show (AppS xs ys ts zs) = "{xs = " ++ sh xs ++ ", ys = " ++ sh ys ++ ", ts = " ++ sh ts ++ ", zs = " ++ sh zs ++ "}"
    where sh v = case unliteral v of
                   Nothing -> "<symbolic>"
                   Just i  -> show i

-- | Show instance, a bit more prettier than what would be derived:
instance Show a => Show (AppC a) where
  show (AppC xs ys ts zs) = "{xs = " ++ show xs ++ ", ys = " ++ show ys ++ ", ts = " ++ show ts ++ ", zs = " ++ show zs ++ "}"

-- | 'Queriable' instance for the program state
instance Queriable IO (AppS Integer) (AppC Integer) where
  create                     = AppS <$> freshVar_   <*> freshVar_   <*> freshVar_   <*> freshVar_
  project (AppS xs ys ts zs) = AppC <$> getValue xs <*> getValue ys <*> getValue ts <*> getValue zs
  embed   (AppC xs ys ts zs) = return $ AppS (literal xs) (literal ys) (literal ts) (literal zs)

-- | Helper type synonym
type A = AppS Integer

-- * The algorithm

-- | The imperative append algorithm:
--
-- @
--    zs = []
--    ts = xs
--    while not (null ts)
--      zs = zs ++ [head ts]
--      ts = tail ts
--    ts = ys
--    while not (null ts)
--      zs = zs ++ [head ts]
--      ts = tail ts
-- @
algorithm :: Stmt A
algorithm = Seq [ Assign $ \st          -> st{zs = []}
                , Assign $ \st@AppS{xs} -> st{ts = xs}
                , loop "xs" (\AppS{xs, zs, ts} -> xs .== zs .++ ts)
                , Assign $ \st@AppS{ys} -> st{ts = ys}
                , loop "ys" (\AppS{xs, ys, zs, ts} -> xs .++ ys .== zs .++ ts)
                ]
  where loop w inv = While ("walk over " ++ w)
                           inv
                           (Just (\AppS{ts} -> [L.length ts]))
                           (\AppS{ts} -> sNot (L.null ts))
                           $ Seq [ Assign $ \st@AppS{ts, zs} -> st{zs = zs `L.snoc` L.head ts}
                                 , Assign $ \st@AppS{ts}     -> st{ts = L.tail ts            }
                                 ]

-- | A program is the algorithm, together with its pre- and post-conditions.
imperativeAppend :: Program A
imperativeAppend = Program { setup         = return ()
                           , precondition  = const sTrue  -- no precondition
                           , program       = algorithm
                           , postcondition = postcondition
                           , stability     = noChange
                           }
  where -- We must append properly!
        postcondition :: A -> SBool
        postcondition AppS{xs, ys, zs} = zs .== xs .++ ys

        -- Program should never change values of @xs@ and @ys@
        noChange = [stable "xs" xs, stable "ys" ys]

-- * Correctness

-- | We check that @zs@ is @xs ++ ys@ upon termination.
--
-- >>> correctness
-- Total correctness is established.
-- Q.E.D.
correctness :: IO (ProofResult (AppC Integer))
correctness = wpProveWith defaultWPCfg{wpVerbose=True} imperativeAppend