{-# LANGUAGE Rank2Types #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : Data.SBV.String -- Copyright : (c) Joel Burget, Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- A collection of string/character utilities, useful when working -- with symbolic strings. To the extent possible, the functions -- in this module follow those of "Data.List" so importing qualified -- is the recommended workflow. Also, it is recommended you use the -- @OverloadedStrings@ extension to allow literal strings to be -- used as symbolic-strings. ----------------------------------------------------------------------------- module Data.SBV.String ( -- * Length, emptiness length, null -- * Deconstructing/Reconstructing , head, tail, init, singleton, strToStrAt, strToCharAt, (.!!), implode, concat, (.:), (.++) -- * Containment , isInfixOf, isSuffixOf, isPrefixOf -- * Substrings , take, drop, subStr, replace, indexOf, offsetIndexOf -- * Conversion to\/from naturals , strToNat, natToStr ) where import Prelude hiding (head, tail, init, length, take, drop, concat, null) import qualified Prelude as P import Data.SBV.Core.Data hiding (SeqOp(..)) import Data.SBV.Core.Model import Data.SBV.Utils.Boolean ((==>)) import qualified Data.Char as C import Data.List (genericLength, genericIndex, genericDrop, genericTake) import qualified Data.List as L (tails, isSuffixOf, isPrefixOf, isInfixOf) -- For doctest use only -- -- $setup -- >>> import Data.SBV.Provers.Prover (prove, sat) -- >>> import Data.SBV.Utils.Boolean ((&&&), bnot, (<=>)) -- >>> :set -XOverloadedStrings -- | Length of a string. -- -- >>> sat $ \s -> length s .== 2 -- Satisfiable. Model: -- s0 = "\NUL\NUL" :: String -- >>> sat $ \s -> length s .< 0 -- Unsatisfiable -- >>> prove $ \s1 s2 -> length s1 + length s2 .== length (s1 .++ s2) -- Q.E.D. length :: SString -> SInteger length = lift1 StrLen (Just (fromIntegral . P.length)) -- | @`null` s@ is True iff the string is empty -- -- >>> prove $ \s -> null s <=> length s .== 0 -- Q.E.D. -- >>> prove $ \s -> null s <=> s .== "" -- Q.E.D. null :: SString -> SBool null s | Just cs <- unliteral s = literal (P.null cs) | True = s .== literal "" -- | @`head`@ returns the head of a string. Unspecified if the string is empty. -- -- >>> prove $ \c -> head (singleton c) .== c -- Q.E.D. head :: SString -> SChar head = (`strToCharAt` 0) -- | @`tail`@ returns the tail of a string. Unspecified if the string is empty. -- -- >>> prove $ \h s -> tail (singleton h .++ s) .== s -- Q.E.D. -- >>> prove $ \s -> length s .> 0 ==> length (tail s) .== length s - 1 -- Q.E.D. -- >>> prove $ \s -> bnot (null s) ==> singleton (head s) .++ tail s .== s -- Q.E.D. tail :: SString -> SString tail s | Just (_:cs) <- unliteral s = literal cs | True = subStr s 1 (length s - 1) -- | @`init`@ returns all but the last element of the list. Unspecified if the string is empty. -- -- >>> prove $ \c t -> init (t .++ singleton c) .== t -- Q.E.D. init :: SString -> SString init s | Just cs@(_:_) <- unliteral s = literal $ P.init cs | True = subStr s 0 (length s - 1) -- | @`singleton` c@ is the string of length 1 that contains the only character -- whose value is the 8-bit value @c@. -- -- >>> prove $ \c -> c .== literal 'A' ==> singleton c .== "A" -- Q.E.D. -- >>> prove $ \c -> length (singleton c) .== 1 -- Q.E.D. singleton :: SChar -> SString singleton = lift1 StrUnit (Just wrap) where wrap c = [c] -- | @`strToStrAt` s offset@. Substring of length 1 at @offset@ in @s@. Unspecified if -- offset is out of bounds. -- -- >>> prove $ \s1 s2 -> strToStrAt (s1 .++ s2) (length s1) .== strToStrAt s2 0 -- Q.E.D. -- >>> sat $ \s -> length s .>= 2 &&& strToStrAt s 0 ./= strToStrAt s (length s - 1) -- Satisfiable. Model: -- s0 = "\NUL\NUL\128" :: String strToStrAt :: SString -> SInteger -> SString strToStrAt s offset = subStr s offset 1 -- | @`strToCharAt` s i@ is the 8-bit value stored at location @i@. Unspecified if -- index is out of bounds. -- -- >>> prove $ \i -> i .>= 0 &&& i .<= 4 ==> "AAAAA" `strToCharAt` i .== literal 'A' -- Q.E.D. -- >>> prove $ \s i c -> s `strToCharAt` i .== c ==> indexOf s (singleton c) .<= i -- Q.E.D. strToCharAt :: SString -> SInteger -> SChar strToCharAt s i | Just cs <- unliteral s, Just ci <- unliteral i, ci >= 0, ci < genericLength cs, let c = C.ord (cs `genericIndex` ci) = literal (C.chr c) | True = SBV (SVal w8 (Right (cache (y (s `strToStrAt` i))))) where w8 = KBounded False 8 -- This is trickier than it needs to be, but necessary since there's -- no SMTLib function to extract the character from a string. Instead, -- we form a singleton string, and assert that it is equivalent to -- the extracted value. See <http://github.com/Z3Prover/z3/issues/1302> y si st = do c <- internalVariable st w8 cs <- newExpr st KString (SBVApp (StrOp StrUnit) [c]) let csSBV = SBV (SVal KString (Right (cache (\_ -> return cs)))) internalConstraint st False [] $ unSBV $ length s .> i ==> csSBV .== si return c -- | Short cut for 'strToCharAt' (.!!) :: SString -> SInteger -> SChar (.!!) = strToCharAt -- | @`implode` cs@ is the string of length @|cs|@ containing precisely those -- characters. Note that there is no corresponding function @explode@, since -- we wouldn't know the length of a symbolic string. -- -- >>> prove $ \c1 c2 c3 -> length (implode [c1, c2, c3]) .== 3 -- Q.E.D. -- >>> prove $ \c1 c2 c3 -> map (strToCharAt (implode [c1, c2, c3])) (map literal [0 .. 2]) .== [c1, c2, c3] -- Q.E.D. implode :: [SChar] -> SString implode = foldr ((.++) . singleton) "" -- | Prepend an element, the traditional @cons@. infixr 5 .: (.:) :: SChar -> SString -> SString c .: cs = singleton c .++ cs -- | Concatenate two strings. See also `.++`. concat :: SString -> SString -> SString concat x y | isConcretelyEmpty x = y | isConcretelyEmpty y = x | True = lift2 StrConcat (Just (++)) x y -- | Short cut for `concat`. -- -- >>> sat $ \x y z -> length x .== 5 &&& length y .== 1 &&& x .++ y .++ z .== "Hello world!" -- Satisfiable. Model: -- s0 = "Hello" :: String -- s1 = " " :: String -- s2 = "world!" :: String infixr 5 .++ (.++) :: SString -> SString -> SString (.++) = concat -- | @`isInfixOf` sub s@. Does @s@ contain the substring @sub@? -- -- >>> prove $ \s1 s2 s3 -> s2 `isInfixOf` (s1 .++ s2 .++ s3) -- Q.E.D. -- >>> prove $ \s1 s2 -> s1 `isInfixOf` s2 &&& s2 `isInfixOf` s1 <=> s1 .== s2 -- Q.E.D. isInfixOf :: SString -> SString -> SBool sub `isInfixOf` s | isConcretelyEmpty sub = literal True | True = lift2 StrContains (Just (flip L.isInfixOf)) s sub -- NB. flip, since `StrContains` takes args in rev order! -- | @`isPrefixOf` pre s@. Is @pre@ a prefix of @s@? -- -- >>> prove $ \s1 s2 -> s1 `isPrefixOf` (s1 .++ s2) -- Q.E.D. -- >>> prove $ \s1 s2 -> s1 `isPrefixOf` s2 ==> subStr s2 0 (length s1) .== s1 -- Q.E.D. isPrefixOf :: SString -> SString -> SBool pre `isPrefixOf` s | isConcretelyEmpty pre = literal True | True = lift2 StrPrefixOf (Just L.isPrefixOf) pre s -- | @`isSuffixOf` suf s@. Is @suf@ a suffix of @s@? -- -- >>> prove $ \s1 s2 -> s2 `isSuffixOf` (s1 .++ s2) -- Q.E.D. -- >>> prove $ \s1 s2 -> s1 `isSuffixOf` s2 ==> subStr s2 (length s2 - length s1) (length s1) .== s1 -- Q.E.D. isSuffixOf :: SString -> SString -> SBool suf `isSuffixOf` s | isConcretelyEmpty suf = literal True | True = lift2 StrSuffixOf (Just L.isSuffixOf) suf s -- | @`take` len s@. Corresponds to Haskell's `take` on symbolic-strings. -- -- >>> prove $ \s i -> i .>= 0 ==> length (take i s) .<= i -- Q.E.D. take :: SInteger -> SString -> SString take i s = ite (i .<= 0) (literal "") $ ite (i .>= length s) s $ subStr s 0 i -- | @`drop` len s@. Corresponds to Haskell's `drop` on symbolic-strings. -- -- >>> prove $ \s i -> length (drop i s) .<= length s -- Q.E.D. -- >>> prove $ \s i -> take i s .++ drop i s .== s -- Q.E.D. drop :: SInteger -> SString -> SString drop i s = ite (i .>= ls) (literal "") $ ite (i .<= 0) s $ subStr s i (ls - i) where ls = length s -- | @`subStr` s offset len@ is the substring of @s@ at offset @offset@ with length @len@. -- This function is under-specified when the offset is outside the range of positions in @s@ or @len@ -- is negative or @offset+len@ exceeds the length of @s@. -- -- >>> prove $ \s i -> i .>= 0 &&& i .< length s ==> subStr s 0 i .++ subStr s i (length s - i) .== s -- Q.E.D. -- >>> sat $ \i j -> subStr "hello" i j .== "ell" -- Satisfiable. Model: -- s0 = 1 :: Integer -- s1 = 3 :: Integer -- >>> sat $ \i j -> subStr "hell" i j .== "no" -- Unsatisfiable subStr :: SString -> SInteger -> SInteger -> SString subStr s offset len | Just c <- unliteral s -- a constant string , Just o <- unliteral offset -- a constant offset , Just l <- unliteral len -- a constant length , let lc = genericLength c -- length of the string , let valid x = x >= 0 && x <= lc -- predicate that checks valid point , valid o -- offset is valid , l >= 0 -- length is not-negative , valid $ o + l -- we don't overrun = literal $ genericTake l $ genericDrop o c | True -- either symbolic, or something is out-of-bounds = lift3 StrSubstr Nothing s offset len -- | @`replace` s src dst@. Replace the first occurrence of @src@ by @dst@ in @s@ -- -- >>> prove $ \s -> replace "hello" s "world" .== "world" ==> s .== "hello" -- Q.E.D. -- >>> prove $ \s1 s2 s3 -> length s2 .> length s1 ==> replace s1 s2 s3 .== s1 -- Q.E.D. replace :: SString -> SString -> SString -> SString replace s src dst | Just b <- unliteral src, P.null b -- If src is null, simply prepend = dst .++ s | Just a <- unliteral s , Just b <- unliteral src , Just c <- unliteral dst = literal $ walk a b c | True = lift3 StrReplace Nothing s src dst where walk haystack needle newNeedle = go haystack -- note that needle is guaranteed non-empty here. where go [] = [] go i@(c:cs) | needle `L.isPrefixOf` i = newNeedle ++ genericDrop (genericLength needle :: Integer) i | True = c : go cs -- | @`indexOf` s sub@. Retrieves first position of @sub@ in @s@, @-1@ if there are no occurrences. -- Equivalent to @`offsetIndexOf` s sub 0@. -- -- >>> prove $ \s i -> i .> 0 &&& i .< length s ==> indexOf s (subStr s i 1) .<= i -- Q.E.D. -- >>> prove $ \s i -> i .> 0 &&& i .< length s ==> indexOf s (subStr s i 1) .== i -- Falsifiable. Counter-example: -- s0 = " \NUL\NUL\NUL\NUL\NUL" :: String -- s1 = 3 :: Integer -- >>> prove $ \s1 s2 -> length s2 .> length s1 ==> indexOf s1 s2 .== -1 -- Q.E.D. indexOf :: SString -> SString -> SInteger indexOf s sub = offsetIndexOf s sub 0 -- | @`offsetIndexOf` s sub offset@. Retrieves first position of @sub@ at or -- after @offset@ in @s@, @-1@ if there are no occurrences. -- -- >>> prove $ \s sub -> offsetIndexOf s sub 0 .== indexOf s sub -- Q.E.D. -- >>> prove $ \s sub i -> i .>= length s &&& length sub .> 0 ==> offsetIndexOf s sub i .== -1 -- Q.E.D. -- >>> prove $ \s sub i -> i .> length s ==> offsetIndexOf s sub i .== -1 -- Q.E.D. offsetIndexOf :: SString -> SString -> SInteger -> SInteger offsetIndexOf s sub offset | Just c <- unliteral s -- a constant string , Just n <- unliteral sub -- a constant search pattern , Just o <- unliteral offset -- at a constant offset , o >= 0, o <= genericLength c -- offset is good = case [i | (i, t) <- zip [o ..] (L.tails (genericDrop o c)), n `L.isPrefixOf` t] of (i:_) -> literal i _ -> -1 | True = lift3 StrIndexOf Nothing s sub offset -- | @`strToNat` s@. Retrieve integer encoded by string @s@ (ground rewriting only). -- Note that by definition this function only works when @s@ only contains digits, -- that is, if it encodes a natural number. Otherwise, it returns '-1'. -- See <http://cvc4.cs.stanford.edu/wiki/Strings> for details. -- -- >>> prove $ \s -> let n = strToNat s in n .>= 0 &&& n .< 10 ==> length s .== 1 -- Q.E.D. strToNat :: SString -> SInteger strToNat s | Just a <- unliteral s = if all C.isDigit a && not (P.null a) then literal (read a) else -1 | True = lift1 StrStrToNat Nothing s -- | @`natToStr` i@. Retrieve string encoded by integer @i@ (ground rewriting only). -- Again, only naturals are supported, any input that is not a natural number -- produces empty string, even though we take an integer as an argument. -- See <http://cvc4.cs.stanford.edu/wiki/Strings> for details. -- -- >>> prove $ \i -> length (natToStr i) .== 3 ==> i .<= 999 -- Q.E.D. natToStr :: SInteger -> SString natToStr i | Just v <- unliteral i = literal $ if v >= 0 then show v else "" | True = lift1 StrNatToStr Nothing i -- | Lift a unary operator over strings. lift1 :: forall a b. (SymWord a, SymWord b) => StrOp -> Maybe (a -> b) -> SBV a -> SBV b lift1 w mbOp a | Just cv <- concEval1 mbOp a = cv | True = SBV $ SVal k $ Right $ cache r where k = kindOf (undefined :: b) r st = do swa <- sbvToSW st a newExpr st k (SBVApp (StrOp w) [swa]) -- | Lift a binary operator over strings. lift2 :: forall a b c. (SymWord a, SymWord b, SymWord c) => StrOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c lift2 w mbOp a b | Just cv <- concEval2 mbOp a b = cv | True = SBV $ SVal k $ Right $ cache r where k = kindOf (undefined :: c) r st = do swa <- sbvToSW st a swb <- sbvToSW st b newExpr st k (SBVApp (StrOp w) [swa, swb]) -- | Lift a ternary operator over strings. lift3 :: forall a b c d. (SymWord a, SymWord b, SymWord c, SymWord d) => StrOp -> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d lift3 w mbOp a b c | Just cv <- concEval3 mbOp a b c = cv | True = SBV $ SVal k $ Right $ cache r where k = kindOf (undefined :: d) r st = do swa <- sbvToSW st a swb <- sbvToSW st b swc <- sbvToSW st c newExpr st k (SBVApp (StrOp w) [swa, swb, swc]) -- | Concrete evaluation for unary ops concEval1 :: (SymWord a, SymWord b) => Maybe (a -> b) -> SBV a -> Maybe (SBV b) concEval1 mbOp a = literal <$> (mbOp <*> unliteral a) -- | Concrete evaluation for binary ops concEval2 :: (SymWord a, SymWord b, SymWord c) => Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c) concEval2 mbOp a b = literal <$> (mbOp <*> unliteral a <*> unliteral b) -- | Concrete evaluation for ternary ops concEval3 :: (SymWord a, SymWord b, SymWord c, SymWord d) => Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> Maybe (SBV d) concEval3 mbOp a b c = literal <$> (mbOp <*> unliteral a <*> unliteral b <*> unliteral c) -- | Is the string concretely known empty? isConcretelyEmpty :: SString -> Bool isConcretelyEmpty ss | Just s <- unliteral ss = P.null s | True = False