----------------------------------------------------------------------------- -- | -- Module : Documentation.SBV.Examples.Puzzles.U2Bridge -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- The famous U2 bridge crossing puzzle: <http://www.braingle.com/brainteasers/515/u2.html> ----------------------------------------------------------------------------- {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveGeneric #-} module Documentation.SBV.Examples.Puzzles.U2Bridge where import Control.Monad (unless) import Control.Monad.State (State, runState, put, get, gets, modify, evalState) import GHC.Generics (Generic) import Data.SBV ------------------------------------------------------------- -- * Modeling the puzzle ------------------------------------------------------------- -- | U2 band members. We want to translate this to SMT-Lib as a data-type, and hence the -- call to mkSymbolicEnumeration. data U2Member = Bono | Edge | Adam | Larry -- | Make 'U2Member' a symbolic value. mkSymbolicEnumeration ''U2Member -- | Symbolic shorthand for a 'U2Member' type SU2Member = SBV U2Member -- | Shorthands for symbolic versions of the members bono, edge, adam, larry :: SU2Member [bono, edge, adam, larry] = map literal [Bono, Edge, Adam, Larry] -- | Model time using 32 bits type Time = Word32 -- | Symbolic variant for time type STime = SBV Time -- | Crossing times for each member of the band crossTime :: U2Member -> Time crossTime Bono = 1 crossTime Edge = 2 crossTime Adam = 5 crossTime Larry = 10 -- | The symbolic variant.. The duplication is unfortunate. sCrossTime :: SU2Member -> STime sCrossTime m = ite (m .== bono) (literal (crossTime Bono)) $ ite (m .== edge) (literal (crossTime Edge)) $ ite (m .== adam) (literal (crossTime Adam)) (literal (crossTime Larry)) -- Must be Larry -- | Location of the flash data Location = Here | There -- | Make 'Location' a symbolic value. mkSymbolicEnumeration ''Location -- | Symbolic variant of 'Location' type SLocation = SBV Location -- | Shorthands for symbolic versions of locations here, there :: SLocation [here, there] = map literal [Here, There] -- | The status of the puzzle after each move -- -- This type is equipped with an automatically derived 'Mergeable' instance -- because each field is 'Mergeable'. A 'Generic' instance must also be derived -- for this to work, and the 'DeriveAnyClass' language extension must be -- enabled. The derived 'Mergeable' instance simply walks down the structure -- field by field and merges each one. An equivalent hand-written 'Mergeable' -- instance is provided in a comment below. data Status = Status { time :: STime -- ^ elapsed time , flash :: SLocation -- ^ location of the flash , lBono :: SLocation -- ^ location of Bono , lEdge :: SLocation -- ^ location of Edge , lAdam :: SLocation -- ^ location of Adam , lLarry :: SLocation -- ^ location of Larry } deriving (Generic, Mergeable) -- The derived Mergeable instance is equivalent to the following: -- -- instance Mergeable Status where -- symbolicMerge f t s1 s2 = Status { time = symbolicMerge f t (time s1) (time s2) -- , flash = symbolicMerge f t (flash s1) (flash s2) -- , lBono = symbolicMerge f t (lBono s1) (lBono s2) -- , lEdge = symbolicMerge f t (lEdge s1) (lEdge s2) -- , lAdam = symbolicMerge f t (lAdam s1) (lAdam s2) -- , lLarry = symbolicMerge f t (lLarry s1) (lLarry s2) -- } -- | Start configuration, time elapsed is 0 and everybody is 'here' start :: Status start = Status { time = 0 , flash = here , lBono = here , lEdge = here , lAdam = here , lLarry = here } -- | A puzzle move is modeled as a state-transformer type Move a = State Status a -- | Mergeable instance for 'Move' simply pushes the merging the data after run of each branch -- starting from the same state. instance Mergeable a => Mergeable (Move a) where symbolicMerge f t a b = do s <- get let (ar, s1) = runState a s (br, s2) = runState b s put $ symbolicMerge f t s1 s2 return $ symbolicMerge f t ar br -- | Read the state via an accessor function peek :: (Status -> a) -> Move a peek = gets -- | Given an arbitrary member, return his location whereIs :: SU2Member -> Move SLocation whereIs p = ite (p .== bono) (peek lBono) $ ite (p .== edge) (peek lEdge) $ ite (p .== adam) (peek lAdam) (peek lLarry) -- | Transferring the flash to the other side xferFlash :: Move () xferFlash = modify $ \s -> s{flash = ite (flash s .== here) there here} -- | Transferring a person to the other side xferPerson :: SU2Member -> Move () xferPerson p = do [lb, le, la, ll] <- mapM peek [lBono, lEdge, lAdam, lLarry] let move l = ite (l .== here) there here lb' = ite (p .== bono) (move lb) lb le' = ite (p .== edge) (move le) le la' = ite (p .== adam) (move la) la ll' = ite (p .== larry) (move ll) ll modify $ \s -> s{lBono = lb', lEdge = le', lAdam = la', lLarry = ll'} -- | Increment the time, when only one person crosses bumpTime1 :: SU2Member -> Move () bumpTime1 p = modify $ \s -> s{time = time s + sCrossTime p} -- | Increment the time, when two people cross together bumpTime2 :: SU2Member -> SU2Member -> Move () bumpTime2 p1 p2 = modify $ \s -> s{time = time s + sCrossTime p1 `smax` sCrossTime p2} -- | Symbolic version of 'when' whenS :: SBool -> Move () -> Move () whenS t a = ite t a (return ()) -- | Move one member, remembering to take the flash move1 :: SU2Member -> Move () move1 p = do f <- peek flash l <- whereIs p -- only do the move if the person and the flash are at the same side whenS (f .== l) $ do bumpTime1 p xferFlash xferPerson p -- | Move two members, again with the flash move2 :: SU2Member -> SU2Member -> Move () move2 p1 p2 = do f <- peek flash l1 <- whereIs p1 l2 <- whereIs p2 -- only do the move if both people and the flash are at the same side whenS (f .== l1 &&& f .== l2) $ do bumpTime2 p1 p2 xferFlash xferPerson p1 xferPerson p2 ------------------------------------------------------------- -- * Actions ------------------------------------------------------------- -- | A move action is a sequence of triples. The first component is symbolically -- True if only one member crosses. (In this case the third element of the triple -- is irrelevant.) If the first component is (symbolically) False, then both members -- move together type Actions = [(SBool, SU2Member, SU2Member)] -- | Run a sequence of given actions. run :: Actions -> Move [Status] run = mapM step where step (b, p1, p2) = ite b (move1 p1) (move2 p1 p2) >> get ------------------------------------------------------------- -- * Recognizing valid solutions ------------------------------------------------------------- -- | Check if a given sequence of actions is valid, i.e., they must all -- cross the bridge according to the rules and in less than 17 seconds isValid :: Actions -> SBool isValid as = time end .<= 17 &&& bAll check as &&& zigZag (cycle [there, here]) (map flash states) &&& bAll (.== there) [lBono end, lEdge end, lAdam end, lLarry end] where check (s, p1, p2) = (bnot s ==> p1 .> p2) -- for two person moves, ensure first person is "larger" &&& (s ==> p2 .== bono) -- for one person moves, ensure second person is always "bono" states = evalState (run as) start end = last states zigZag reqs locs = bAnd $ zipWith (.==) locs reqs ------------------------------------------------------------- -- * Solving the puzzle ------------------------------------------------------------- -- | See if there is a solution that has precisely @n@ steps solveN :: Int -> IO Bool solveN n = do putStrLn $ "Checking for solutions with " ++ show n ++ " move" ++ plu n ++ "." let genAct = do b <- exists_ p1 <- exists_ p2 <- exists_ return (b, p1, p2) res <- allSat $ isValid `fmap` mapM (const genAct) [1..n] cnt <- displayModels disp res if cnt == 0 then return False else do putStrLn $ "Found: " ++ show cnt ++ " solution" ++ plu cnt ++ " with " ++ show n ++ " move" ++ plu n ++ "." return True where plu v = if v == 1 then "" else "s" disp :: Int -> (Bool, [(Bool, U2Member, U2Member)]) -> IO () disp i (_, ss) | lss /= n = error $ "Expected " ++ show n ++ " results; got: " ++ show lss | True = do putStrLn $ "Solution #" ++ show i ++ ": " go False 0 ss return () where lss = length ss go _ t [] = putStrLn $ "Total time: " ++ show t go l t ((True, a, _):rest) = do putStrLn $ sh2 t ++ shL l ++ show a go (not l) (t + crossTime a) rest go l t ((False, a, b):rest) = do putStrLn $ sh2 t ++ shL l ++ show a ++ ", " ++ show b go (not l) (t + crossTime a `max` crossTime b) rest sh2 t = let s = show t in if length s < 2 then ' ' : s else s shL False = " --> " shL True = " <-- " -- | Solve the U2-bridge crossing puzzle, starting by testing solutions with -- increasing number of steps, until we find one. We have: -- -- >>> solveU2 -- Checking for solutions with 1 move. -- Checking for solutions with 2 moves. -- Checking for solutions with 3 moves. -- Checking for solutions with 4 moves. -- Checking for solutions with 5 moves. -- Solution #1: -- 0 --> Edge, Bono -- 2 <-- Bono -- 3 --> Larry, Adam -- 13 <-- Edge -- 15 --> Edge, Bono -- Total time: 17 -- Solution #2: -- 0 --> Edge, Bono -- 2 <-- Edge -- 4 --> Larry, Adam -- 14 <-- Bono -- 15 --> Edge, Bono -- Total time: 17 -- Found: 2 solutions with 5 moves. -- -- Finding all possible solutions to the puzzle. solveU2 :: IO () solveU2 = go 1 where go i = do p <- solveN i unless p $ go (i+1)