{-# LANGUAGE Arrows #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TypeFamilies #-}
module FRP.Rhine.ResamplingBuffer.Interpolation where
import Data.Sequence
import Data.VectorSpace
import FRP.Rhine.ClSF
import FRP.Rhine.ResamplingBuffer
import FRP.Rhine.ResamplingBuffer.KeepLast
import FRP.Rhine.ResamplingBuffer.Util
linear ::
( Monad m
, Clock m cl1
, Clock m cl2
, VectorSpace v s
, s ~ Diff (Time cl1)
, s ~ Diff (Time cl2)
) =>
v ->
v ->
ResamplingBuffer m cl1 cl2 v v
linear :: forall (m :: Type -> Type) cl1 cl2 v s.
(Monad m, Clock m cl1, Clock m cl2, VectorSpace v s,
s ~ Diff (Time cl1), s ~ Diff (Time cl2)) =>
v -> v -> ResamplingBuffer m cl1 cl2 v v
linear v
initVelocity v
initPosition =
(forall (m :: Type -> Type) v s td.
(Monad m, VectorSpace v s, s ~ Diff td) =>
v -> BehaviorF m td v v
derivativeFrom v
initPosition forall (a :: Type -> Type -> Type) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall (m :: Type -> Type) cl a. Monad m => ClSF m cl a a
clId) forall (a :: Type -> Type -> Type) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall (m :: Type -> Type) cl b a.
Monad m =>
(TimeInfo cl -> b) -> ClSF m cl a b
timeInfoOf forall cl. TimeInfo cl -> Diff (Time cl)
sinceInit
forall (m :: Type -> Type) cl1 a b cl2 c.
Monad m =>
ClSF m cl1 a b
-> ResamplingBuffer m cl1 cl2 b c -> ResamplingBuffer m cl1 cl2 a c
^->> forall (m :: Type -> Type) a cl1 cl2.
Monad m =>
a -> ResamplingBuffer m cl1 cl2 a a
keepLast ((v
initVelocity, v
initPosition), s
0)
forall (m :: Type -> Type) cl1 cl2 a b c.
Monad m =>
ResamplingBuffer m cl1 cl2 a b
-> ClSF m cl2 b c -> ResamplingBuffer m cl1 cl2 a c
>>-^ proc ((v
velocity, v
lastPosition), s
sinceInit1) -> do
s
sinceInit2 <- forall (m :: Type -> Type) cl b a.
Monad m =>
(TimeInfo cl -> b) -> ClSF m cl a b
timeInfoOf forall cl. TimeInfo cl -> Diff (Time cl)
sinceInit -< ()
let diff :: s
diff = s
sinceInit2 forall a. Num a => a -> a -> a
- s
sinceInit1
forall (a :: Type -> Type -> Type) b. Arrow a => a b b
returnA -< v
lastPosition forall v a. VectorSpace v a => v -> v -> v
^+^ s
diff forall v a. VectorSpace v a => a -> v -> v
*^ v
velocity
sinc ::
( Monad m
, Clock m cl1
, Clock m cl2
, VectorSpace v s
, Ord s
, Floating s
, s ~ Diff (Time cl1)
, s ~ Diff (Time cl2)
) =>
s ->
ResamplingBuffer m cl1 cl2 v v
sinc :: forall (m :: Type -> Type) cl1 cl2 v s.
(Monad m, Clock m cl1, Clock m cl2, VectorSpace v s, Ord s,
Floating s, s ~ Diff (Time cl1), s ~ Diff (Time cl2)) =>
s -> ResamplingBuffer m cl1 cl2 v v
sinc s
windowSize =
forall (m :: Type -> Type) cl a.
(Monad m, Ord (Diff (Time cl)), TimeDomain (Time cl)) =>
Diff (Time cl) -> ClSF m cl a (Seq (TimeInfo cl, a))
historySince s
windowSize
forall (m :: Type -> Type) cl1 a b cl2 c.
Monad m =>
ClSF m cl1 a b
-> ResamplingBuffer m cl1 cl2 b c -> ResamplingBuffer m cl1 cl2 a c
^->> forall (m :: Type -> Type) a cl1 cl2.
Monad m =>
a -> ResamplingBuffer m cl1 cl2 a a
keepLast forall a. Seq a
empty forall (m :: Type -> Type) cl1 cl2 a b c.
Monad m =>
ResamplingBuffer m cl1 cl2 a b
-> ClSF m cl2 b c -> ResamplingBuffer m cl1 cl2 a c
>>-^ proc Seq (TimeInfo cl1, v)
as -> do
s
sinceInit2 <- forall (m :: Type -> Type) cl a.
Monad m =>
ClSF m cl a (Diff (Time cl))
sinceInitS -< ()
forall (a :: Type -> Type -> Type) b. Arrow a => a b b
returnA -< Seq v -> v
vectorSum forall a b. (a -> b) -> a -> b
$ forall {cl} {v}.
VectorSpace v (Diff (Time cl)) =>
Diff (Time cl) -> (TimeInfo cl, v) -> v
mkSinc s
sinceInit2 forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Seq (TimeInfo cl1, v)
as
where
mkSinc :: Diff (Time cl) -> (TimeInfo cl, v) -> v
mkSinc Diff (Time cl)
sinceInit2 (TimeInfo {Diff (Time cl)
Time cl
Tag cl
tag :: forall cl. TimeInfo cl -> Tag cl
absolute :: forall cl. TimeInfo cl -> Time cl
sinceLast :: forall cl. TimeInfo cl -> Diff (Time cl)
tag :: Tag cl
absolute :: Time cl
sinceInit :: Diff (Time cl)
sinceLast :: Diff (Time cl)
sinceInit :: forall cl. TimeInfo cl -> Diff (Time cl)
..}, v
as) =
let t :: Diff (Time cl)
t = forall a. Floating a => a
pi forall a. Num a => a -> a -> a
* (Diff (Time cl)
sinceInit2 forall a. Num a => a -> a -> a
- Diff (Time cl)
sinceInit) forall a. Fractional a => a -> a -> a
/ Diff (Time cl)
sinceLast
in (forall a. Floating a => a -> a
sin Diff (Time cl)
t forall a. Fractional a => a -> a -> a
/ Diff (Time cl)
t) forall v a. VectorSpace v a => a -> v -> v
*^ v
as
vectorSum :: Seq v -> v
vectorSum = forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr forall v a. VectorSpace v a => v -> v -> v
(^+^) forall v a. VectorSpace v a => v
zeroVector
cubic ::
( Monad m
, VectorSpace v s
, Floating v
, Eq v
, s ~ Diff (Time cl1)
, s ~ Diff (Time cl2)
) =>
ResamplingBuffer m cl1 cl2 v v
cubic :: forall (m :: Type -> Type) v s cl1 cl2.
(Monad m, VectorSpace v s, Floating v, Eq v, s ~ Diff (Time cl1),
s ~ Diff (Time cl2)) =>
ResamplingBuffer m cl1 cl2 v v
cubic =
((forall (m :: Type -> Type) a. Monad m => a -> MSF m a a
iPre forall v a. VectorSpace v a => v
zeroVector forall (a :: Type -> Type -> Type) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall (m :: Type -> Type) v s td.
(Monad m, VectorSpace v s, s ~ Diff td) =>
BehaviorF m td v v
threePointDerivative) forall (a :: Type -> Type -> Type) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& (forall (m :: Type -> Type) cl a.
Monad m =>
ClSF m cl a (Diff (Time cl))
sinceInitS forall (cat :: Type -> Type -> Type) a b c.
Category cat =>
cat a b -> cat b c -> cat a c
>-> forall (m :: Type -> Type) a. Monad m => a -> MSF m a a
iPre s
0))
forall (cat :: Type -> Type -> Type) a b c.
Category cat =>
cat a b -> cat b c -> cat a c
>-> (forall (m :: Type -> Type) cl a. Monad m => ClSF m cl a a
clId forall (a :: Type -> Type -> Type) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall (m :: Type -> Type) a. Monad m => a -> MSF m a a
iPre (forall v a. VectorSpace v a => v
zeroVector, s
0))
forall (m :: Type -> Type) cl1 a b cl2 c.
Monad m =>
ClSF m cl1 a b
-> ResamplingBuffer m cl1 cl2 b c -> ResamplingBuffer m cl1 cl2 a c
^->> forall (m :: Type -> Type) a cl1 cl2.
Monad m =>
a -> ResamplingBuffer m cl1 cl2 a a
keepLast ((forall v a. VectorSpace v a => v
zeroVector, s
0), (forall v a. VectorSpace v a => v
zeroVector, s
0))
forall (m :: Type -> Type) cl1 cl2 a b c.
Monad m =>
ResamplingBuffer m cl1 cl2 a b
-> ClSF m cl2 b c -> ResamplingBuffer m cl1 cl2 a c
>>-^ proc (((v
dv, v
v), s
t1), ((v
dv', v
v'), s
t1')) -> do
s
t2 <- forall (m :: Type -> Type) cl a.
Monad m =>
ClSF m cl a (Diff (Time cl))
sinceInitS -< ()
let
t :: s
t = (s
t1 forall a. Num a => a -> a -> a
- s
t1') forall a. Fractional a => a -> a -> a
/ (s
t2 forall a. Num a => a -> a -> a
- s
t1')
tsquared :: s
tsquared = s
t forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
2
tcubed :: s
tcubed = s
t forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
3
vInter :: v
vInter = ( s
2 forall a. Num a => a -> a -> a
* s
tcubed forall a. Num a => a -> a -> a
- s
3 forall a. Num a => a -> a -> a
* s
tsquared forall a. Num a => a -> a -> a
+ s
1) forall v a. VectorSpace v a => a -> v -> v
*^ v
v'
forall v a. VectorSpace v a => v -> v -> v
^+^ ( s
tcubed forall a. Num a => a -> a -> a
- s
2 forall a. Num a => a -> a -> a
* s
tsquared forall a. Num a => a -> a -> a
+ s
t ) forall v a. VectorSpace v a => a -> v -> v
*^ v
dv'
forall v a. VectorSpace v a => v -> v -> v
^+^ (-s
2 forall a. Num a => a -> a -> a
* s
tcubed forall a. Num a => a -> a -> a
+ s
3 forall a. Num a => a -> a -> a
* s
tsquared ) forall v a. VectorSpace v a => a -> v -> v
*^ v
v
forall v a. VectorSpace v a => v -> v -> v
^+^ ( s
tcubed forall a. Num a => a -> a -> a
- s
tsquared ) forall v a. VectorSpace v a => a -> v -> v
*^ v
dv
forall (a :: Type -> Type -> Type) b. Arrow a => a b b
returnA -< v
vInter