----------------------------------------------------------------------------- -- | -- Module : Documentation.SBV.Examples.Uninterpreted.AUF -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- Formalizes and proves the following theorem, about arithmetic, -- uninterpreted functions, and arrays. (For reference, see <http://research.microsoft.com/en-us/um/redmond/projects/z3/fmcad06-slides.pdf> -- slide number 24): -- -- @ -- x + 2 = y implies f (read (write (a, x, 3), y - 2)) = f (y - x + 1) -- @ -- -- We interpret the types as follows (other interpretations certainly possible): -- -- [/x/] 'SWord32' (32-bit unsigned address) -- -- [/y/] 'SWord32' (32-bit unsigned address) -- -- [/a/] An array, indexed by 32-bit addresses, returning 32-bit unsigned integers -- -- [/f/] An uninterpreted function of type @'SWord32' -> 'SWord64'@ -- -- The function @read@ and @write@ are usual array operations. ----------------------------------------------------------------------------- {-# LANGUAGE ScopedTypeVariables #-} module Documentation.SBV.Examples.Uninterpreted.AUF where import Data.SBV -------------------------------------------------------------- -- * Model using functional arrays -------------------------------------------------------------- -- | Uninterpreted function in the theorem f :: SWord32 -> SWord64 f = uninterpret "f" -- | Correctness theorem. We state it for all values of @x@, @y@, and -- the given array @a@. Note that we're being generic in the type of -- array we're expecting. thm :: SymArray a => SWord32 -> SWord32 -> a Word32 Word32 -> SBool thm x y a = lhs ==> rhs where lhs = x + 2 .== y rhs = f (readArray (writeArray a x 3) (y - 2)) .== f (y - x + 1) -- | Prove it using SMT-Lib arrays. -- -- >>> proveSArray -- Q.E.D. proveSArray :: IO ThmResult proveSArray = prove $ do x <- free "x" y <- free "y" a :: SArray Word32 Word32 <- newArray_ Nothing return $ thm x y a -- | Prove it using SBV's internal functional arrays. -- -- >>> proveSFunArray -- Q.E.D. proveSFunArray :: IO ThmResult proveSFunArray = prove $ do x <- free "x" y <- free "y" a :: SFunArray Word32 Word32 <- newArray_ Nothing return $ thm x y a