{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Data.SBV.Tools.BoundedList (
bfoldr, bfoldrM, bfoldl, bfoldlM
, bmap, bmapM, bfilter, bzipWith, belem
, bsum, bprod, band, bor, bany, ball, bmaximum, bminimum
, breverse, bsort
)
where
import Data.SBV
import Data.SBV.List ((.:), (.++))
import qualified Data.SBV.List as L
lcase :: (SymVal a, Mergeable b) => SList a -> b -> (SBV a -> SList a -> b) -> b
lcase s e c = ite (L.null s) e (c (L.head s) (L.tail s))
bfoldr :: (SymVal a, SymVal b) => Int -> (SBV a -> SBV b -> SBV b) -> SBV b -> SList a -> SBV b
bfoldr cnt f b = go (cnt `max` 0)
where go 0 _ = b
go i s = lcase s b (\h t -> h `f` go (i-1) t)
bfoldrM :: forall a b m. (SymVal a, SymVal b, Monad m, Mergeable (m (SBV b)))
=> Int -> (SBV a -> SBV b -> m (SBV b)) -> SBV b -> SList a -> m (SBV b)
bfoldrM cnt f b = go (cnt `max` 0)
where go :: Int -> SList a -> m (SBV b)
go 0 _ = return b
go i s = lcase s (return b) (\h t -> f h =<< go (i-1) t)
bfoldl :: (SymVal a, SymVal b) => Int -> (SBV b -> SBV a -> SBV b) -> SBV b -> SList a -> SBV b
bfoldl cnt f = go (cnt `max` 0)
where go 0 b _ = b
go i b s = lcase s b (\h t -> go (i-1) (b `f` h) t)
bfoldlM :: forall a b m. (SymVal a, SymVal b, Monad m, Mergeable (m (SBV b)))
=> Int -> (SBV b -> SBV a -> m (SBV b)) -> SBV b -> SList a -> m (SBV b)
bfoldlM cnt f = go (cnt `max` 0)
where go :: Int -> SBV b -> SList a -> m (SBV b)
go 0 b _ = return b
go i b s = lcase s (return b) (\h t -> do { fbh <- f b h; go (i-1) fbh t })
bsum :: (SymVal a, Num a, Ord a) => Int -> SList a -> SBV a
bsum i = bfoldl i (+) 0
bprod :: (SymVal a, Num a, Ord a) => Int -> SList a -> SBV a
bprod i = bfoldl i (*) 1
bmap :: (SymVal a, SymVal b) => Int -> (SBV a -> SBV b) -> SList a -> SList b
bmap i f = bfoldr i (\x -> (f x .:)) []
bmapM :: (SymVal a, SymVal b, Monad m, Mergeable (m (SBV [b])))
=> Int -> (SBV a -> m (SBV b)) -> SList a -> m (SList b)
bmapM i f = bfoldrM i (\a bs -> (.:) <$> f a <*> pure bs) []
bfilter :: SymVal a => Int -> (SBV a -> SBool) -> SList a -> SList a
bfilter i f = bfoldr i (\x y -> ite (f x) (x .: y) y) []
band :: Int -> SList Bool -> SBool
band i = bfoldr i (.&&) (sTrue :: SBool)
bor :: Int -> SList Bool -> SBool
bor i = bfoldr i (.||) (sFalse :: SBool)
bany :: SymVal a => Int -> (SBV a -> SBool) -> SList a -> SBool
bany i f = bor i . bmap i f
ball :: SymVal a => Int -> (SBV a -> SBool) -> SList a -> SBool
ball i f = band i . bmap i f
bmaximum :: (Ord a, SymVal a) => Int -> SList a -> SBV a
bmaximum i l = bfoldl (i-1) smax (L.head l) (L.tail l)
bminimum :: (Ord a, SymVal a) => Int -> SList a -> SBV a
bminimum i l = bfoldl (i-1) smin (L.head l) (L.tail l)
bzipWith :: (SymVal a, SymVal b, SymVal c) => Int -> (SBV a -> SBV b -> SBV c) -> SList a -> SList b -> SList c
bzipWith cnt f = go (cnt `max` 0)
where go 0 _ _ = []
go i xs ys = ite (L.null xs .|| L.null ys)
[]
(f (L.head xs) (L.head ys) .: go (i-1) (L.tail xs) (L.tail ys))
belem :: (Eq a, SymVal a) => Int -> SBV a -> SList a -> SBool
belem i e = bany i (e .==)
breverse :: SymVal a => Int -> SList a -> SList a
breverse cnt = bfoldr cnt (\a b -> b .++ L.singleton a) []
bpara :: (SymVal a, SymVal b) => Int -> (SBV a -> SBV [a] -> SBV b -> SBV b) -> SBV b -> SList a -> SBV b
bpara cnt f b = go (cnt `max` 0)
where go 0 _ = b
go i s = lcase s b (\h t -> f h t (go (i-1) t))
binsert :: (Ord a, SymVal a) => Int -> SBV a -> SList a -> SList a
binsert cnt a = bpara cnt f (L.singleton a)
where f sortedHd sortedTl sortedTl' = ite (a .< sortedHd)
(a .: sortedHd .: sortedTl)
(sortedHd .: sortedTl')
bsort :: (Ord a, SymVal a) => Int -> SList a -> SList a
bsort cnt = bfoldr cnt (binsert cnt) []