module Data.SBV.Examples.Puzzles.Euler185 where
import Data.Char(ord)
import Data.SBV
guesses :: [(String, SWord8)]
guesses = [ ("5616185650518293", 2), ("3847439647293047", 1), ("5855462940810587", 3)
, ("9742855507068353", 3), ("4296849643607543", 3), ("3174248439465858", 1)
, ("4513559094146117", 2), ("7890971548908067", 3), ("8157356344118483", 1)
, ("2615250744386899", 2), ("8690095851526254", 3), ("6375711915077050", 1)
, ("6913859173121360", 1), ("6442889055042768", 2), ("2321386104303845", 0)
, ("2326509471271448", 2), ("5251583379644322", 2), ("1748270476758276", 3)
, ("4895722652190306", 1), ("3041631117224635", 3), ("1841236454324589", 3)
, ("2659862637316867", 2)
]
euler185 :: Symbolic SBool
euler185 = do soln <- mkExistVars 16
return $ bAll digit soln &&& bAnd (map (genConstr soln) guesses)
where genConstr a (b, c) = sum (zipWith eq a b) .== (c :: SWord8)
digit x = (x :: SWord8) .>= 0 &&& x .<= 9
eq x y = ite (x .== fromIntegral (ord y - ord '0')) 1 0
solveEuler185 :: IO ()
solveEuler185 = do res <- allSat euler185
cnt <- displayModels disp res
putStrLn $ "Number of solutions: " ++ show cnt
where disp _ (_, ss) = putStrLn $ concatMap show (ss :: [Word8])