Copyright | (c) Levent Erkok |
---|---|
License | BSD3 |
Maintainer | erkokl@gmail.com |
Stability | experimental |
Safe Haskell | None |
Language | Haskell2010 |
Example inductive proof to show partial correctness of the traditional for-loop sum algorithm:
s = 0 i = 0 while i <= n: s += i i++
We prove the loop invariant and establish partial correctness that
s
is the sum of all numbers up to and including n
upon termination.
Synopsis
- data S a = S {}
- sumCorrect :: IO (InductionResult (S Integer))
System state
System state. We simply have two components, parameterized over the type so we can put in both concrete and symbolic values.
Instances
Functor S Source # | |
Foldable S Source # | |
Defined in Documentation.SBV.Examples.ProofTools.Sum fold :: Monoid m => S m -> m # foldMap :: Monoid m => (a -> m) -> S a -> m # foldr :: (a -> b -> b) -> b -> S a -> b # foldr' :: (a -> b -> b) -> b -> S a -> b # foldl :: (b -> a -> b) -> b -> S a -> b # foldl' :: (b -> a -> b) -> b -> S a -> b # foldr1 :: (a -> a -> a) -> S a -> a # foldl1 :: (a -> a -> a) -> S a -> a # elem :: Eq a => a -> S a -> Bool # maximum :: Ord a => S a -> a # | |
Traversable S Source # | |
Fresh IO (S SInteger) Source # |
|
Show a => Show (S a) Source # | |
Generic (S a) Source # | |
Mergeable a => Mergeable (S a) Source # | |
type Rep (S a) Source # | |
Defined in Documentation.SBV.Examples.ProofTools.Sum type Rep (S a) = D1 (MetaData "S" "Documentation.SBV.Examples.ProofTools.Sum" "sbv-8.3-KY4PN9PPbrH5uMg2KovlBp" False) (C1 (MetaCons "S" PrefixI True) (S1 (MetaSel (Just "s") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a) :*: (S1 (MetaSel (Just "i") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a) :*: S1 (MetaSel (Just "n") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))) |
sumCorrect :: IO (InductionResult (S Integer)) Source #
Encoding partial correctness of the sum algorithm. We have:
>>>
sumCorrect
Q.E.D.