sbv-8.10: SMT Based Verification: Symbolic Haskell theorem prover using SMT solving.
Copyright(c) Levent Erkok
LicenseBSD3
Maintainererkokl@gmail.com
Stabilityexperimental
Safe HaskellNone
LanguageHaskell2010

Documentation.SBV.Examples.Puzzles.Garden

Description

The origin of this puzzle is Raymond Smullyan's "The Flower Garden" riddle:

In a certain flower garden, each flower was either red, yellow, or blue, and all three colors were represented. A statistician once visited the garden and made the observation that whatever three flowers you picked, at least one of them was bound to be red. A second statistician visited the garden and made the observation that whatever three flowers you picked, at least one was bound to be yellow.

Two logic students heard about this and got into an argument. The first student said: “It therefore follows that whatever three flowers you pick, at least one is bound to be blue, doesn’t it?” The second student said: “Of course not!”

Which student was right, and why?

We slightly modify the puzzle. Assuming the first student is right, we use SBV to show that the garden must contain exactly 3 flowers. In any other case, the second student would be right.

Synopsis

Documentation

data Color Source #

Colors of the flowers

Constructors

Red 
Yellow 
Blue 

Instances

Instances details
Eq Color Source # 
Instance details

Defined in Documentation.SBV.Examples.Puzzles.Garden

Methods

(==) :: Color -> Color -> Bool #

(/=) :: Color -> Color -> Bool #

Data Color Source # 
Instance details

Defined in Documentation.SBV.Examples.Puzzles.Garden

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Color -> c Color #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Color #

toConstr :: Color -> Constr #

dataTypeOf :: Color -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Color) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Color) #

gmapT :: (forall b. Data b => b -> b) -> Color -> Color #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Color -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Color -> r #

gmapQ :: (forall d. Data d => d -> u) -> Color -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Color -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Color -> m Color #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Color -> m Color #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Color -> m Color #

Ord Color Source # 
Instance details

Defined in Documentation.SBV.Examples.Puzzles.Garden

Methods

compare :: Color -> Color -> Ordering #

(<) :: Color -> Color -> Bool #

(<=) :: Color -> Color -> Bool #

(>) :: Color -> Color -> Bool #

(>=) :: Color -> Color -> Bool #

max :: Color -> Color -> Color #

min :: Color -> Color -> Color #

Read Color Source # 
Instance details

Defined in Documentation.SBV.Examples.Puzzles.Garden

Show Color Source # 
Instance details

Defined in Documentation.SBV.Examples.Puzzles.Garden

Methods

showsPrec :: Int -> Color -> ShowS #

show :: Color -> String #

showList :: [Color] -> ShowS #

HasKind Color Source # 
Instance details

Defined in Documentation.SBV.Examples.Puzzles.Garden

SymVal Color Source # 
Instance details

Defined in Documentation.SBV.Examples.Puzzles.Garden

SatModel Color Source # 
Instance details

Defined in Documentation.SBV.Examples.Puzzles.Garden

Methods

parseCVs :: [CV] -> Maybe (Color, [CV]) Source #

cvtModel :: (Color -> Maybe b) -> Maybe (Color, [CV]) -> Maybe (b, [CV]) Source #

type SColor = SBV Color Source #

Make Color a symbolic value.

type Flower = SInteger Source #

Represent flowers by symbolic integers

col :: Flower -> SBV Color Source #

The uninterpreted function col assigns a color to each flower.

validPick :: SInteger -> Flower -> Flower -> Flower -> SBool Source #

Describe a valid pick of three flowers i, j, k, assuming we have n flowers to start with. Essentially the numbers should be within bounds and distinct.

count :: Color -> [Flower] -> SInteger Source #

Count the number of flowers that occur in a given set of flowers.

puzzle :: Goal Source #

Smullyan's puzzle.

flowerCount :: IO () Source #

Solve the puzzle. We have:

>>> flowerCount
Solution #1:
  N = 3 :: Integer
This is the only solution. (Unique up to prefix existentials.)

So, a garden with 3 flowers is the only solution. (Note that we simply skip over the prefix existentials and the assignments to uninterpreted function col for model purposes here, as they don't represent a different solution.)